Controle Cinemático de Robôs Manipuladores

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Controle Cinemático de Robôs Manipuladores"

Transcrição

1

2 Conrole Cnemáco de Robôs Manpuladores Funconameno Básco pos de rajeóra rajeóras Pono a Pono rajeóras Coordenadas ou Isócronas rajeóras Conínuas Geração de rajeóras Caresanas Inerpolação de rajeóras Inerpoladores Lneares Inerpoladores Cúbcos Inerpoladores a rechos Amosragem de rajeóras Caresanas Prof. Slas do Amaral - UDESC

3 Esuema de uma Juna Prof. Slas do Amaral - UDESC 3

4 Malha de Conrole de Posção de um Robô Indusral Prof. Slas do Amaral - UDESC 4

5 Malha de Conrole de Posção de um Robô Indusral Prof. Slas do Amaral - UDESC 5

6 Esuema Smplfcado do Conrole Cnemáco Prof. Slas do Amaral - UDESC 6

7 Eapas do Conrole Cnemáco O conrole cnemáco consse das segunes eapas: A parr das especfcações para o movmeno preenddo, produzr uma rajeóra analíca no espaço caresano, dscrmnando no empo as coordenadas caresanas do EF r = (x, y, z, α, β, γ). Dscrezar a rajeóra caresana em um número adeuado de ponos. Usando a cnemáca nversa, converer eses ponos em coordenadas arculares = (,, 3, 4, 5, 6 ). raar sngulardades e soluções múlplas. Inerpolar os ponos nas coordenadas das junas, gerando para cada varável arcular uma expressão (), realzável pelos auadores, e ue produza a rajeóra caresana desejada. Dscrezar a rajeóra arcular a fm de fornecer referêncas para o conrole dnâmco. Prof. Slas do Amaral - UDESC 7

8 Segumeno de rajeóra Lnear no Espaço Caresano Prof. Slas do Amaral - UDESC 8

9 Segumeno de rajeóra Lnear no Espaço Caresano Objevo rajeóra lnear de r a r 4 no empo Seleção de Ponos r, r, r 3 e r 4 Cnemáca Inversa r r r 3 3 r 4 4 Inerpolação Polnômo Cúbco Resulado rajeóra Caresana Prof. Slas do Amaral - UDESC 9

10 pos de rajeóras rajeóras Pono a Pono O camando do movmeno de uma arculação é ndependene do das demas. Cada juna alcança seu desno no menor empo possível. Movmeno exo a exo. Um só exo é movdo de cada vez, resulando num maor empo de cclo, porém, com menor consumo de poênca nsanânea por pare dos auadores. Movmeno smulâneo de exos. Os auadores começam a mover as arculações do robô ao mesmo empo com velocdades específcas para cada uma delas. rajeóras Coordenadas ou Isócronas Um cálculo prévo é feo para ue o movmeno de cada exo enha a mesma duração da arculação mas lena. Esa esraéga produz rajeóras mprevsíves para o EF. rajeóras Conínuas Realzação de uma rajeóra específca. É precso calcular de manera conínua as rajeóras arculares. Prof. Slas do Amaral - UDESC

11 rajeóras Pono a Pono Movmeno Exo a Exo Movmeno Smulâneo dos Exos Prof. Slas do Amaral - UDESC

12 rajeóras Isócronas e Conínuas rajeóras Coordenadas rajeóras Conínuas Prof. Slas do Amaral - UDESC

13 Geração de rajeóras Caresanas Inerpolação Lnear da Posção Em geral, o movmeno do robô é defndo por meo de rajeóras caresanas. É freüene especfcar apenas os ponos ncal e fnal. Se eses ponos esverem muo separados, é necessáro seleconar ponos nermedáros, o ue é feo aravés de um nerpolador. A nerpolação mas comum é a lnear, para a ual a velocdade é consane desde seu valor ncal r aé o fnal r f : - r + () ( f ) = r - r r f Se o robô ver ue passar por mas do ue dos ponos não alnhados, ese nerpolador causará desconnudade de velocdade. Ese problema pode ser resolvdo usando ouros nerpoladores. Prof. Slas do Amaral - UDESC 3

14 Geração de rajeóras Caresanas Inerpolação Lnear da Orenação Méodos para { Marzes de Roação Represenação Ângulos de Euler da Orenação ou Quaérnos Cada um deses méodos produz s rajeóras A ulzação das marzes de roação leva a resulados nconssenes, devdo a necessdade de serem oronormas. Consdere o exemplo: R Orenação Incal = R f R(z,9 o ) seguda de R(x,9 o ) Orenação Fnal = Orenação Inermedára Inerpolação Lnear R m = R m não é oronormal e, porano, não corresponde a uma orenação válda. Prof. Slas do Amaral - UDESC 4

15 Geração de rajeóras Caresanas Inerpolação Lnear da Orenação A ulzação dos ângulos de Euler não apresena ese nconvenene. Parndo da orenação ncal (α, β, γ ) para a orenação fnal (α f, β f, γ f ), são váldas as segunes nerpolações: α β γ () = ( α α ) () = ( β β ) f f () = ( γ f γ ) + γ - f f f α + β O nconvenene desa rajeóra é ue, do pono de vso do usuáro, não é nuva, com esranhas evoluções da orenação. A evolução mas naural consse num gro de manera progressva em orno de um exo fxo, o ue ualfca os uaérnos como o meo mas adeuado para gerar a rajeóra caresana de orenação. Prof. Slas do Amaral - UDESC 5

16 Inerpoladores Lneares Deseja-se ue uma das arculações do robô passe sucessvamene pelos valores [,, 3,...] nos nsanes [,, 3,...] com velocdade consane enre duas posções sucessvas. Com sso, a rajeóra enre as posções - e será dada por: () = ( ) para - + < < e onde : = Assegura a connudade da posção. Não eva salos bruscos na velocdade. Exge aceleração nfna (Impossível). Prof. Slas do Amaral - UDESC 6

17 Prof. Slas do Amaral - UDESC 7 () ( ) ( ) ( ) 3 para - d - c - b a < < = ( ) ( ) ( ) 3 d b 3 c a + + = = = = Inerpoladores Cúbcos Para assegurar connudade em velocdade, pode-se usar um polnômo de 3 o grau, unndo cada par de ponos adjacenes, do po: Os parâmeros a, b, c e d de cada polnômo são obdos a parr das uaro condções de conorno: posções e velocdades em - e. Fazendo = - -, os parâmeros são:

18 Inerpoladores Cúbcos Para calcular os coefcenes do polnômo cúbco, é precso conhecer os valores das velocdades de passagem pelos ponos de neresse. Para sso, há dversas alernavas. Numa delas, as velocdades são obdas de: = se sgn se sgn + ( ) sgn( ) + ( ) = sgn( ) Admndo ue a parda/chegada em cada pono ocorra na suação de repouso, garane connudade em velocdade e em aceleração. Oura alernava consse em ober as velocdades de passagem a parr das velocdades de passagem projeadas no espaço da arefa. Prof. Slas do Amaral - UDESC 8

19 Inerpolador a rechos Lgando Dos Ponos Velocdades Incal e Fnal Nulas recho : Polnômo de o grau Velocdade cresce lnearmene Aceleração é consane e posva recho : Inerpolador lnear Velocdade é consane Aceleração é nula recho : Polnômo de o grau Velocdade decresce lnearmene Aceleração é consane e negava () = + s A V s A + s + sv A + A - A δ δ < - δ - δ < < Prof. Slas do Amaral - UDESC 9

20 Inerpolador a rechos Lgando Város Ponos Velocdades de Passagem Não Nulas Para ue não sejam produzdos movmenos desconínuos, faz-se um ajuse parabólco nas proxmdades dos ponos de passagem. Quano maor a aceleração, mas se aproxma do nerpolador lnear. Prof. Slas do Amaral - UDESC

21 Prof. Slas do Amaral - UDESC () ( ) ( ) ( ) ( ) + < + δ < + + δ < δ < + δ + + δ + = a ( ) ( ) δ = a max e δ = a Inerpolador a rechos Lgando Város Ponos Velocdades de Passagem Não Nulas R A J E Ó R I A ACELERAÇÃO ERRO MÁXIMO

22 Smulação no MaLab CRIAÇÃO DO ROBÔ R3 GERAÇÃO DA RAJEÓRIA L = lnk([ ]); L = lnk([-p/.5 ]); L3 = lnk([.5 ]); R3 = robo({l L L3}); = [p/ -p/ ]; f = [-p/ p/ ]; = [:.5:5]; = jraj(, f, ); ANIMAÇÃO DO ROBÔ R3 plo(r3,, 'noname'); Prof. Slas do Amaral - UDESC

23 Smulação no MaLab - Obenção da Cnemáca Inversa a parr da MH puma56 echo on = [ -p/4 -p/4 p/8 ]; = fkne(p56, ); = kne(p56, ); dsp(' Orgnal Calculada'); dsp([' ']) pause echo off % Carregar PUMA56 % Avar eco na ela % Confguração das junas % MH relava a confguração % Cnemáca Inversa % Comparação enre e % Pausa % Desavar eco na ela Prof. Slas do Amaral - UDESC 3

24 Smulação no MaLab - Efeo de uma Sngulardade echo on = fkne(p56, r); = kne(p56, ); dsp(' Orgnal Calculada'); dsp([r' ']) fkne(p56, ) - fkne(p56, r) pause echo off % Avar eco na ela % Para r, dos exos do punho % esão alnhados -gdl % e r são dferenes, mas o % EF alcança uma só posção % Pausa % Desavar eco na ela Prof. Slas do Amaral - UDESC 4

25 Smulação no MaLab - 3 rajeóra Relínea no Espaço Caresano echo on = [:.5:]; = ransl(.6, -.5,.); = ransl(.4,.5,.); = craj(,, lengh()); pause echo off % Avar eco na ela % Veor empo % Pono ncal da rajeóra % Pono fnal da rajeóra % Cálculo da rajeóra caresana % Pausa % Desavar eco na ela Prof. Slas do Amaral - UDESC 5

26 Smulação no MaLab - 4 Cnemáca Inversa para a rajeóra Relínea echo on c = kne(p56, ); oc pause echo off % Avar eco na ela % empo ncal % Cnemáca Inversa % empo fnal % Pausa % Desavar eco na ela Ese méodo é muo leno. Para um robô real, o cálculo da cnemáca nversa deve durar apenas alguns ml-segundos. Prof. Slas do Amaral - UDESC 6

27 Smulação no MaLab - 5 Exbção da rajeóra Relínea no Espaço das Junas echo on subplo(3,,); plo(,(:,)); xlabel('empo (s)'); ylabel('juna (rad)') subplo(3,,); plo(,(:,)); xlabel('empo (s)'); ylabel('juna (rad)') subplo(3,,3); plo(,(:,3)); xlabel('empo (s)'); ylabel('juna 3 (rad)') pause close(fgure()) % pressone ualuer ecla para connuar echo off Prof. Slas do Amaral - UDESC 7

28 Smulação no MaLab - 6 Anmação echo on plo(p56, ) pause close(fgure()); % pressone ualuer ecla para connuar echo off Prof. Slas do Amaral - UDESC 8

Módulo 2: Métodos Numéricos. (problemas de valores iniciais e problemas de condições-fronteira)

Módulo 2: Métodos Numéricos. (problemas de valores iniciais e problemas de condições-fronteira) Módulo : Méodos Numércos Equações dferencas ordnáras problemas de valores ncas e problemas de condções-fronera Modelação Compuaconal de Maeras -5. Equações dferencas ordnáras - Inrodução Uma equação algébrca

Leia mais

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores

FUNDAMENTOS DE ROBÓTICA. Modelo Cinemático de Robôs Manipuladores FUNDMENTOS DE ROBÓTIC Modelo Cnemátco de Robôs Manpuladores Modelo Cnemátco de Robôs Manpuladores Introdução Modelo Cnemátco Dreto Modelo Cnemátco de um Robô de GDL Representação de Denavt-Hartenberg Exemplos

Leia mais

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães

Física I. 2º Semestre de Instituto de Física- Universidade de São Paulo. Aula 5 Trabalho e energia. Professor: Valdir Guimarães Físca I º Semesre de 03 Insuo de Físca- Unversdade de São Paulo Aula 5 Trabalho e energa Proessor: Valdr Gumarães E-mal: valdrg@.usp.br Fone: 309.704 Trabalho realzado por uma orça consane Derenemene

Leia mais

Introdução à Computação Gráfica

Introdução à Computação Gráfica Inrodução à Compuação Gráfca Desenho de Consrução Naval Manuel Venura Insuo Superor Técnco Secção Auónoma de Engenhara Naval Sumáro Represenação maemáca de curvas Curvas polnomas e curvas paramércas Curvas

Leia mais

2 Programação Matemática Princípios Básicos

2 Programação Matemática Princípios Básicos Programação Maemáca Prncípos Báscos. Consderações Geras Os objevos dese capíulo são apresenar os conceos de Programação Maemáca (PM) necessáros à compreensão do processo de omzação de dmensões e descrever

Leia mais

Projeto de Inversores e Conversores CC-CC

Projeto de Inversores e Conversores CC-CC eparameno de Engenhara Elérca Aula. onversor Buck Prof. João Amérco lela Bblografa BAB, vo. & MANS enzar ruz. onversores - Báscos Não-solados. ª edção, UFS,. MOHAN Ned; UNEAN ore M.; OBBNS Wllam P. Power

Leia mais

Planejamento de Trajetórias

Planejamento de Trajetórias Unversae Feeral e Iajubá - UNIFEI Insuo e Engenhara e proução e Gesão - IEPG EPR-03 Auomação a Manufaura Noas sobre: Planejameno e Trajeóras Y (x, y) L θ X=L1.C1+L.C1 Y=L1.S1+L.S1 L1 θ1 X=L1.C1 Y=L1.S1

Leia mais

MECÂNICA CLÁSSICA. AULA N o 3. Lagrangeano Princípio da Mínima Ação Exemplos

MECÂNICA CLÁSSICA. AULA N o 3. Lagrangeano Princípio da Mínima Ação Exemplos MECÂNICA CÁSSICA AUA N o 3 agrangeano Prncípo da Mínma Ação Exemplos Todas as les da Físca êm uma esruura em comum: as les de uma parícula em movmeno sob a ação da gravdade, o movmeno dado pela equação

Leia mais

5 Apreçamento de ESOs com preço de exercício fixo

5 Apreçamento de ESOs com preço de exercício fixo 5 Apreçameno de ESOs com preço de exercíco fxo Ese capíulo rá explorar os prncpas modelos de apreçameno das ESOs ulzados hoje em da. Neses modelos a regra de decsão é esruurada em orno da maxmzação do

Leia mais

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas.

É a parte da mecânica que descreve os movimentos, sem se preocupar com suas causas. 1 INTRODUÇÃO E CONCEITOS INICIAIS 1.1 Mecânca É a pare da Físca que esuda os movmenos dos corpos. 1. -Cnemáca É a pare da mecânca que descreve os movmenos, sem se preocupar com suas causas. 1.3 - Pono

Leia mais

Instituto de Física USP. Física V Aula 30. Professora: Mazé Bechara

Instituto de Física USP. Física V Aula 30. Professora: Mazé Bechara Insuo de Físca USP Físca V Aula 30 Professora: Maé Bechara Aula 30 Tópco IV - Posulados e equação básca da Mecânca quânca 1. Os posulados báscos da Mecânca Quânca e a nerpreação probablísca de Ma Born.

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experênca IV (aulas 06 e 07) Queda lvre 1. Obevos. Inrodução 3. Procedmeno expermenal 4. Análse de dados 5. Quesões 6. Referêncas 1. Obevos Nesa experênca esudaremos o movmeno da queda de um corpo, comparando

Leia mais

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton 9 CPÍTUL 4 DINÂMIC D PRTÍCUL: IMPULS E QUNTIDDE DE MVIMENT Nese capíulo será analsada a le de Newon na forma de negral no domíno do empo, aplcada ao momeno de parículas. Defne-se o conceo de mpulso e quandade

Leia mais

Física Geral I - F Aula 11 Cinemática e Dinâmica das Rotações. 1º semestre, 2012

Física Geral I - F Aula 11 Cinemática e Dinâmica das Rotações. 1º semestre, 2012 Físca Geral I - F -8 Aula Cnemáca e Dnâmca das oações º semesre, 0 Movmeno de um corpo rígdo Vamos abandonar o modelo de parícula: passamos a levar em cona as dmensões do corpo, nroduzndo o conceo de corpo

Leia mais

MECÂNICA CLÁSSICA. AULA N o 4. Carga de Noether- Simetrias e Conservação

MECÂNICA CLÁSSICA. AULA N o 4. Carga de Noether- Simetrias e Conservação MECÂNIC CLÁSSIC UL N o 4 Carga de Noeher- Smeras e Conservação Vamos ver o caso de uma parícula movendo-se no plano, porém descrevendo-a agora em coordenadas polares: r r d dr T T m dr m d r d d m r m

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Parca Mara Borolon. Sc. Modelos de ados em Panel Fone: GUJARATI;. N. Economera Básca: 4ª Edção. Ro de Janero. Elsever- Campus 006 efnções Geras Nos dados em panel a mesma undade de core

Leia mais

Conceitos Básicos de Circuitos Elétricos

Conceitos Básicos de Circuitos Elétricos onceos Báscos de rcuos lércos. nrodução Nesa aposla são apresenados os conceos e defnções fundamenas ulzados na análse de crcuos elércos. O correo enendmeno e nerpreação deses conceos é essencal para o

Leia mais

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n

CAPÍTULO 1 REPRESENTAÇÃO E CLASSIFICAÇÃO DE SISTEMAS. Sistema monovariável SISO = Single Input Single Output. s 1 s 2. ... s n 1 CAPÍTULO 1 REPREENTAÇÃO E CLAIFICAÇÃO DE ITEMA 1.1. Represenação de ssemas 1.1.1. semas com uma enrada e uma saída (IO) e sema monovarável IO = ngle Inpu ngle Oupu s e = enrada s = saída = ssema 1.1..

Leia mais

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO L IRUITOS LÉTRIOS 8 UNIFI,VFS, Re. BDB PRT L IRUITOS LÉTRIOS NGNHRI D OMPUTÇÃO PÍTULO 5 PITORS INDUTORS: omporameno com Snas onínuos e com Snas lernaos 5. INTRODUÇÃO Ressor elemeno que sspa poênca. 5.

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Aplicações: Controlo de motores de CC-CC Fontes de alimentação comutadas Carga de baterias CONVERSORES ELECTRÓNICOS DE POTÊNCIA A ALTA FREQUÊNCIA

Aplicações: Controlo de motores de CC-CC Fontes de alimentação comutadas Carga de baterias CONVERSORES ELECTRÓNICOS DE POTÊNCIA A ALTA FREQUÊNCIA CN CÓNC PÊNCA A AA FQUÊNCA CN CC-CC CN CC-CC Aplcações: Crolo de moores de CC-CC Fes de almenação comuadas Carga de baeras ensão cínua de enrada moor de correne cínua crolo e comando baera ede CA ecfcador

Leia mais

MESTRADO EM CIÊNCIAS DE GESTÃO/MBA. MÉTODOS QUANTITATIVOS APLICADOS À GESTÃO V Funções Exponencial, Potência e Logarítmica

MESTRADO EM CIÊNCIAS DE GESTÃO/MBA. MÉTODOS QUANTITATIVOS APLICADOS À GESTÃO V Funções Exponencial, Potência e Logarítmica MESTRADO EM IÊNIAS DE GESTÃO/MBA MÉTODOS QUANTITATIVOS APIADOS À GESTÃO V Funções Eponencal, Poênca e ogaríca V- FUNÇÕES EXPONENIA, POTÊNIA E OGARÍTMIA. U capal, coposo anualene a ua aa de juro anual durane

Leia mais

Fundamentos de Computação Gráfica Prova Aluna: Patrícia Cordeiro Pereira Pampanelli

Fundamentos de Computação Gráfica Prova Aluna: Patrícia Cordeiro Pereira Pampanelli Fundamenos de Compuação Gráfica Prova -6- Aluna: Parícia Cordeiro Pereira Pampanelli Observação: Os códigos uilizados para o desenvolvimeno da prova enconram-se em anexo. Quesão : A Transformada Discrea

Leia mais

INTRODUÇÃO AS EQUAÇÕES DIFERENCIAIS PARCIAIS

INTRODUÇÃO AS EQUAÇÕES DIFERENCIAIS PARCIAIS INTROUÇÃO S QUÇÕS IFRNIIS PRIIS. INTROUÇÃO Porqe esdar as qações ferencas Parcas? Smplesmene porqe a maora dos fenômenos físcos qe ocorrem na nareza são descros por eqações dferencas parcas como por eemplo:

Leia mais

3 Modelos de Apreçamento de Opções

3 Modelos de Apreçamento de Opções 3 Modelos de Apreçameno de Opções Preços de fuuros na Bolsa de Valores, na práca, são defndos de forma lvre na BM&FBOVESPA a parr das relações apresenadas enre ofera e demanda. Para que a formação de as

Leia mais

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016

Robótica. Prof. Reinaldo Bianchi Centro Universitário FEI 2016 Robótca Prof. Renaldo Banch Centro Unverstáro FEI 2016 6 a Aula IECAT Objetvos desta aula Momentos Lneares, angulares e de Inérca. Estátca de manpuladores: Propagação de forças e torques. Dnâmca de manpuladores:

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

Nota Técnica sobre a Circular nº 2.972, de 23 de março de 2000

Nota Técnica sobre a Circular nº 2.972, de 23 de março de 2000 Noa Técnca sobre a rcular nº 2.972, de 23 de março de 2000 Meodologa ulzada no processo de apuração do valor da volaldade padrão e do mulplcador para o da, dvulgados daramene pelo Banco enral do Brasl.

Leia mais

CAPÍTULO I CIRCUITOS BÁSICOS COM INTERRUPTORES, DIODOS E TIRISTORES 1.1 CIRCUITOS DE PRIMEIRA ORDEM Circuito RC em Série com um Tiristor

CAPÍTULO I CIRCUITOS BÁSICOS COM INTERRUPTORES, DIODOS E TIRISTORES 1.1 CIRCUITOS DE PRIMEIRA ORDEM Circuito RC em Série com um Tiristor APÍTUO I IRUITOS BÁSIOS OM INTERRUPTORES, IOOS E TIRISTORES. IRUITOS E PRIMEIRA OREM.. rcuo R em Sére com um Trsor Seja o crcuo apresenado na Fg... T R v R V v Fg.. rcuo RT sére. Anes do dsparo do rsor,

Leia mais

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v

figura 1 Vamos encontrar, em primeiro lugar, a velocidade do som da explosão (v E) no ar que será dada pela fórmula = v Dispara-se, segundo um ângulo de 6 com o horizone, um projéil que explode ao aingir o solo e oue-se o ruído da explosão, no pono de parida do projéil, 8 segundos após o disparo. Deerminar a elocidade inicial

Leia mais

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1)

EXAME DE ESTATÍSTICA AMBIENTAL 1ª Época (v1) Nome: Aluno nº: Duração: horas LICENCIATURA EM CIÊNCIAS DE ENGENHARIA - ENGENHARIA DO AMBIENTE EXAME DE ESTATÍSTICA AMBIENTAL ª Época (v) I (7 valores) Na abela seguine apresena-se os valores das coordenadas

Leia mais

S&P Dow Jones Indices: Metodologia da matemática dos índices

S&P Dow Jones Indices: Metodologia da matemática dos índices S&P Dow Jones Indces: Meodologa da maemáca dos índces S&P Dow Jones Indces: Meodologa do índce Ouubro 2013 Índce Inrodução 3 Dferenes varedades de índces 3 O dvsor do índce 4 Índces ponderados por capalzação

Leia mais

Análise da Confiabilidade de Componentes Não Reparáveis

Análise da Confiabilidade de Componentes Não Reparáveis Análse da onfabldade de omponenes Não Reparáves. omponenes versus Ssemas! Ssema é um conjuno de dos ou mas componenes nerconecados para a realzação de uma ou mas funções! A dsnção enre ssema, sub-ssema

Leia mais

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo

Prof. Anderson Coser Gaudio Departamento de Física Centro de Ciências Exatas Universidade Federal do Espírito Santo PROBLEMAS RESOLVIDOS DE FÍSIA Prof. Anderson oser Gaudio Deparameno de Física enro de iências Eaas Universidade Federal do Espírio Sano hp://www.cce.ufes.br/anderson anderson@npd.ufes.br Úlima aualização:

Leia mais

5 Modelo de Previsão de Temperatura

5 Modelo de Previsão de Temperatura 5 Modelo de Prevsão de Temperaura 5. Prevsão de Clma As varações do clma nfluencam os preços das commodes pela nfluênca na demanda. Todava, a correlação enre eses preços e o parâmero de clma não são perfeos,

Leia mais

PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE WULU

PROF. DR. JACQUES FACON LIMIARIZAÇÃO POR ENTROPIA DE WULU 1 PUCPR- Ponfíca Unversdade Caólca Do Paraná PPGIA- Programa de Pós-Graduação Em Informáca Aplcada PROF. DR. JACQUES FACON IMIARIZAÇÃO POR ENTROPIA DE WUU Resumo: Uma nova écnca de marzação baseada em

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas. Conceio Na Esaísica exisem siuações onde os dados de ineresse são obidos em insanes sucessivos de empo (minuo, hora, dia, mês ou ano), ou ainda num período conínuo de empo, como aconece num elerocardiograma

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios TP30 Modulação Digial Prof.: MSc. Marcelo Carneiro de Paiva Primeira Lisa de Exercícios Caracerize: - Transmissão em Banda-Base (apresene um exemplo de especro de ransmissão). - Transmissão em Banda Passane

Leia mais

Lista de Exercícios 1

Lista de Exercícios 1 Universidade Federal de Ouro Preo Deparameno de Maemáica MTM14 - CÁLCULO DIFERENCIAL E INTEGRAL III Anônio Silva, Edney Oliveira, Marcos Marcial, Wenderson Ferreira Lisa de Exercícios 1 1 Para cada um

Leia mais

O díodo. Dispositivo de dois terminais

O díodo. Dispositivo de dois terminais eparameno de Engenhara Elecroécnca (EE) sposvo de dos ermnas Ânodo O díodo Cáodo Componene elemenar não-lnear ulzado em crcuos muo varados Aplcações: conversores de poênca AC/C recfcadores, processameno

Leia mais

Exercícios sobre o Modelo Logístico Discreto

Exercícios sobre o Modelo Logístico Discreto Exercícios sobre o Modelo Logísico Discreo 1. Faça uma abela e o gráfico do modelo logísico discreo descrio pela equação abaixo para = 0, 1,..., 10, N N = 1,3 N 1, N 0 = 1. 10 Solução. Usando o Excel,

Leia mais

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III

Universidade Federal de Viçosa Centro de Ciências Exatas e Tecnológicas Departamento de Matemática. Primeira Lista de Exercícios MAT 241 Cálculo III Universidade Federal de Viçosa Cenro de Ciências Exaas e Tecnológicas Deparameno de Maemáica Primeira Lisa de Exercícios MAT 4 Cálculo III Julgue a veracidade das afirmações abaixo assinalando ( V para

Leia mais

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4.

CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013. Padrão. Padrão. max i. I - F = fator estabelecido no art. 4º da Resolução nº 4. CIRCULAR Nº 3.634, DE 4 DE MARÇO DE 2013 Esabelece os procedmenos para o cálculo da parcela dos avos ponderados pelo rsco (RWA) referene às exposções sueas à varação de axas de uros prefxadas denomnadas

Leia mais

Modelagem de Escoamento em Aqüíferos Longos Baseada no Método de Elementos Analíticos

Modelagem de Escoamento em Aqüíferos Longos Baseada no Método de Elementos Analíticos José Anderson do Nascmeno Basa Modelagem de Escoameno em Aqüíferos Longos Baseada no Méodo de Elemenos Analícos Tese apresenada à Escola de Engenhara de São Carlos como pare dos requsos para a obenção

Leia mais

Física Experimental IV Polarização por Reflexão ângulo de Brewster. Prof. Alexandre Suaide Prof. Manfredo Tabacniks

Física Experimental IV Polarização por Reflexão ângulo de Brewster. Prof. Alexandre Suaide Prof. Manfredo Tabacniks Físca xpermenal IV - 008 Polarzação por Reflexão ângulo de Brewser Prof. Alexandre Suade Prof. Manfredo Tabacnks Reflexão e Refração da Luz fsca.ufpr.br/edlson/cap34.pdf fsca.ufpr.br/edlson/cap34.pdf prsma

Leia mais

2 Sistemas de Reconhecimento de Voz

2 Sistemas de Reconhecimento de Voz 2 Ssemas de Reconhecmeno de Voz O desenvolvmeno de nerfaces homem-máquna conroladas pela voz vsa subsur, em ceras aplcações, as nerfaces radconas as como eclados, panés e dsposvos smlares. Nese cenáro

Leia mais

4 O modelo econométrico

4 O modelo econométrico 4 O modelo economérico O objeivo desse capíulo é o de apresenar um modelo economérico para as variáveis financeiras que servem de enrada para o modelo esocásico de fluxo de caixa que será apresenado no

Leia mais

4 Premissas quanto aos Modelos de Despacho de Geração, Formação do Preço da Energia e Comercialização de Energia

4 Premissas quanto aos Modelos de Despacho de Geração, Formação do Preço da Energia e Comercialização de Energia 61 4 Premssas quano aos Modelos de Despacho de Geração, Formação do Preço da Energa e Comercalzação de Energa 4.1. Inrodução A remuneração de uma geradora depende do modelo de despacho de geração e formação

Leia mais

MODELAGEM E ANÁLISE DE VENTILADORES MECÂNICOS E APARELHOS DE ANESTESIA

MODELAGEM E ANÁLISE DE VENTILADORES MECÂNICOS E APARELHOS DE ANESTESIA MODLAGM ANÁLIS D VNTILADORS MCÂNICOS APARLHOS D ANSTSIA Ivna Caão Fadlo Cur, IC vna@h8.a.br Takash Yoneyama, PQ akash@ele.a.br Resumo Os modelos dnâmcos são de grande vala na avalção e predção de dversos

Leia mais

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA CÁSSIA PEREIRA DA ROSA MOSCHOUTIS

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA CÁSSIA PEREIRA DA ROSA MOSCHOUTIS 1 PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO GRANDE DO SUL FACULDADE DE MATEMÁTICA CÁSSIA PEREIRA DA ROSA MOSCHOUTIS ANÁLISE DO CRESCIMENTO POPULACIONAL BRASILEIRO Poro Alegre 13 CÁSSIA PEREIRA DA ROSA MOSCHOUTIS

Leia mais

3 Análise de Demanda Condicionada

3 Análise de Demanda Condicionada 3 Análse de Demanda Condconada 3.1 Inrodução A análse Condconada da Demanda é uma écnca que quebra o consumo resdencal em pares, cada uma assocada a um uso fnal ou a um deermnado equpameno em parcular.

Leia mais

*UiILFRGH&RQWUROH(:0$

*UiILFRGH&RQWUROH(:0$ *UiILFRGH&RQWUROH(:$ A EWMA (de ([SRQHQWLDOO\:HLJKWHGRYLQJ$YHUDJH) é uma esaísica usada para vários fins: é largamene usada em méodos de esimação e previsão de séries emporais, e é uilizada em gráficos

Leia mais

ESTUDOS COMPARATIVOS DE FREQÜÊNCIAS NATURAIS DE PLACAS TRIANGULARES E RETANGULARES MONTADAS EM BALANÇO

ESTUDOS COMPARATIVOS DE FREQÜÊNCIAS NATURAIS DE PLACAS TRIANGULARES E RETANGULARES MONTADAS EM BALANÇO ESTUDOS COMPARATIVOS DE FREQÜÊCIAS ATURAIS DE PLACAS TRIAGULARES E RETAGULARES MOTADAS EM BALAÇO Américo Teuo Miazima Araildo Lima da Silva Faculdade de Engenharia de Guaraingueá, Deparameno de Mecânica,

Leia mais

Curvas Horizontais e Verticais

Curvas Horizontais e Verticais Insttução: Faculdade de Tecnologa e Cêncas Professor: Dego Queroz de Sousa Dscplna: Topografa Curvas Horzontas e ertcas 1. Introdução Exstem dversas ocasões na engenhara em que os projetos são desenvolvs

Leia mais

MODELAGEM E OTIMIZAÇÃO ECONÔMICA DE COLUNAS DE DESTILAÇÃO

MODELAGEM E OTIMIZAÇÃO ECONÔMICA DE COLUNAS DE DESTILAÇÃO ESCOA POITÉCICA DA UIERSIDADE DE SÃO PAUO EIPE HIDEO IGAWA RIBEIRO ERADA RACO TOEOTTI MODEAGEM E OTIMIZAÇÃO ECOÔMICA DE COUAS DE DESTIAÇÃO Trabalho de conclusão de curso apresenado à Escola Polécnca para

Leia mais

CONVERSORES CC-CC Aplicações: Controlo de motores de CC-CC Fontes de alimentação comutadas Carga de baterias bateria

CONVERSORES CC-CC Aplicações: Controlo de motores de CC-CC Fontes de alimentação comutadas Carga de baterias bateria CÓNCA PÊNCA Aplcações: CN CC-CC CN CC-CC Crolo de moores de CC-CC Fes de almenação comuadas Carga de baeras ensão cínua de enrada moor de correne cínua crolo e comando baera ede CA ecfcador não crolado

Leia mais

RESULTADOS TEÓRICOS PARA TURBULÊNCIA GERADA POR DUAS GRELHAS OSCILANTES

RESULTADOS TEÓRICOS PARA TURBULÊNCIA GERADA POR DUAS GRELHAS OSCILANTES RESULTADOS TEÓRICOS PARA TURBULÊNCIA GERADA POR DUAS GRELHAS OSCILANTES Harry Edmar Schulz Fazal Hussan Chaudhry USP - Escola de Engenhara de São Carlos, Deparameno de Hdráulca e Saneameno Laboraóro de

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal

Leia mais

Funções vetoriais. I) Funções vetoriais a valores reais:

Funções vetoriais. I) Funções vetoriais a valores reais: Funções veoriais I) Funções veoriais a valores reais: f: I R f() R (f 1 n (), f (),..., f n ()) I = inervalo da rea real denominada domínio da função veorial f = {conjuno de odos os valores possíveis de,

Leia mais

Contabilometria. Séries Temporais

Contabilometria. Séries Temporais Conabilomeria Séries Temporais Fone: Corrar, L. J.; Theóphilo, C. R. Pesquisa Operacional para Decisão em Conabilidade e Adminisração, Ediora Alas, São Paulo, 2010 Cap. 4 Séries Temporais O que é? Um conjuno

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

defi departamento de física

defi departamento de física def deparameno de físca Laboraóros de Físca www.def.sep.pp.p Equações de Fresnel Insuo Superor de Engenhara do Poro Deparameno de Físca Rua Dr. Anóno Bernardno de Almeda, 431 400-07 Poro. Tel. 8 340 500.

Leia mais

Exercícios Sobre Oscilações, Bifurcações e Caos

Exercícios Sobre Oscilações, Bifurcações e Caos Exercícios Sobre Oscilações, Bifurcações e Caos Os ponos de equilíbrio de um modelo esão localizados onde o gráfico de + versus cora a rea definida pela equação +, cuja inclinação é (pois forma um ângulo

Leia mais

Experiência IV (aulas 06 e 07) Queda livre

Experiência IV (aulas 06 e 07) Queda livre Experiência IV (aulas 06 e 07) Queda livre 1. Objeivos. Inrodução 3. Procedimeno experimenal 4. Análise de dados 5. Quesões 6. Referências 1. Objeivos Nesa experiência, esudaremos o movimeno da queda de

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Séries Temporais Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Processos Esocásicos É um conjuno de variáveis

Leia mais

Projeções de inflação

Projeções de inflação Projeções de nflação A experênca do Banco Cenral do Brasl Leonardo Po Perez Banco Cenral do Brasl Depep III Fórum Baano de Economa Aplcada Agoso de 23 Sumáro ) Inrodução Regme de Meas para Inflação no

Leia mais

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3 INF01 118 Técnicas Digiais para Compuação Conceios Básicos de Circuios Eléricos Aula 3 1. Fones de Tensão e Correne Fones são elemenos aivos, capazes de fornecer energia ao circuio, na forma de ensão e

Leia mais

x () ξ de uma variável aleatória X ser um número real, enquanto que uma realização do

x () ξ de uma variável aleatória X ser um número real, enquanto que uma realização do 3 Snas Aleaóros em empo Conínuo. Pare II: Modelos de Fones de Informação e de uído. No capíulo aneror vemos oporundade de recordar os conceos báscos da eora das probabldades e das varáves aleaóras. Nese

Leia mais

Crescimento do Produto Agropecuário Brasileiro: uma Aplicação do Vetor Auto-regressivo (VAR)

Crescimento do Produto Agropecuário Brasileiro: uma Aplicação do Vetor Auto-regressivo (VAR) Quesões Agráras, Educação no Campo e Desenvolvmeno CRESCIMENTO DO PRODUTO AGROPECUÁRIO: UMA APLICAÇÃO DO VETOR AUTO-REGRESSIVO (VAR) CARLOS ALBERTO GONÇALVES DA SILVA; LÉO DA ROCHA FERREIRA; PAULO FERNANDO

Leia mais

Cap. 5 - Tiristores 1

Cap. 5 - Tiristores 1 Cap. 5 - Tirisores 1 Tirisor é a designação genérica para disposiivos que êm a caracerísica esacionária ensão- -correne com duas zonas no 1º quadrane. Numa primeira zona (zona 1) as correnes são baixas,

Leia mais

Interpolação e Extrapolação da Estrutura a Termo de Taxas de Juros para Utilização pelo Mercado Segurador Brasileiro

Interpolação e Extrapolação da Estrutura a Termo de Taxas de Juros para Utilização pelo Mercado Segurador Brasileiro Inerpolação e Exrapolação da Esruura a Termo de Taxas de Juros para Ulzação pelo Mercado Segurador Braslero Sergo Lus Frankln Jr. Thago Baraa Duare César da Rocha Neves + Eduardo Fraga L. de Melo ++ M.Sc.,

Leia mais

TIR Taxa Interna de Retorno LCF Economia de Recursos Florestais 2009

TIR Taxa Interna de Retorno LCF Economia de Recursos Florestais 2009 TIR Taxa Inerna de Reorno LCF 685-Economia de Recursos Floresais 2009 TIR: Taxa Inerna de Reorno AT Taxa Inerna de Reorno (TIR)de um projeo é aquela que orna o valor presene das receias menos o valor presene

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z)

Exemplo pág. 28. Aplicação da distribuição normal. Normal reduzida Z=(900 1200)/200= 1,5. Φ( z)=1 Φ(z) Exemplo pág. 28 Aplcação da dsrbução ormal Normal reduzda Z=(9 2)/2=,5 Φ( z)= Φ(z) Subsudo valores por recurso à abela da ormal:,9332 = Φ(z) Φ(z) =,668 Φ( z)= Φ(z) Φ(z) =,33 Φ(z) =,977 z = (8 2)/2 = 2

Leia mais

Dinâmica das Estruturas

Dinâmica das Estruturas Dnâca das Esrras Dnâca das Esrras Redção a Ssea co Gra de Lberdade Dnâca das Esrras Dnâca das Esrras Vbrações e Sseas co Gra de Lberdade lvres não - aorecdas aorecdas c forçadas não - aorecdas aorecdas

Leia mais

Prof. Carlos H. C. Ribeiro ramal 5895 sala 106 IEC

Prof. Carlos H. C. Ribeiro  ramal 5895 sala 106 IEC MB770 Previsão usa ando modelos maemáicos Prof. Carlos H. C. Ribeiro carlos@comp.ia.br www.comp.ia.br/~carlos ramal 5895 sala 106 IEC Aula 14 Modelos de defasagem disribuída Modelos de auo-regressão Esacionariedade

Leia mais

2.5 Impulsos e Transformadas no Limite

2.5 Impulsos e Transformadas no Limite .5 Impulsos e Transformadas no Limie Propriedades do Impulso Uniário O impulso uniário ou função dela de Dirac δ não é uma função no senido maemáico esrio. Ela perence a uma classe especial conhecida como

Leia mais

CIRCUITOS ELÉTRICOS EXERCÍCIOS ) Para o circuito da figura, determinar a tensão de saída V out, utilizando a linearidade.

CIRCUITOS ELÉTRICOS EXERCÍCIOS ) Para o circuito da figura, determinar a tensão de saída V out, utilizando a linearidade. FISP CIRCUITOS ELÉTRICOS EXERCÍCIOS RESOLVIDOS 00 CIRCUITOS ELÉTRICOS EXERCÍCIOS 00 Para o crcuo da fgura, deermnar a ensão de saída V ou, ulzando a lneardade. Assumremos que a ensão de saída seja V ou

Leia mais

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH

Cálculo do valor em risco dos ativos financeiros da Petrobrás e da Vale via modelos ARMA-GARCH Cálculo do valor em risco dos aivos financeiros da Perobrás e da Vale via modelos ARMA-GARCH Bruno Dias de Casro 1 Thiago R. dos Sanos 23 1 Inrodução Os aivos financeiros das companhias Perobrás e Vale

Leia mais

Análises de ciclos econômicos no Brasil

Análises de ciclos econômicos no Brasil Análses de cclos econômcos no Brasl 1980-2009 Armando Vaz Sampao RESUMO - As sequêncas de expansões e conrações da avdade econômca são conhecdas como cclos econômcos e afeam odos os agenes econômcos. O

Leia mais

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são

O potencial eléctrico de um condutor aumenta à medida que lhe fornecemos carga eléctrica. Estas duas grandezas são O ondensador O poencial elécrico de um conduor aumena à medida que lhe fornecemos carga elécrica. Esas duas grandezas são direcamene proporcionais. No enano, para a mesma quanidade de carga, dois conduores

Leia mais

Dinâmica do Movimento de Rotação

Dinâmica do Movimento de Rotação Dnâmca do Movmento de Rotação - ntrodução Neste Capítulo vamos defnr uma nova grandeza físca, o torque, que descreve a ação gratóra ou o efeto de rotação de uma força. Verfcaremos que o torque efetvo que

Leia mais

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial Programa de Pós-graduação em Engenharia de Produção Análise de séries de empo: modelos de suavização exponencial Profa. Dra. Liane Werner Séries emporais A maioria dos méodos de previsão se baseiam na

Leia mais

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade eorno, Marcação a Mercado e Esimadores de Volailidade 3 3 eorno, Marcação a Mercado e Esimadores de Volailidade 3.. eorno de um Aivo Grande pare dos esudos envolve reorno ao invés de preços. Denre as principais

Leia mais

DEFINIÇÃO - MODELO LINEAR GENERALIZADO

DEFINIÇÃO - MODELO LINEAR GENERALIZADO DEFINIÇÃO - MODELO LINEAR GENERALIZADO 1 Um modelo lnear generalzado é defndo pelos seguntes três componentes: Componente aleatóro; Componente sstemátco; Função de lgação; Componente aleatóro: Um conjunto

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco

Função de risco, h(t) 3. Função de risco ou taxa de falha. Como obter a função de risco. Condições para uma função ser função de risco Função de risco, h() 3. Função de risco ou axa de falha Manuenção e Confiabilidade Prof. Flavio Fogliao Mais imporane das medidas de confiabilidade Traa-se da quanidade de risco associada a uma unidade

Leia mais

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento

N(0) número de núcleos da espécie inicial no instante t=0. N(t) número de núcleos da espécie inicial no instante t. λ constante de decaimento 07-0-00 Lei do Decaimeno Radioacivo probabilidade de ransformação elemenar durane d d número médio de ransformações (dum elemeno) ocorridas em d N = Nd número médio de ocorrências na amosra com N elemenos

Leia mais

Lista de Exercícios nº 3 - Parte IV

Lista de Exercícios nº 3 - Parte IV DISCIPLINA: SE503 TEORIA MACROECONOMIA 01/09/011 Prof. João Basilio Pereima Neo E-mail: joaobasilio@ufpr.com.br Lisa de Exercícios nº 3 - Pare IV 1ª Quesão (...) ª Quesão Considere um modelo algébrico

Leia mais

(note que não precisa de resolver a equação do movimento para responder a esta questão).

(note que não precisa de resolver a equação do movimento para responder a esta questão). Mestrado Integrado em Engenhara Aeroespacal Mecânca e Ondas 1º Ano -º Semestre 1º Teste 31/03/014 18:00h Duração do teste: 1:30h Lea o enuncado com atenção. Justfque todas as respostas. Identfque e numere

Leia mais

Título: Análise de Componentes Principais na Correlação da Volatilidade Implícita com o Ativo Objeto

Título: Análise de Componentes Principais na Correlação da Volatilidade Implícita com o Ativo Objeto Área Temáca: Fnanças Tíulo: Análse de Componenes Prncpas na Correlação da Volaldade Implíca com o Avo Objeo AUTORES ANDRÉ GNECCO AVELAR Unversdade de São Paulo andreavelar@yahoo.com OSWALDO LUIZ DO VALLE

Leia mais

3 LTC Load Tap Change

3 LTC Load Tap Change 54 3 LTC Load Tap Change 3. Inrodução Taps ou apes (ermo em poruguês) de ransformadores são recursos largamene uilizados na operação do sisema elérico, sejam eles de ransmissão, subransmissão e disribuição.

Leia mais

3 Teoria de imunização

3 Teoria de imunização 33 3 Teora de munzação Como fo vso, o LM é um gerencameno conuno de avos e passvos como o nuo de dmnur ou aé elmnar os rscos enfrenados pelas nsuções fnanceras. Deses rscos, o rsco de axa de uros represena

Leia mais

ONDAS ELETROMAGNÉTICAS

ONDAS ELETROMAGNÉTICAS LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS A propagação de ondas eleromagnéicas ocorre quando um campo elérico variane no empo produ um campo magnéico ambém variane no empo, que por sua ve produ um campo

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

2 Principio do Trabalho Virtual (PTV)

2 Principio do Trabalho Virtual (PTV) Prncpo do Trabalho rtual (PT)..Contnuo com mcroestrutura Na teora que leva em consderação a mcroestrutura do materal, cada partícula anda é representada por um ponto P, conforme Fgura. Porém suas propredades

Leia mais

MEDIDA DO TEMPO DE RESPOSTA DOS MEDIDORES DE PRESSÃO DO SPR DA U.N.A. A. A. - UNIDADE I UTILIZANDO O MÉTODO DE MEDIDA DIRETA

MEDIDA DO TEMPO DE RESPOSTA DOS MEDIDORES DE PRESSÃO DO SPR DA U.N.A. A. A. - UNIDADE I UTILIZANDO O MÉTODO DE MEDIDA DIRETA MEDIDA DO TEMPO DE RESPOSTA DOS MEDIDORES DE PRESSÃO DO SPR DA U.N.A. A. A. - UNIDADE I UTILIZANDO O MÉTODO DE MEDIDA DIRETA Sergo Rcardo Perera Perllo *, Irac Maríne Perera Gonçalves *, Robero Carlos

Leia mais