Cap. 6 - Energia Potencial e Conservação da Energia Mecânica

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Cap. 6 - Energia Potencial e Conservação da Energia Mecânica"

Transcrição

1 Unversdade Federal do Ro de Janero Insttuto de Físca Físca I IGM1 014/1 Cap. 6 - Energa Potencal e Conservação da Energa Mecânca Prof. Elvs Soares 1 Energa Potencal A energa potencal é o nome dado a forma de energa quando está armazenada, sto é, que pode a qualquer momento manfestar-se, por exemplo, sob a forma de movmento. Além dsso, a energa potencal está relaconada com a posção que o determnado corpo ocupa no espaço devdo a sua nteração com outros corpos. 1.1 Energa Potencal Gravtaconal Energa assocada a altura (posção) do corpo com relação à Terra (ou outro corpo gravtaconal). Exemplo: Corpo em Queda Lvre Consderemos um corpo em queda lvre, que ca de uma altura y 1 até uma altura y. W grav = 1 F grav d r = y y 1 ( mg)dy = mg(y y 1 ) de modo que o trabalho da força peso é dado por W grav = mg(y 1 y ) (1) Assm, podemos defnr uma energa assocada com a altura do objeto com relação ao solo como sendo: U grav := mgy () Desta forma, podemos escrever o trabalho da força peso, como vsto no exemplo, na forma W grav = U U f = (U f U ) = U grav 1 { U grav > 0 U grav < 0 subda descda (3)

2 1.1 Energa Potencal Gravtaconal 1 ENERGIA POTENCIAL no caso em que a únca força que atua no corpo é a força peso, então se a força resultante for apenas a força peso, temos então W R = W grav = K = U grav K f K = (U f U ) K + U = K f + U f Ou seja, algo se conserva, sendo essa soma de K + U grav o que denomnaremos de energa mecânca: Voltando... E := K + U grav (4) Durante o movmento de queda lvre, podemos notar que a nerga mecânca é mantda constante durante a descda do corpo desde a altura y 1 até y = 0. Tal resultado é mportantíssmo, uma vez que pode ser entenddo como uma mudança de energa, a energa potencal gravtaconal está sendo convertda em energa cnétca durante a queda!

3 1 ENERGIA POTENCIAL 1. Energa Potencal Elástca 1. Energa Potencal Elástca Energa armazenada num corpo deformável, dto elástco. Obedecendo a famosa le de Hooke. Exemplo: Mola Estcada Consderemos uma mola sendo estcada de uma posção x 1 até x. x ( ) x W el = F el d r = ( kx)dx = k x 1 1 x 1 de modo que o trabalho da força elástca é dado por W el = kx 1 kx (5) Assm, podemos defnr uma energa assocada com a deformação da mola com relação ao seu comprmento natural como sendo: U el := kx (6) Desta forma, podemos escrever o trabalho da força elástca, como vsto no exemplo, na forma W el = U U f = (U f U ) = U el { U el > 0 U el < 0 estcando comprmndo (7) no caso em que a únca força que atua no corpo é a força elástca, então se a força resultante for apenas a força elástca, temos então W R = W el = K = U el K f K = (U f U ) Ou seja, nesse caso a energa mecânca é: K + U = K f + U f E := K + U el (8) 3

4 1. Energa Potencal Elástca 1 ENERGIA POTENCIAL Voltando... Durante a compressão da mola, a energa mecânca fca constante durante todo o processo desde a posção x até x 1. Novamente esse resultado é mportantíssmo, uma vez que pode ser entenddo como uma mudança de forma da energa, a energa potencal elástca está sendo convertda em energa cnétca durante a queda! No caso mas geral, onde há mas forças além da força peso e da força elástca, podemos calcular o trabalho total como W Total = W grav + W el + W demas = K (9) usando que W grav = U grav e W el = U el, podemos escrever K + U grav, + U el, + W demas = K f + U grav,f + U el,f *Mostre! K + U + W demas = K f + U f onde U agora é a energa potencal total, ou seja: U := U grav + U el (10) de modo que a equação anteror pode ser escrta mas compactamente como sendo: W demas = K + U = (K + U) = E (11) Portanto, a varação da energa mecânca de um sstema é resultante do trabalho de forças que são dtas não-conservatvas. 4

5 FORÇAS CONSERVATIVAS Forças Conservatvas Dzemos que uma força F é conservatva quanto o trabalho realzado por ela é ndependente do camnho realzado. Neste caso, ele depende apenas dos extremos (posções ncal e fnal) e representa a dferença de energa potencal entre eles. Exemplo: Movmento sob a ação da gravdade Imagnemos um corpo em movmento sobre um determnado camnho, conforme a fgura. O trabalho da força peso é calculado por W grav = f F peso d r onde F peso = mgŷ e d r = dxˆx + dyŷ + dzẑ, de modo que F peso d r = ( mgŷ) (dxˆx+dyŷ+dzẑ) = mgdy Portanto, o trabalho da força peso pode ser calculado faclmente como W grav = mg yf y dy = mg(y f y ) = U grav Assm, o trabalho da força peso ndepende do camnho percorrdo, sendo ela uma força conservatva! Então, como exemplo de forças conservatvas temos a força peso, a força elástca e a força eletrostátca. Dessa forma, podemos defnr a energa potencal de uma força conservatva como P U(P ) := F d r onde U(P0 ) = 0 (1) P 0 de tal manera que o ponto P 0 é escolhdo como sendo o ponto no qual a energa potencal assocada a força F é nula. 5

6 3 FORÇAS NÃO-CONSERVATIVAS Vamos agora nvestgar o fato que para uma força conservatva o trabalho ndepende do camnho realzado. Para sso, vamos magnar um bloco de massa m sobre a superfíce de dos planos C 1 e C, conforme fgura. Então, consderando uma força conservatva (como a força peso), podemos dzer que P F d r = P F d r = U (13) P 1 (C 1 ) P 1 (C ) e lembrando que b = a, podemos dzer que a b P F d r + P1 F d r = 0 P 1 (C 1 ) P (C ) que equvale a percorrer o camnho fechado (C) = (C 1 ) (C ), de modo que podemos escrever essa ntegral numa forma mas compacta, usando o conceto de ntegral fechada, como F d r = 0 (14) C Assm, uma força conservatva deve respetar essa relação acma, ou seja, o trabalho de uma força conservatva num crcuto fechado é nulo! 3 Forças Não-Conservatvas O trabalho de uma força não-conservatva depende do camnho percorrdo. De modo que, para esse tpo de força, podemos dzer que o trabalho realzado num crcuto fechado é não-nulo, de fato F d r 0 (15) C Como exemplo de forças não-conservatvas temos a força de atrto e a força de restênca do ar. 6

7 5 FORÇA COMO GRADIENTE DA ENERGIA POTENCIAL 4 Conservação da Energa Mecânca Vamos consderar o caso de um sstema (ou corpo) sujeto à ação de dversas forças, então sabemos que podemos escrever W total = W (C) + W (NC) = K ou seja, separamos os trabalhos das forças conservatvas e das forças não-conservatvas. Essa separação é útl uma vez que podemos escrever W (C) = U e anda, escrevemos a energa potencal total assocada às forças conservatvas como U = U, e então *Mostre! que é faclmente ndentfcada como W (NC) = K + U = (K + U) W (NC) = E M onde E M = K + U (16) Logo, a varação da energa mecânca é gual ao trabalho das forças não-conservatvas. 5 Força como Gradente da Energa Potencal Vamos lembrar que a energa potencal é uma função da posção dada por x U(x) = F (x)dx x 0 (17) e usando o teorema fundamental do cálculo 1, podemos nverter a ntegral usando F (x) = du dx (18) que no caso trdmensonal passa a ser uma gradente F = U = U U ˆx x y ŷ U z ẑ (19) 1 O teorema fundamental do cálculo dz que F (x) = f(x )dx quando f(x) = df/dx. 7

8 6 DISCUSSÃO QUALITATIVA DO MOVIMENTO SOB À AÇÃO DE FORÇAS CONSERVATIVAS Exemplo: Força Elástca No caso da força elástca temos como energa potencal elástca U(x) = kx /, então F (x) = d(kx /) dx = kx Exemplo: Força Peso No caso da força peso temos como energa potencal gravtaconal U(y) = mgy, então F = (mgy) = (mgy) x ˆx (mgy) y ŷ (mgy) ẑ = mgŷ z 6 Dscussão Qualtatva do Movmento sob à Ação de Forças Conservatvas Vamos analsar a relação entre a energa potencal e a força, à ela assocada, grafcamente. Fgura 1: Um exemplo de gráfco da energa potencal e da força, que é dada pela dervada desse potencal F x = du/dx. 8

9 6 DISCUSSÃO QUALITATIVA DO MOVIMENTO SOB À AÇÃO DE FORÇAS CONSERVATIVAS 6.1 Sentdo da Força 6.1 Sentdo da Força Para determnar o sentdo da força F = F xˆx, podemos utlzar a relação entre essa componente F x e o potencal U, dada por F x = du dx (0) Como exemplo, na posção x 3 o sentdo da força F é negatvo, enquanto que na posção x 5 o sentdo é postvo. 6. Posções de Equlíbro As posções de equlíbro são aquelas nas quas a força assocado ao potencal é nula, ou seja, devemos ter F (x eq ) = du dx = 0 (1) xeq Podemos classfcar as posções de equlíbro quanto ao tpo de equlíbro presente estável: na posção x o equlíbro é estável, uma vez que, a força na vznhança desse ponto é restauradora, sempre fazendo com que a partícula volte a posção orgnal x (assocada a um mínmo de energa potencal). nstável: na posção x 4 o equlíbro é nstável, uma vez que, a força na vznhança desse ponto faz sempre com que a partícula se afaste da posção orgnal x 4 (assocada a um máxmo de energa potencal). ndferente: na posção x 6 o equlíbro é dto ndferente, uma vez que, a força na vznhança desse ponto é nula (assocada a um platô de energa potencal). 6.3 Trabalho realzado Para determnarmos o trabalho realzado por essa força assocdada a essa energa potencal, podemos utlzar a relação W = U () Como exemplo, no delocamento da partícula de x 1 para x o trabalho realzado W 1 pela força é postvo, enquanto que no delocamento da partícula de x 3 para x 4 o trabalho realzado W 3 4 pela força é negatvo. 9

10 6 DISCUSSÃO QUALITATIVA DO MOVIMENTO SOB À AÇÃO DE FORÇAS 6.4 Movmentos possíves CONSERVATIVAS 6.4 Movmentos possíves Para uma partícula com uma dada energa mecânca E M, e com energa potencal dada por U(x), a energa cnétca pode ser obtda por mv = E M U(x) 0 (3) A últma condção vem do fato que a energa cnétca é sempre postva, de modo que, para que a partícula se mova numa regão sujeta a esse potencal, devemos ter sempre Vamos voltar ao nosso gráfco exemplo: E M U(x) (4) quando a partícula tem energa mecânca E M,1, ela só pode se mover entre as posções x 1 e x 3, pos para x > x 3 a energa cnetca desta partícula sera negatva, e chamamos essa regão de regão probda classcamente. quando a partícula tem energa mecânca E M,, ela só pode se mover para as posções x x 3.5 e também para x x 5, de modo que a regão probda classcamente é x 3.5 < x < x 5. quando a partícula tem energa mecânca E M,3, ela só pode se mover em todas as posções desde x 1 até x 6, de modo que não há regão probda classcamente para essa energa. 10

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ

ANÁLISE MATRICIAL DE ESTRUTURAS DE BARRAS PELO MÉTODO DE RIGIDEZ ANÁISE MATRICIA DE ESTRUTURAS DE BARRAS PEO MÉTODO DE RIGIDEZ A análse matrcal de estruturas pelo método de rgdez compreende o estudo de cnco modelos estruturas báscos: trelça plana, trelça espacal, pórtco

Leia mais

Física Geral 2010/2011

Física Geral 2010/2011 ísica Geral / 6 Energia otencial: té agora estudámos o conceito de energia cinética, associada ao movimento, e energia interna, associada á presença de forças de atrito. Vamos agora estudar o conceito

Leia mais

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014

Aula 7: Circuitos. Curso de Física Geral III F-328 1º semestre, 2014 Aula 7: Crcutos Curso de Físca Geral III F-38 º semestre, 04 Ponto essencal Para resolver um crcuto de corrente contínua, é precso entender se as cargas estão ganhando ou perdendo energa potencal elétrca

Leia mais

Capítulo. Capacitores Resoluções dos exercícios propostos. P.283 a) Dados: ε 0 8,8 10 12 F/m; A (0,30 0,50) m 2 ; d 2 10 3 m 0,30 0,50 2 10 3

Capítulo. Capacitores Resoluções dos exercícios propostos. P.283 a) Dados: ε 0 8,8 10 12 F/m; A (0,30 0,50) m 2 ; d 2 10 3 m 0,30 0,50 2 10 3 apítulo a físca xercícos propostos nae apítulo apactores apactores Resoluções os exercícos propostos P.8 a) aos: ε 0 8,8 0 F/m; (0,0 0,50) m ; 0 m ε 0 8,8 0 0,0 0,50 0 6,6 0 0 F b) ao:.000 V 6,6 00.000,

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão prelmnar 7 de setembro de Notas de Aula de Físca 7. TRABAO E ENERGIA CINÉTICA... MOVIMENTO EM UMA DIMENSÃO COM FORÇA CONSTANTE... TRABAO EXECUTADO POR UMA FORÇA VARIÁVE... Análse undmensonal...

Leia mais

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento.

Trabalho e Energia. Definimos o trabalho W realizado pela força sobre uma partícula como o produto escalar da força pelo deslocamento. Trabalho e Energa Podemos denr trabalho como a capacdade de produzr energa. Se uma orça eecutou um trabalho sobre um corpo ele aumentou a energa desse corpo de. 1 OBS: Quando estudamos vetores vmos que

Leia mais

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G.

S.A. 1. 2002; TIPLER, P. A.; MOSCA, G. Rotação Nota Alguns sldes, fguras e exercícos pertencem às seguntes referêncas: HALLIDAY, D., RESNICK, R., WALKER, J. Fundamentos da Físca. V 1. 4a.Edção. Ed. Lvro Técnco Centífco S.A. 00; TIPLER, P. A.;

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04

ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 ENERGIA POTENCIAL E CONSERVAÇÃO DE ENERGIA Física Geral I (1108030) - Capítulo 04 I. Paulino* *UAF/CCT/UFCG - Brasil 2012.2 1 / 15 Sumário Trabalho e EP Energia potencial Forças conservativas Calculando

Leia mais

Sistemas de equações lineares

Sistemas de equações lineares Sstemas - ALGA - / Sstemas de equações lneares Uma equação lnear nas ncógntas ou varáves x ; x ; :::; x n é uma expressão da forma: a x + a x + ::: + a n x n = b onde a ; a ; :::; a n ; b são constantes

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

Comprimento de Arco. Comprimento de Arco

Comprimento de Arco. Comprimento de Arco UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: CÁLCULO DIFERENCIAL E INTEGRAL I Comprmento de Arco

Leia mais

ASSOCIAÇÃO DE RESISTORES

ASSOCIAÇÃO DE RESISTORES Prof(a) Stela Mara de arvalho Fernandes SSOIÇÃO DE ESISTOES ssocação de esstores em Sére Dos ou mas resstores estão assocados em sére quando são percorrdos pela mesma corrente elétrca. omo U D Somando

Leia mais

Resoluções dos testes propostos. T.255 Resposta: d O potencial elétrico de uma esfera condutora eletrizada é dado por: Q 100 9 10 Q 1,0 10 9 C

Resoluções dos testes propostos. T.255 Resposta: d O potencial elétrico de uma esfera condutora eletrizada é dado por: Q 100 9 10 Q 1,0 10 9 C apítulo da físca apactores Testes propostos ndade apítulo apactores Resoluções dos testes propostos T.55 Resposta: d O potencal elétrco de uma esfera condutora eletrzada é dado por: Vk 0 9 00 9 0,0 0 9

Leia mais

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos.

Texto 03: Campos Escalares e Vetoriais. Gradiente. Rotacional. Divergência. Campos Conservativos. 1 Unversdade Salvador UNIFACS Crsos de Engenhara Cálclo IV Profa: Ila Reboças Frere Cálclo Vetoral Teto 03: Campos Escalares e Vetoras. Gradente. Rotaconal. Dvergênca. Campos Conservatvos. Campos Escalares

Leia mais

Material de apoio para as aulas de Física do terceiro ano

Material de apoio para as aulas de Física do terceiro ano COLÉGIO LUTERANO CONCÓRDIA 67 Anos Educando com o Coração Mantenedora: Comundade Evangélca Luterana Crsto- Nteró Materal de apoo para as aulas de Físca do tercero ano Professor Rafael Frank de Rodrgues

Leia mais

Y = AN α, 0 < α < 1 (1) Π = RT CT = P Y W N (2) Π/ N = α N α -1 AP W = 0. W = α P AN α -1. P = W/α AN α -1

Y = AN α, 0 < α < 1 (1) Π = RT CT = P Y W N (2) Π/ N = α N α -1 AP W = 0. W = α P AN α -1. P = W/α AN α -1 Gabarto da Lsta 1 de Macro II 2008.01 1 a Questão a)falso, pode ocorrer que a força de trabalho cresça juntamente com o número de empregados. Se a Força de trabalho crescer mas que o número de empregados

Leia mais

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág.

Física. Setor A. Índice-controle de Estudo. Prof.: Aula 25 (pág. 86) AD TM TC. Aula 26 (pág. 86) AD TM TC. Aula 27 (pág. Físca Setor Prof.: Índce-controle de studo ula 25 (pág. 86) D TM TC ula 26 (pág. 86) D TM TC ula 27 (pág. 87) D TM TC ula 28 (pág. 87) D TM TC ula 29 (pág. 90) D TM TC ula 30 (pág. 90) D TM TC ula 31 (pág.

Leia mais

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade.

O que heterocedasticidade? Heterocedasticidade. Por que se preocupar com heterocedasticidade? Exemplo de heterocedasticidade. Heterocedastcdade y = β 0 + β + β + β k k + u O que heterocedastcdade? Lembre-se da hpótese de homocedastcdade: condconal às varáves eplcatvas, a varânca do erro, u, é constante Se sso não for verdade,

Leia mais

3.1. Conceitos de força e massa

3.1. Conceitos de força e massa CAPÍTULO 3 Les de Newton 3.1. Concetos de força e massa Uma força representa a acção de um corpo sobre outro,.e. a nteracção físca entre dos corpos. Como grandeza vectoral que é, só fca caracterzada pelo

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

1ª e 2ª leis da termodinâmica

1ª e 2ª leis da termodinâmica 1ª e 2ª les da termodnâmca 1ª Le da Termodnâmca Le de Conservação da Energa 2ª Le da Termodnâmca Restrnge o tpo de conversões energétcas nos processos termodnâmcos Formalza os concetos de processos reversíves

Leia mais

ELETRICIDADE E MAGNETISMO

ELETRICIDADE E MAGNETISMO PONTIFÍCIA UNIVERSIDADE CATÓLICA DE GOIÁS DEPARTAMENTO DE MATEMÁTICA E FÍSICA Professor: Renato Mederos ELETRICIDADE E MAGNETISMO NOTA DE AULA III Goâna - 2014 CORRENTE ELÉTRICA Estudamos anterormente

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos Capítulo 10 da físca 3 xercícos propostos Undade Capítulo 10 eceptores elétrcos eceptores elétrcos esoluções dos exercícos propostos 1 P.50 a) U r 100 5 90 V b) Pot d r Pot d 5 Pot d 50 W c) Impedndo-se

Leia mais

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D

Física. Física Módulo 1 Vetores, escalares e movimento em 2-D Físca Módulo 1 Vetores, escalares e movmento em 2-D Vetores, Escalares... O que são? Para que servem? Por que aprender? Escalar Defnção: Escalar Grandea sem dreção assocada. Eemplos: Massa de uma bola,

Leia mais

Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20

Eletricidade 3. Campo Elétrico 8. Energia Potencial Elétrica 10. Elementos de Um Circuito Elétrico 15. Elementos de Um Circuito Elétrico 20 1 3º Undade Capítulo XI Eletrcdade 3 Capítulo XII Campo Elétrco 8 Capítulo XIII Energa Potencal Elétrca 10 Capítulo XIV Elementos de Um Crcuto Elétrco 15 Capítulo XV Elementos de Um Crcuto Elétrco 20 Questões

Leia mais

Conteúdo 4 - Impulsos elétricos e fenômenos biológicos

Conteúdo 4 - Impulsos elétricos e fenômenos biológicos Conteúdo 4 - Impulsos elétrcos e fenômenos bológcos 4.1 Introdução Os seres vvos, em sua grande maora, são compostos majortaramente por água. A água é uma materal que na presença de certos sas se comporta

Leia mais

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL

DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL DISTRIBUIÇÃO DA AÇÃO DO VENTO NOS ELEMENTOS DE CONTRAVENTAMENTO CONSIDERANDO O PAVIMENTO COMO DIAFRAGMA RÍGIDO: ANÁLISE SIMPLIFICADA E MATRICIAL Dstrbuton of the wnd acton n the bracng elements consderng

Leia mais

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág.

Física. Setor B. Índice-controle de Estudo. Prof.: Aula 23 (pág. 86) AD TM TC. Aula 24 (pág. 87) AD TM TC. Aula 25 (pág. Físca Setor Prof.: Índce-controle de studo ula 23 (pág. 86) D TM TC ula 24 (pág. 87) D TM TC ula 25 (pág. 88) D TM TC ula 26 (pág. 89) D TM TC ula 27 (pág. 91) D TM TC ula 28 (pág. 91) D TM TC evsanglo

Leia mais

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20

Eletricidade 3 Questões do ENEM. 8. Campo Elétrico 11 Questões do ENEM 13. Energia Potencial Elétrica 15 Questões do ENEM 20 1 4º Undade Capítulo XIII Eletrcdade 3 Questões do ENEM. 8 Capítulo XIV Campo Elétrco 11 Questões do ENEM 13 Capítulo XV Energa Potencal Elétrca 15 Questões do ENEM 20 Capítulo XVI Elementos de Um Crcuto

Leia mais

QUESTÕES DISCURSIVAS Módulo 01 (com resoluções)

QUESTÕES DISCURSIVAS Módulo 01 (com resoluções) QUESTÕES DISCURSIVAS Módulo 0 (com resoluções D (Fuvest-SP/00 Nos tens abaxo, denota um número complexo e a undade magnára ( Suponha a Para que valores de tem-se? b Determne o conjunto de todos os valores

Leia mais

EA513 Circuitos Elétricos DECOM FEEC UNICAMP Aula 5

EA513 Circuitos Elétricos DECOM FEEC UNICAMP Aula 5 Esta aula: Teorema de Thévenn, Teorema de Norton. Suponha que desejamos determnar a tensão (ou a corrente) em um únco bpolo de um crcuto, consttuído por qualquer número de fontes e de outros resstores.

Leia mais

Física Geral I - F -128. Aula 14 Conservação do Momento Angular; Rolamento. 2º semestre, 2012

Física Geral I - F -128. Aula 14 Conservação do Momento Angular; Rolamento. 2º semestre, 2012 Físca Geral - F -18 Aula 14 Conservação do Momento Angular; Rolamento º semestre, 01 Cnemátca de Rotação Varáves Rotaconas Deslocamento angular: Δθ( t) θ( t+δt) θ( t) z Velocdade angular méda Δ ω θ Δt

Leia mais

Energia de deformação na flexão

Energia de deformação na flexão - UNIVERSIDADE FEDERAL FLUMINENSE ESCOLA DE ENGENHARIA INDUSTRIAL METALÚRGICA DE VOLTA REDONDA PROFESSORA: SALETE SOUZA DE OLIVEIRA BUFFONI DISCIPLINA: RESISTÊNCIA DOS MATERIAIS Energa de deformação na

Leia mais

INTRODUÇÃO SISTEMAS. O que é sistema? O que é um sistema de controle? O aspecto importante de um sistema é a relação entre as entradas e a saída

INTRODUÇÃO SISTEMAS. O que é sistema? O que é um sistema de controle? O aspecto importante de um sistema é a relação entre as entradas e a saída INTRODUÇÃO O que é sstema? O que é um sstema de controle? SISTEMAS O aspecto mportante de um sstema é a relação entre as entradas e a saída Entrada Usna (a) Saída combustível eletrcdade Sstemas: a) uma

Leia mais

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado 64 Capítulo 7: Introdução ao Estudo de Mercados de Energa Elétrca 7.4 Precfcação dos Servços de Transmssão em Ambente Desregulamentado A re-estruturação da ndústra de energa elétrca que ocorreu nos últmos

Leia mais

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração.

Consideraremos agora, uma de cada vez, as equivalentes angulares das grandezas de posição, deslocamento, velocidade e aceleração. CAPÍTULO 5 77 5.1 Introdução A cnemátca dos corpos rígdos trata dos movmentos de translação e rotação. No movmento de translação pura todas as partes de um corpo sofrem o mesmo deslocamento lnear. Por

Leia mais

CONSERVAÇÃO DA ENERGIA

CONSERVAÇÃO DA ENERGIA CONSERVAÇÃO DA ENERGIA Introdução Quando um mergulhador pula de um trampolim para uma piscina, ele atinge a água com uma velocidade relativamente elevada, possuindo grande energia cinética. De onde vem

Leia mais

ELEMENTOS DE CIRCUITOS

ELEMENTOS DE CIRCUITOS MINISTÉRIO D EDUCÇÃO SECRETRI DE EDUCÇÃO PROFISSIONL E TECNOLÓGIC INSTITUTO FEDERL DE EDUCÇÃO, CIÊNCI E TECNOLOGI DE SNT CTRIN CMPUS DE SÃO JOSÉ - ÁRE DE TELECOMUNICÇÕES CURSO TÉCNICO EM TELECOMUNICÇÕES

Leia mais

Associação de resistores em série

Associação de resistores em série Assocação de resstores em sére Fg.... Na Fg.. está representada uma assocação de resstores. Chamemos de I, B, C e D. as correntes que, num mesmo nstante, passam, respectvamente pelos pontos A, B, C e D.

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

CORRENTE ELÉTRICA, RESISTÊNCIA, DDP, 1ª E 2ª LEIS DE OHM

CORRENTE ELÉTRICA, RESISTÊNCIA, DDP, 1ª E 2ª LEIS DE OHM FÍSICA COENTE ELÉTICA, ESISTÊNCIA, DDP, ª E ª LEIS DE OHM. CAGA ELÉTICA (Q) Observa-se, expermentalmente, na natureza da matéra, a exstênca de uma força com propredades semelhantes à força gravtaconal,

Leia mais

Aula 4: O Potencial Elétrico

Aula 4: O Potencial Elétrico Aula 4: O Potencal létco Cuso de Físca Geal III F-38 º semeste, 4 F38 S4 Potencal elétco Como podemos elacona a noção de oça elétca com os concetos de enega e tabalho? Denndo a enega potencal elétca (Foça

Leia mais

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15

Determinantes. De nição de determinante de uma matriz quadrada. Determinantes - ALGA - 2004/05 15 Determnantes - ALGA - 004/05 15 Permutações Determnantes Seja n N Uma permutação p = (p 1 ; p ; : : : ; p n ) do conjunto f1; ; ; ng é um arranjo dos n números em alguma ordem, sem repetções ou omssões

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

F-328 Física Geral III

F-328 Física Geral III F-328 Físca Geral III Aula exploratóra- 06 UNICAMP IFGW username@f.uncamp.br F328 2 o Semestre de 2013 1 Corrente elétrca e resstênca Defnção de corrente: Δq = dq = t+δt Undade de corrente: 1 Ampère =

Leia mais

Probabilidade: Diagramas de Árvore

Probabilidade: Diagramas de Árvore Probabldade: Dagramas de Árvore Ana Mara Lma de Faras Departamento de Estatístca (GET/UFF) Introdução Nesse texto apresentaremos, de forma resumda, concetos e propredades báscas sobre probabldade condconal

Leia mais

4.4 Limite e continuidade

4.4 Limite e continuidade 4.4 Limite e continuidade Noções Topológicas em R : Dados dois pontos quaisquer (x 1, y 1 ) e (x, y ) de R indicaremos a distância entre eles por då(x 1, y 1 ), (x, y )è=(x 1 x ) + (y 1 y ). Definição

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

Termodinâmica e Termoquímica

Termodinâmica e Termoquímica Termodnâmca e Termoquímca Introdução A cênca que trata da energa e suas transformações é conhecda como termodnâmca. A termodnâmca fo a mola mestra para a revolução ndustral, portanto o estudo e compreensão

Leia mais

Lei dos transformadores e seu princípio de funcionamento. Os transformadores operam segundo a lei de Faraday ou primeira lei do eletromagnetismo.

Lei dos transformadores e seu princípio de funcionamento. Os transformadores operam segundo a lei de Faraday ou primeira lei do eletromagnetismo. Le dos transformadores e seu prncípo de funconamento Os transformadores operam segundo a le de Faraday ou prmera le do eletromagnetsmo. Prmera le do eletromagnetsmo Uma corrente elétrca é nduzda em um

Leia mais

1 Topologias Básicas de Conversores CC-CC não-isolados

1 Topologias Básicas de Conversores CC-CC não-isolados 1 opologas Báscas de Conversores CC-CC não-solados 1.1 Prncípos báscos As análses que se seguem consderam que os conversores não apresentam perdas de potênca (rendmento 100%). Os nterruptores (transstores

Leia mais

Material de apoio para as aulas de Física do terceiro ano

Material de apoio para as aulas de Física do terceiro ano COLÉGIO LUTERANO CONCÓRDIA Concórda, desenvolvendo conhecmento com sabedora Mantenedora: Comundade Evangélca Luterana Crsto- Nteró Materal de apoo para as aulas de Físca do tercero ano Professor Rafael

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

MÉTODO DE FIBONACCI. L, em que L

MÉTODO DE FIBONACCI. L, em que L Métodos de bonacc e da Seção Aúrea Adotando a notação: MÉTODO DE IBOACCI L e L L, em que L b a, resulta a: ncal orma Recursva: ara,,, - (-a) ou ara,,, - (-b) A esta equação se assoca a condção de contorno

Leia mais

Capítulo 4 CONSERVAÇÃO DA MASSA E DA ENERGIA

Capítulo 4 CONSERVAÇÃO DA MASSA E DA ENERGIA Capítulo 4 COSERAÇÃO DA MASSA E DA EERGIA 4.1. Equações para um Sstema Fechao 4.1.1. Defnções Consere o volume materal e uma aa substânca composta por espéces químcas lustrao na Fgura 4.1, one caa espéce

Leia mais

ESPELHOS E LENTES ESPELHOS PLANOS

ESPELHOS E LENTES ESPELHOS PLANOS ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem

Leia mais

1 Princípios da entropia e da energia

1 Princípios da entropia e da energia 1 Prncípos da entropa e da energa Das dscussões anterores vmos como o conceto de entropa fo dervado do conceto de temperatura. E esta últma uma conseqüênca da le zero da termodnâmca. Dentro da nossa descrção

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS.

Sinais Luminosos 2- CONCEITOS BÁSICOS PARA DIMENSIONAMENTO DE SINAIS LUMINOSOS. Snas Lumnosos 1-Os prmeros snas lumnosos Os snas lumnosos em cruzamentos surgem pela prmera vez em Londres (Westmnster), no ano de 1868, com um comando manual e com os semáforos a funconarem a gás. Só

Leia mais

Medidas de tendência central. Média Aritmética. 4ª aula 2012

Medidas de tendência central. Média Aritmética. 4ª aula 2012 Estatístca 4ª aula 2012 Meddas de tendênca central Ajudam a conhecer a analsar melhor as característcas de dados colhdos. Chamamos de meddas de tendênca central em decorrênca dos dados observados apresentarem

Leia mais

CIRCUITOS ELÉTRICOS. material condutor. - fonte de tensão + 1. INTRODUÇÃO 2. FONTES DE TENSÃO 3. CORRENTE ELÉTRICA

CIRCUITOS ELÉTRICOS. material condutor. - fonte de tensão + 1. INTRODUÇÃO 2. FONTES DE TENSÃO 3. CORRENTE ELÉTRICA Eletrcdade ásca Eletrcdade ásca CICUITOS ELÉTICOS s bateras e plhas fornecem tensão contínua perfetamente retfcada, ou seja, não há varação da dferença de potencal com o tempo, conforme o gráfco abaxo.

Leia mais

LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNUA

LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNUA EXPERIÊNCI 04 LEIS DE KIRCHHOFF EM CIRCUITOS DE CORRENTE CONTÍNU 1. OBJETIVOS a) Determnar a força eletromotrz e a resstênca nterna de uma batera em um crcuto de malha únca. b) Calcular a resstênca nterna

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho

Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho Matemática para a Economia I - 1 a lista de exercícios Prof. - Juliana Coelho 1 - Para cada função abaixo, calcule os valores pedidos, quando for possível: (a) f(x) = x 3 3x + 3x 1, calcule f(0), f( 1)

Leia mais

Eletromagnetismo Indutores e Indutância

Eletromagnetismo Indutores e Indutância Eletromagnetsmo Indutores e Indutânca Eletromagnetsmo» Indutores e Indutânca Introdução Indutores são elementos muto útes, pos com eles podemos armazenar energa de natureza magnétca em um crcuto elétrco.

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Varáves Varável: característcas ou tens de nteresse de cada elemento de uma população ou amostra Também chamada parâmetro, posconamento, condção...

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 +

Recorrendo à nossa imaginação podemos tentar escrever números racionais de modo semelhante: 1 2 = 1 + 3 + 32 + 1 Introdução Comecemos esta discussão fixando um número primo p. Dado um número natural m podemos escrevê-lo, de forma única, na base p. Por exemplo, se m = 15 e p = 3 temos m = 0 + 2 3 + 3 2. Podemos

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva.

A esse tipo de tabela, cujos elementos não foram numericamente organizados, denominamos tabela primitiva. Dstrbução de Frequênca Tabela prmtva ROL Suponhamos termos feto uma coleta de dados relatvos à estaturas de quarenta alunos, que compõem uma amostra dos alunos de um colégo A, resultando a segunte tabela

Leia mais

TERMODINÂMICA QUÍMICA

TERMODINÂMICA QUÍMICA TERMODIÂMICA QUÍMICA Fabano A.. Fernandes Sandro M. zzo Deovaldo Moraes Jr. a Edção 006 SUMÁRIO. ITRODUÇÃO À TERMODIÂMICA.. Introdução.. Defnção e Importânca.3. aráves Termodnâmcas.3.. Temperatura.3..

Leia mais

Critérios de divisibilidade em bases numéricas genéricas

Critérios de divisibilidade em bases numéricas genéricas Crtéros de dvsbldade em bases numércas genércas Clezo A. Braga 1 Jhon Marcelo Zn 1 Colegado do Curso de Matemátca - Centro de Cêncas Exatas e Tecnológcas da Unversdade Estadual do Oeste do Paraná Caxa

Leia mais

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou y = ax + b ax y = b Desta forma, para encontrarmos a equação da reta que passa por entre esses dois

Leia mais

14. Correntes Alternadas (baseado no Halliday, 4 a edição)

14. Correntes Alternadas (baseado no Halliday, 4 a edição) 14. orrentes Alternadas (baseado no Hallday, 4 a edção) Por que estudar orrentes Alternadas?.: a maora das casas, comérco, etc., são provdas de fação elétrca que conduz corrente alternada (A ou A em nglês):

Leia mais

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS

ANÁLISE DE ERROS. Todas as medidas das grandezas físicas deverão estar sempre acompanhadas da sua dimensão (unidades)! ERROS Físca Arqutectura Pasagístca Análse de erros ANÁLISE DE ERROS A ervação de u fenóeno físco não é copleta se não puderos quantfcá-lo Para é sso é necessáro edr ua propredade físca O processo de edda consste

Leia mais

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA NOVO MODELO PARA O CÁLCULO DE CARREGAMENTO DINÂMICO DE TRANSFORMADORES

XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA NOVO MODELO PARA O CÁLCULO DE CARREGAMENTO DINÂMICO DE TRANSFORMADORES XX SNPTEE SEMINÁRIO NACIONAL DE PRODUÇÃO E TRANSMISSÃO DE ENERGIA ELÉTRICA Versão 1.0 22 a 25 Novembro de 2009 Recfe - PE GRUPO XIII GRUPO DE ESTUDO DE TRANSFORMADORES, REATORES, MATERIAIS E TECNOLOGIAS

Leia mais

Em muitas aplicações, estamos interessados em subgrafos especiais de um determinado grafo.

Em muitas aplicações, estamos interessados em subgrafos especiais de um determinado grafo. .4 Árvores Geradoras Em mutas aplcações estamos nteressados em subgrafos especas de um determnado grafo. Defnção Árvore Geradora - uma árvore T é chamada de árvore geradora de um grafo G se T é um subgrafo

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

TEORIA ELETROMAGNÉTICA E DA ESTRUTURA DOS MOTORES DE PASSO. Mecanismo da produção do torque estático em um motor de passo de relutância variável

TEORIA ELETROMAGNÉTICA E DA ESTRUTURA DOS MOTORES DE PASSO. Mecanismo da produção do torque estático em um motor de passo de relutância variável TEOR ELETROMGNÉTC E D ESTRUTUR DOS MOTORES DE PSSO Em aulas anterores fo empregada uma abordagem qualtatva para explcar o mecansmo da produção do torque em um motor de passo; a explanação fo baseada em

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

Hoje não tem vitamina, o liquidificador quebrou!

Hoje não tem vitamina, o liquidificador quebrou! A U A UL LA Hoje não tem vtamna, o lqudfcador quebrou! Essa fo a notíca dramátca dada por Crstana no café da manhã, lgeramente amenzada pela promessa de uma breve solução. - Seu pa dsse que arruma à note!

Leia mais

Manual dos Indicadores de Qualidade 2011

Manual dos Indicadores de Qualidade 2011 Manual dos Indcadores de Qualdade 2011 1 Dretora de Avalação da Educação Superor Clauda Maffn Grbosk Coordenação Geral de Controle de Qualdade da Educação Superor Stela Mara Meneghel Equpe Técnca: José

Leia mais

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS

PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS PLANILHAS EXCEL/VBA PARA PROBLEMAS ENVOLVENDO EQUILÍBRIO LÍQUIDO-VAPOR EM SISTEMAS BINÁRIOS L. G. Olvera, J. K. S. Negreros, S. P. Nascmento, J. A. Cavalcante, N. A. Costa Unversdade Federal da Paraíba,

Leia mais

CAPITULO 02 LEIS EXPERIMENTAIS E CIRCUITOS SIMPLES. Prof. SILVIO LOBO RODRIGUES

CAPITULO 02 LEIS EXPERIMENTAIS E CIRCUITOS SIMPLES. Prof. SILVIO LOBO RODRIGUES CAPITULO 0 LEIS EXPEIMENTAIS E CICUITOS SIMPLES Prof SILVIO LOBO ODIGUES INTODUÇÃO PONTIFÍCIA UNIVESIDADE CATÓLICA DO IO GANDE DO SUL Destnase o segundo capítulo ao estudo das les de Krchnoff e suas aplcações

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

Universidade Federal de Ouro Preto UFOP. Instituto de Ciências Exatas e Biológicas ICEB. Departamento de Computação DECOM

Universidade Federal de Ouro Preto UFOP. Instituto de Ciências Exatas e Biológicas ICEB. Departamento de Computação DECOM Programação de Computadores I BCC 701 2012-02 Lista de Exercícios 02 Desvio do Fluxo de Execução - Parte A Exercício 01 Codifique um programa que faça a entrada de um número qualquer pelo teclado. A seguir

Leia mais

Capítulo. Associação de resistores. Resoluções dos exercícios propostos. P.135 a) R s R 1 R 2 R s 4 6 R s 10 Ω. b) U R s i U 10 2 U 20 V

Capítulo. Associação de resistores. Resoluções dos exercícios propostos. P.135 a) R s R 1 R 2 R s 4 6 R s 10 Ω. b) U R s i U 10 2 U 20 V apítulo 7 da físca Exercícos propostos Undade apítulo 7 ssocação de resstores ssocação de resstores esoluções dos exercícos propostos 1 P.15 a) s 1 s 6 s b) U s U 10 U 0 V c) U 1 1 U 1 U 1 8 V U U 6 U

Leia mais

TRANSFERÊNCIA DE CALOR NA ENVOLVENTE DA EDIFICAÇÃO

TRANSFERÊNCIA DE CALOR NA ENVOLVENTE DA EDIFICAÇÃO UNIVERSIDADE FEDERAL DE SANA CAARINA CENRO ECNOLÓGICO DEPARAMENO DE ENGENHARIA CIVIL PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL RANSFERÊNCIA DE CALOR NA ENVOLVENE DA EDIFICAÇÃO ELABORADO POR: Martn

Leia mais

UMA PROPOSTA DE ENSINO DE TÓPICOS DE ELETROMAGNETISMO VIA INSTRUÇÃO PELOS COLEGAS E ENSINO SOB MEDIDA PARA O ENSINO MÉDIO

UMA PROPOSTA DE ENSINO DE TÓPICOS DE ELETROMAGNETISMO VIA INSTRUÇÃO PELOS COLEGAS E ENSINO SOB MEDIDA PARA O ENSINO MÉDIO UMA PROPOTA DE EIO DE TÓPICO DE ELETROMAGETIMO VIA ITRUÇÃO PELO COLEGA E EIO OB MEDIDA PARA O EIO MÉDIO TETE COCEITUAI Autores: Vagner Olvera Elane Angela Vet Ives olano Araujo TETE COCEITUAI (CAPÍTULO

Leia mais

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2

Capítulo 1. O plano complexo. 1.1. Introdução. Os números complexos começaram por ser introduzidos para dar sentido à 2 Capítulo O plano compleo Introdução Os números compleos começaram por ser ntrodudos para dar sentdo à resolução de equações polnomas do tpo Como os quadrados de números reas são sempre maores ou guas a

Leia mais

Proposta de resolução da Prova de Matemática A (código 635) 21 de Junho de 2010

Proposta de resolução da Prova de Matemática A (código 635) 21 de Junho de 2010 Proposta de resolução da Prova de Matemátca A (códgo 6 Como A e B são acontecmentos ncompatíves, 0 e Ou seja, de acordo com os dados do enuncado, 0% 0% 0% Versão : B Versão : C Como se trata de uma únca

Leia mais

Estabilidade de Lyapunov e Propriedades Globais para Modelo de Dinâmica Viral

Estabilidade de Lyapunov e Propriedades Globais para Modelo de Dinâmica Viral Establdade de Lyapunov e Propredades Globas para Modelo de Dnâmca Vral Nara Bobko Insttuto de Matemátca Pura e Aplcada 22460-320, Estrada Dona Castorna, Ro de Janero - RJ E-mal: narabobko@gmal.com. Resumo:

Leia mais

Prof. A.F.Guimarães Questões de termologia 7

Prof. A.F.Guimarães Questões de termologia 7 Questão (FUES SP) Uma equena bolha de ar, artndo da rounddade de, m abaxo da sueríce de um lago, tem seu volume aumentado em % ao chegar à sueríce. Suonha que a temeratura do lago seja constante e unorme,

Leia mais

LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE. Ricardo Silva Tavares 1 ; Roberto Scalco 2

LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE. Ricardo Silva Tavares 1 ; Roberto Scalco 2 LOCALIZAÇÃO ESPACIAL DA MÃO DO USUÁRIO UTILIZANDO WII REMOTE Rcardo Slva Tavares 1 ; Roberto Scalco 1 Aluno de Incação Centífca da Escola de Engenhara Mauá (EEM/CEUN-IMT); Professor da Escola de Engenhara

Leia mais