PINDYCK & RUBINFELD, CAP 5; VARIAN, CAP.12

Tamanho: px
Começar a partir da página:

Download "PINDYCK & RUBINFELD, CAP 5; VARIAN, CAP.12"

Transcrição

1 Escolha sob Icrtza PINDYCK & RUBINFELD, CAP 5; VARIAN, CAP. OBS.: ESTAS NOTAS DE AULA NÃO FORAM SUBMETIDAS A REVISÃO, TENDO COMO ÚNICA FINALIDADE A ORIENTAÇÃO DA APRESENTAÇÃO EM CLASSE. COMENTÁRIOS SÃO BEM VINDOS E PODEM SER ENVIADOS A REPRODUÇÃO SOB QUAISQUER MEIOS OU DISTRIBUIÇÃO PROIBIDA SEM AUTORIZAÇÃO PRÉVIA DO AUTOR. Rolad Saldaha Pága 9/04/004

2 INTRODUÇÃO o Icrtza x Rsco - Prob. Subjtva Objtva: classcação duvdosa o Graldad da Hóts da Maxzação da Utldad: As ras axza a utldad lbrar do Axoa do Idvdualso Mtodológco (Buchaa, 984) o Savag: Eoqu das Probabldads Pssoas ou Subjtvas (rsoal robablts) : os dvíduos ag coo s ls assocass utldads b ddas (ão robablístcas) a todo vto qu ossa acotcr, ou, qu ls assoca robabldads b ddas ara todo vto (, ortato, utldad) qu ossa ocorrr. o Estados do Mudo S, S, S 3,..., S. o Rlação tr Estados do Mudo a Varávl Ecoôca V=g(S) o Rlação tr a Utldad a Varávl Ecoôca U = (V) o Rlação tr Estados do Mudo a Utldad U=(g(S))=k(S) Utldad Esrada o Utldad Esrada: S a utldad dd d vtos altratvos assocados a dtradas robabldads (ssoas), suõ-s qu os agts coôcos axza a Utldad Esrada: Méda das Utldads assocadas a cada vto ossívl, odrada las robabldads d ocorrêca d cada vto altratvo. Evtos Altratvos são, o Vara, Estados d Mudo (Stats o th World) altratvos. As scolhas qu dd d stados do udo altratvos são scolhas cotgts. Rolad Saldaha Pága 9/04/004

3 Dscrvdo o Rsco: o Covêca (as ão cssdad) d trabalhar co rdas altratvas U(V), od V é a rda otára, ara rços rlatvos costat, tabé a rda ral. o Valor Esrado = Valor édo, odrado las robabldads E ( V ) = V = V co, = o Varabldad: Dsvo Médo D ( V ) = ( V V ) o Probla co os D : os dsvos ostvos cosa os dsvos gatvos dstorcdo avalação do rsco assocado. Varâca Dsvo Padrão ( a ) = ( V V ) ( V ) = D ( V ) D a ( V ) = ( V V ) Rsco x Rtoro: Escolha sob Icrtza o As ossbldads são dscrtas las drts lotras, cobaçõs altratvas tr rsco rtoro dsoívs. Mas Rolad Saldaha Pága 3 9/04/004

4 Ecooa, ara tdr as scolhas é sr cssáro cotrastar dsjos ossbldads. o Dsjos sob crtza: Utldad Esrada E ( U ( V )) = U ( V ) = U ( V ) o S a Utldad Margal da Rda or ostva: du ( V ) = U V ( ) > 0 o Os agts sr rrrão ua rda aor a ua rda or. Ocorr qu sto val ara rdas crtas. S houvr crtza, a scolha rcsa clur o rsco, é cssáro trabalhar co a utldad srada. o Pod-s suor, coo ara a rda crta, qu todo dvíduo rr ua rda srada aor a ua rda srada or, ou sja, qu a du ( V ) Utldad Esrada auta co a rda srada = U ( V ) > 0 o Ocorr qu a utldad srada é ua éda odrada das utldads assocadas a cada stado do udo altratvo Das ossbldads, quado o vto s cocrtzar, sot ua ocorrrá d ato. Ass, é cssáro sabr coo os agts s oscoa co rlação aos ossívs dsvos d rda: o agt é drt a rcbr R$0 co crtza a tr ua rda srada (as crta) d R$0; ou l rr R$0 co crtza a R$0 srado (od sr as ou os do qu R$0); ou, ada, rr R$0 srado a R$0 co crtza? o Para vsualzar sta qustão é covt trabalhar co a oção d quvalt crtza, ou sja, qual a utldad assocada lo agt à rda R$x, caso rcbda co crtza, coarar a utldad do quvalt crtza co a utldad assocada a ua rda srada d R$x. Rolad Saldaha Pága 4 9/04/004

5 o Gracat, o quvalt crtza é obtdo rojtado o valor srado da rda a ução utldad. S a utldad do quvalt crtza or aor do qu a utldad srada ara dtrada lotra, dz-s qu o agt é avsso ao rsco. S or guas, dz-s qu o agt é drt ao rsco. S a utldad do quvalt crtza or or qu a utldad srada, o agt é dto aat do rsco. o Algbrcat: o Mostrar qu d U d U d U ( V ) ( V ) ( V ) = U V = U V = U V ( ) < 0 ( ) = 0 ( ) > 0 agt avsso ao rsco agt drt ao rsco agt aat do rsco o É sls rcbr agora qu sot agts avssos ao rsco stão dsostos a azr sguros. Qual o rêo d rsco áxo qu stão dsostos a agar? o Coo ora as sguradoras? L dos Grads Núros. o Maras d s rotgr do Rsco: Dvrscação, Sguros, Ivstto Ioração o Probla do uso d gostos drts ara xlcar coortatos drts Ecooa: Ds Gustbus No Est Dsutadu. Dada or sguros: o Suoha u agt avsso ao rsco (aqul qu az sguros). A rguta é: qual o valor áxo qu l stara dsosto a agar ara dxar d corrr o rsco (o qu corrsod a rcbr da sguradora a drça tr a rda o vto dsavorávl a rda srada, s o vto dsavorávl acotcr)? Rolad Saldaha Pága 5 9/04/004

6 o Solução: S há rsco, a rda do dvíduo od varar, dddo da ocorrêca d vtos crtos. Cosdr o valor srado da utldad ara st agt: E( U ( V )) = U ( V ) = U ( V ) rocur, a ução utldad, o valor da rda (crta) qu gra a sa satsação, ou sja, ach o V tal qu U (V)=U(V ). Etão, s o agt ão gosta do rsco agar até V-V ara dxar d corrr o rsco: o s o vto dsavorávl acotcr, l rcbrá o sguro trá ua rda d V ds +(V-V ds )-(V-V )=V, ou sja, sua utldad srá, o ío (s ocorrr o vto dsavorávl ), gual à utldad do rcbto do valor srado, co crtza. (V-V ds ) é o valor ago la sguradora, (V-V ) é o rêo d rsco, o valor áxo qu o agt stá dsosto a agar ara dxar d corrr o rsco d rcbr os qu o valor srado. Maras d s rotgr do Rsco: o Dvrscação: ão colocar todos os ovos ua sa csta o Sguros: agar ara dxar d corrr o rsco, assar o rsco ara outros. o Ivstto Ioração: rduzr a crtza - Ivstr Ioração até o oto qu o Bíco Margal Esrado = Custo Margal o Not qu as sguradoras, vstdo oraçõs arovtado-s da L dos Grads Núros, od star co rlatva rcsão quatos sstros trão d agar, adcoado sus custos adstratvos, dtra os custos orc sus srvços. o Por qu as sguradoras orc srvços adcoas, to dscotos stacoatos? o Por qu as sguradoras cobra raquas? Dada Por Atvos d Rsco: o Atvos d rsco são atvos co rtoros crtos, xlo tíco as açõs bolsa. Quado s cora u dsts atvos ão s sab, ao crto, qual o rtoro a sr obtdo. No to d alta lação, a varâca a volução dos rços bcava atvos ós-xados, ou Rolad Saldaha Pága 6 9/04/004

7 sja, aquls cujo rtoro ral é cohcdo d íco, as ão o oal. o O odlo as cohcdo ara tdr a dcsão d scolha d atvos co rsco, a vrdad u odlo qu rocura dtrar quas atvos s scolh ara coor ua cartra d atvos co drts ívs d rsco é o CAPM (Catal Asst Prcg Modl), o odlo d rccação d atvos. Est odlo o dsvolvdo lo Nobl Ecooa Wlla Shar (964) ada qu tabé sja atrbuído a Joh Ltr (965). o Cosdr dos atvos: Atvo Lvr d Rsco - rtoro srado = R Atvo co Rsco - rtoro srado = R - rtoro obsrvado = r - rtoro obsrvado = r o Suoha qu o agt só od vstr sts dos atvos: coo coor a cartra? o Sja R o rtoro srado da cartra b a roorção dos atvos co rsco a cartra, tão: R = br + ( b) R o Not qu s b = 0, R = R o Calcul, agora, a varâca da cartra: = [ R E( R )] = [ br + ( b) R br ( b) R ] = b( R r ) [ ] = = b [ R r ] = b o Not qu s usou os atos: E(b )= b R = r o Usado a quação aca tros d dsvos adrõs ( = ): z z Rolad Saldaha Pága 7 9/04/004

8 = b b = o, substtudo a quação ara R : R R ou = = R R + + ( ) R ( R R ) o Itrrtar Itrcto Iclação o Curva d drça rsco x rtoro ara agts avssos ao rsco. o Prguta tíca d rova: U agt avsso ao rsco ão cora açõs bolsa, são uto arrscadas (V/F Por quê?) Prgutas o Todos do Caítulo 5 do Pdyck & Rubld. Bblograa Buchaa, Jas. Exloratos Costtutoal Ecoocs. USA: Txas A&M Uvrsty Prss, 986. Eato, B. Curts, ad Da E. Eato. Mcrocooa. Brasl: Sarava, 999 (995). Pdyck, R. & Rubld, D. Mcrocooa, Makro Books, São Paulo, 993. Vara, Hal R., Mcrocooa: Prcíos Báscos, d. Caus, 999. Rolad Saldaha Pága 8 9/04/004

Código PE-ACSH-2. Título:

Código PE-ACSH-2. Título: CISI Ctro Itrção Srvços Iformtc rão Excução Atv Itr o CISI Cóo Emto por: Grêc o Stor 1. Objtvo cmpo plcção Est ocumto tm como fl fr o prão brtur chmos suport o CISI. A brtur chmos é rlz o sstm hlpsk, qu

Leia mais

A B LM. A onde Y Y ; P. P P, no PONTO. T o que provocará um C 0. T 0 desloca curva IS para a direita IS IS

A B LM. A onde Y Y ; P. P P, no PONTO. T o que provocará um C 0. T 0 desloca curva IS para a direita IS IS Gabarto Blachard Capítulo 7 2) Choqu d gasto médo prazo MODELO AD AS (OA-DA) Rdução do Imposto d Rda (T): C c c T 0 0 c 0 - cosumo autôomo c - propsão margal a cosumr T 0 dsloca curva IS para a drta Dado

Leia mais

CAPÍTULO 9 CORRELAÇÃO E REGRESSÃO

CAPÍTULO 9 CORRELAÇÃO E REGRESSÃO CAPÍTULO 9 CORRELAÇÃO E REGRESSÃO Exst um cojuto d métodos statístcos qu vsam studar a assocação tr duas ou mas varávs alatóras. Dtr tas métodos, a tora da rgrssão corrlação ocupa um lugar d dstaqu por

Leia mais

C. Almeida (1987) Determinação da transmissividade e coeficiente de armazenamento por ensaios de recuperação

C. Almeida (1987) Determinação da transmissividade e coeficiente de armazenamento por ensaios de recuperação C. Almda (1987 Dtrmação da tramvdad cofct d armazamto or ao d rcuração Hdrogologa y Rcuro Hdráulco, t. XII,. 689-694. IV IMPOIO DE HIDROGEOLOGÍA ALMEIDA, Carlo DEERMINAÇÃO DE RANMIIVIDADE E COEFICIENE

Leia mais

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T)

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T) Axo III mpratura quivalt d ruído, igura d ruído ator d mérito para staçõs d rcpção (/) III.. mpratura Equivalt d Ruído A tmpratura quivalt d ruído d um compot pod sr dfiida como sdo o valor d tmpratura

Leia mais

Capitulo 4 Resolução de Exercícios

Capitulo 4 Resolução de Exercícios FORMULÁRIO i Taxa Proporcioal ou quivalt (juros simpls) i k Taxas Equivalts (juros compostos) 3 i i i i i i i 4 6 360 a s q t b m d Taxa Eftiva Nomial k i i p ao príodo d capitalização ; i k Taxa Ral Taxa

Leia mais

Capitulo 5 Resolução de Exercícios

Capitulo 5 Resolução de Exercícios Captulo 5 Rsolução Exrcícos FORMULÁRIO Dscoto Racoal Smpls D ; D ; ; D R R R R R R Dscoto Comrcal Smpls D ; ; D C C C C Dscoto Bacáro Smpls D s ; s ; D b b b b s Db ; b Rlaçõs tr o Dscoto Racoal Smpls

Leia mais

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA APLICADA VESTIBULAR 013 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional

Leia mais

Curso: Engenharia Industrial Elétrica. Análise de variáveis Complexas MAT 216 Turma: 01

Curso: Engenharia Industrial Elétrica. Análise de variáveis Complexas MAT 216 Turma: 01 urso: Egharia Idustrial Elétrica Aális d variávis omplas MAT 6 Profssora: Edmary S B Araújo Turma: Lista d Provas Rspodu Jsus: Em vrdad, m vrdad t digo: qum ão ascr da água do Espírito ão pod trar o rio

Leia mais

Estratégico. III Seminário de Planejamento. Rio de Janeiro, 23 a 25 de fevereiro de 2011

Estratégico. III Seminário de Planejamento. Rio de Janeiro, 23 a 25 de fevereiro de 2011 Estratégico III Seminário de Planejamento Rio de Janeiro, 23 a 25 de fevereiro de 2011 G es tão Em pre sa rial O rie nta ção pa ra om erc ado Ino vaç ão et

Leia mais

FACULDADES UNIFICADAS DA. Curso de Direito Escritório de Assistência Jurídica Registro OAB 6614 DA F UNDAÇ Ã O EDUCACIONAL DE B ARRETOS

FACULDADES UNIFICADAS DA. Curso de Direito Escritório de Assistência Jurídica Registro OAB 6614 DA F UNDAÇ Ã O EDUCACIONAL DE B ARRETOS FACULDADES UNIFICADAS DA FUNDAÇÃO EDUCACIONAL DE BARRETOS Curso de Direito Escritório de Assistência Jurídica Registro OAB 6614 REGULAMENTO DO NÚ CLEO DE PRÁ TICA JURÍ DICA DA F UNDAÇ Ã O EDUCACIONAL DE

Leia mais

Exercícios de Cálculo Numérico - Erros

Exercícios de Cálculo Numérico - Erros Ercícios d Cálculo Numérico - Erros. Cosidr um computador d bits com pot máimo ( a rprstação m aritmética lutuat a bas. (a Dtrmi o mor úmro positivo rprstávl sta máquia a bas. (b Dtrmi o maior úmro positivo

Leia mais

O que são dados categóricos?

O que são dados categóricos? Objtivos: Dscrição d dados catgóricos por tablas gráficos Tst qui-quadrado d adrência Tst qui-quadrado d indpndência Tst qui-quadrado d homognidad O qu são dados catgóricos? São dados dcorrnts da obsrvação

Leia mais

(1) Raízes n-ésimas. r cos. nϕ = θ + 2kπ; k = 0, 1, 2, 3, 4,... ρ n cos nϕ = r cos θ ρ n = r ρ= (r) 1/n. Portanto:

(1) Raízes n-ésimas. r cos. nϕ = θ + 2kπ; k = 0, 1, 2, 3, 4,... ρ n cos nϕ = r cos θ ρ n = r ρ= (r) 1/n. Portanto: Raís -ésmas A ra -ésma d um úmro complxo s é o complxo s Vamos vr qu os complxos possum raís dfrts!!! Em coordadas polars: s r cos θ s θ ρ cos ϕ s ϕ Aplcado Movr trmos: r cos θ s θ ρ cos ϕ s ϕ Portato:

Leia mais

Variáveis aleatórias Conceito de variável aleatória

Variáveis aleatórias Conceito de variável aleatória Variávis alatórias Muitos primtos alatórios produzm rsultados ão-uméricos. Ats d aalisá-los, é covit trasformar sus rsultados m úmros, o qu é fito através da variávl alatória, qu é uma rgra d associação

Leia mais

Fluxo de caixa em condições de risco

Fluxo de caixa em condições de risco JUL. AGO. SET. 5 ANO XI, Nº 4 9-4 INTEGRAÇÃO 9 Fluxo d caixa m codiçõs d risco ANTONIO SCORCIAPINO* Rsumo Est trabalho tm como obtivo mostrar algus métodos d avaliação d rotos, or mio d fluxos d caixa,

Leia mais

Exemplo um: Determinar a distribuição da variável Y = 3X, dada a distribuição de X da tabela:

Exemplo um: Determinar a distribuição da variável Y = 3X, dada a distribuição de X da tabela: Prof. Lorí Viali, Dr. UFRGS Istituto d Matmática - D partam to d Estatística Sja X uma variávl alatória discrta com fp p(x i ). Sja Y f(x). S X for moótoa, tão i f(x i ), od x i são os valors d X, com

Leia mais

CAP RATES, YIELDS E AVALIAÇÃO DE IMÓVEIS pelo método do rendimento

CAP RATES, YIELDS E AVALIAÇÃO DE IMÓVEIS pelo método do rendimento CAP RATES, YIELDS E AALIAÇÃO DE IMÓEIS pelo étodo do rendento Publcado no Confdencal Iobláro, Março de 2007 AMARO NAES LAIA Drector da Pós-Graduação de Gestão e Avalação Ioblára do ISEG. Docente das caderas

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Eam Fial d ª Época m d Jairo 9 Tópicos d Corrcção Duração: horas miutos É proibido usar máquias d calcular ou tlmóvis

Leia mais

6. Inferência para Duas Populações USP-ICMC-SME 2013

6. Inferência para Duas Populações USP-ICMC-SME 2013 6. Iferêca ara Duas Poulações UP-ICMC-ME 3 8.. Poulações deedetes co dstrbução oral Poulação Poulação,,,, ~ N, ~ N, ~ N, Obs. e a dstrbução de e/ou ão for oral, os resultados são váldos aroxadaete. Testes

Leia mais

Matemática Financeira

Matemática Financeira Cocetos Báscos de Matemátca Facera Uversdade do Porto Faculdade de Egehara Mestrado Itegrado em Egehara Electrotécca e de Computadores Ecooma e Gestão Na prátca As decsões faceras evolvem frequetemete

Leia mais

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas Dstrbuçõs Dscrtas Dstrbuçõs 30/09/05 Contínuas DISTRIBUIÇÃO DE PROBABILIDADE Dscrtas DISTRIBUIÇÃO BIOMIAL Bnomal Posson Consdramos n tntatvas ndpndnts, d um msmo prmnto alatóro. Cada tntatva admt dos rsultados:

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000 º Tst d CONTROLO DE SISTEMS (TP E PRO) Licciatura m Eg.ª Mcâica Prof. Rsposávl: Pdro Maul Goçalvs Lourti d bril d 00 º Smstr Duração: hora miutos. Tst com cosulta. Rsolução. Cosidr o sistma rprstado a

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin ECO/UnB 2013-I. Aula 09-Parte 2 Teoria dos Jogos Maurício Bugarin

Teoria dos Jogos. Prof. Maurício Bugarin ECO/UnB 2013-I. Aula 09-Parte 2 Teoria dos Jogos Maurício Bugarin Toria dos Jogos Prof. Maurício Bugarin CO/UnB -I Aula 9-Part Toria dos Jogos Maurício Bugarin Cap.. Jogos Dinâmicos com Informação Complta Rotiro Capítulo. Jogos Dinâmicos com Informação Complta.. Jogos

Leia mais

NR-35 TRABALHO EM ALTURA

NR-35 TRABALHO EM ALTURA Sgurança Saúd do Trabalho ao su alcanc! NR-35 TRABALHO EM ALTURA PREVENÇÃO Esta é a palavra do dia. TODOS OS DIAS! PRECAUÇÃO: Ato ou fito d prvnir ou d s prvnir; A ação d vitar ou diminuir os riscos através

Leia mais

1. A cessan do o S I G P R H

1. A cessan do o S I G P R H 1. A cessan do o S I G P R H A c esse o en de reç o w w w.si3.ufc.br e selec i o ne a o p ç ã o S I G P R H (Siste m a I n te g ra d o de P la ne ja m e n t o, G estã o e R e c u rs os H u m a n os). Se

Leia mais

MÃE. M esmo q u e o s eu f ilho j á t enha sido regi strad o procu r e o cartóri o d e R egi stro Civil de

MÃE. M esmo q u e o s eu f ilho j á t enha sido regi strad o procu r e o cartóri o d e R egi stro Civil de APRESENTAÇÃO O T r i b u n a l d e J u st i ç a d e S ã o P a u l o d e s e n v o l ve, d e s d e 2 0 0 7, o P r o j e to P a t e r n i d a d e R e s p o n s á v e l. S u a d i s c i p l i n a e s t á

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

Transformador Monofásico

Transformador Monofásico Trasformador Moofásico. Cocito O trasformador (TR) é um quipamto qu rcb rgia létrica com uma tsão uma corrt forc ssa rgia, a mos das prdas, m outra tsão outra corrt. A frqüêcia létrica s matém ialtrada.

Leia mais

PESQUISA PERFIL DO TURISTA

PESQUISA PERFIL DO TURISTA PESQUISA PERFIL DO TURISTA 1) Qual país de origem? Categoria em (%) Brasil 98,19 98,66 97,55 América Latina 0,86 0,55 1,28 Outros países 0,95 0,80 1,16 País de origem América La tina 1% Outros pa íses

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

dy dx dy dx Obs.: a forma canônica pode ser obtida da forma geral dividindo-se a equação geral por a 0 , desde que a ( x) 0 no intervalo x ( a,b)

dy dx dy dx Obs.: a forma canônica pode ser obtida da forma geral dividindo-se a equação geral por a 0 , desde que a ( x) 0 no intervalo x ( a,b) 3 EQUAÇÕES DIFEENIAIS INEAES 3 Toria Gral Estas quaçõs são uito iortats, ois são alicadas à Egharia ara rsolvr roblas d vibraçõs câicas, circuitos létricos, tc Escial atção srá dada às quaçõs d sguda ord

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

Tópicos Quem é é a a PP aa nn dd ui t t?? PP oo rr qq ue um CC aa bb ea men tt oo PP er ff oo rr ma nn cc e? dd e AA ll tt a a Qua ll ii dd aa dd e e PP aa nn dd ui t t NN et ww oo rr k k II nn ff rr aa

Leia mais

Alencar Instalações. Resolvo seu problema elétrico

Alencar Instalações. Resolvo seu problema elétrico Alencar Instalações Resolvo seu problema elétrico T r a b a lh a m o s c o m : Manutenção elétrica predial, residencial, comercial e em condomínios Redes lógicas Venda de material elétrico em geral. Aterramentos

Leia mais

Missa Ave Maris Stella

Missa Ave Maris Stella Missa Av Maris Stlla Para coro a calla a quatro vozs SATB Notas sobr a comosição A rsnt comosição constituis a artir d um ordinário da missa m latim ara coro a quatro vozs a calla, sm divisi Sorano, Alto,

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

Leonardo da Vinci ( ), artista, engenheiro e cientista italiano

Leonardo da Vinci ( ), artista, engenheiro e cientista italiano ormas dos rabalhos Vrtuas Itrodução Loardo da Vc (45-59), artsta, ghro ctsta talao Aplcou oçõs do prcípo dos dslocamtos vrtuas para aalsar o qulíbro d sstmas d polas alavacas PEF-40 Prof. João Cyro Adré

Leia mais

NPQV Variável Educação Prof. Responsáv el : Ra ph a el B i c u d o

NPQV Variável Educação Prof. Responsáv el : Ra ph a el B i c u d o NPQV Variável Educação Prof. Responsáv v el :: Ra ph aa el BB ii cc uu dd o ATIVIDADES DESENVOLVIDAS NA ÁREA DE EDUCAÇÃO 2º Semestre de 2003 ATIVIDADES DESENVOLVIDAS NA ÁREA DE EDUCAÇÃO As atividades realizadas

Leia mais

Profa. Dra. C ristina Pereira G aglianone

Profa. Dra. C ristina Pereira G aglianone Profa. Dra. C ristina Pereira G aglianone C en t r o C o l a b o r a d o r em A l i m en t aç ão e N u t r i ç ão E sc o l ar U n i v e r si d ad e F ed er al d e S ão P au l o P r o je t o d e L e i 6

Leia mais

O siste ma foi de se nvolvido e m C # atra vé s da fe rrame nta Microsoft Visual S tudio 2008. Banco de dados Microsoft S QL S e rve r 2008 r2

O siste ma foi de se nvolvido e m C # atra vé s da fe rrame nta Microsoft Visual S tudio 2008. Banco de dados Microsoft S QL S e rve r 2008 r2 His tó ric o O de s e nvolvime nto do S is te ma Voto E le trônico do Ministé rio P úblico do E stado de S ão P aulo te ve s e u início e m 2009 com a fina lidade de automatiza r os proce ssos e le itorais

Leia mais

MEDIÇÃO DA ACELERAÇÃO DA GRAVIDADE COM UM PÊNDULO SIMPLES

MEDIÇÃO DA ACELERAÇÃO DA GRAVIDADE COM UM PÊNDULO SIMPLES Medção da Aceleração da Gravdade co u Pêndulo Sples MEDIÇÃO DA ACEERAÇÃO DA GRAVIDADE COM UM PÊNDUO SIMPES O Relatóro deste trabalho consste no preenchento dos espaços neste texto Fundaento Teórco O pêndulo

Leia mais

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros.

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros. JUROS MONTANTE JUROS SIMPLES J = C 0 * * t 00 M = C * + * t 00 TAXA PROPORCIONAL: É aquela que aplcada ao mesmo captal, o mesmo prazo, produze o mesmo juros. * = * JUROS COMPOSTOS MONTANTE M = C * + 00

Leia mais

Capitulo 7 Resolução de Exercícios

Capitulo 7 Resolução de Exercícios FORMULÁRIO Audades Costates Postecpadas HP C [g][end] Cp LN 1 1 1 1 C p R Cp R R a, R C p, 1 1 1 a LN 1 Sp LN 1 1 1 S p R S p R R s, R S p, 1 1 s LN 1 Audades Costates Atecpadas HP C [g][beg] 1 (1 ) 1

Leia mais

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma:

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma: NÚMEROS COMPLEXOS DEFINIÇÃO No cojuto dos úmros ras R, tmos qu a a a é smpr um úmro ão gatvo para todo a Ou sja, ão é possívl xtrar a ra quadrada d um úmro gatvo m R Portato, podmos dfr um cojuto d úmros

Leia mais

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos FEA -USP Graduação Cêcas Cotábes EAC05 04_0 Profa. Joaíla Ca. Rsco e Retoro. Cocetos Báscos Rotero BE-cap.6 Tema 0 Rsco e Retoro. Cocetos Báscos I. O que é Retoro? II. Qual é o Rsco de um Atvo Idvdual

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

Um modo de obter algumas fórmulas de matemática financeira

Um modo de obter algumas fórmulas de matemática financeira U odo d obt lus fóuls d tátc fc Mtl lbodo co bs : CSROTTO ILHO, Nlso; KOITTKE, Buo Htut áls d vsttos: tátc fc; h coôc; tod d dcsão; stté sl 9d São ulo: tls, 000 458 /Cítulos,,, 4 5/ NEWNN, Dold ; LVELLE,

Leia mais

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1 ) Dtrmin dmíni das funçõs abai rprsnt- graficamnt: z + z 4.ln( ) z ln z z arccs( ) f) z g) z ln + h) z ( ) ) Dtrmin dmíni, trac as curvas d nívl sbc gráfic das funçõs: f (, ) 9 + 4 f (, ) 6 f (, ) 6 f

Leia mais

Capítulo 2 Circuitos Resistivos

Capítulo 2 Circuitos Resistivos EA53 Crcutos Elétrcos I DECOMFEECUICAMP Caítulo Crcutos esstos EA53 Crcutos Elétrcos I DECOMFEECUICAMP. Le de Ohm esstor: qualquer dsosto que exbe somete uma resstêca. a resstêca está assocada ao úmero

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

CONTRATO Nº 229/ 2014

CONTRATO Nº 229/ 2014 CONTRATO Nº 229/ 2014 Prestação de Serviços de Consultoria especializada em gestão na área de planejamento estratégico e mapeamento de processos. Que fazem entre si de um lado a Prefeitura Municipal de

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A Eam Final Nacional do Ensino Scundáio Pova Escita d Matmática A 1.º Ano d Escolaidad Dcto-Li n.º 139/01, d 5 d julho Pova 635/1.ª Fas Citéios d Classificação 1 Páginas 014 Pova 635/1.ª F. CC Página 1/

Leia mais

Teoria de Resposta ao Item: Curva Característica do Item

Teoria de Resposta ao Item: Curva Característica do Item Tor d Rspost o It: Curv Crctrístc do It Dr. Rcrdo Pr Progr d Mstrdo Doutordo Avlção Pscológc Uvrsdd São Frcsco Curv Crctrístc do It CCI Idés portts Trço ltt Métrc clt rtrár Curv dscrv rlção tr Proldd d

Leia mais

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120

, ou seja, 8, e 0 são os valores de x tais que x e, Página 120 Prparar o Eam 0 07 Matmática A Página 0. Como g é uma função contínua stritamnt crscnt no su domínio. Logo, o su contradomínio é g, g, ou sja, 8,, porqu: 8 g 8 g 8 8. D : 0, f Rsposta: C Cálculo Auiliar:

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

Vieiras com palmito pupunha ao molho de limão

Vieiras com palmito pupunha ao molho de limão Vs o to nh o oho d ão Oá, ss ntd fo ns dos tos fz s gost. Aé d nd dd, obnção d sbos sson té os s xgnts. A t s dfí v s onsg vs fss. Ingdnts: 1 to nh; 3 dúzs d vs; s nt t; d do. Modo d fz: t s tbhos é bs

Leia mais

REFORMA POLÍTICA. Capítulo VI

REFORMA POLÍTICA. Capítulo VI REFORMA POLÍTICA Capítulo VI REFORMA QUE O GOVERNO LULA E O CONGRESSO NACIONAL DEVEM PRIORIZAR [espontânea e única, em %] Pe so 1 0 0 % Re fe rê ncia s a re form a s Re form a Agrá ria 7 Re form a Tra

Leia mais

o bje tiv o f in a l d o C oa c h in g é fa z e r c o m qu e o s c lie n te s t o rn e m -s e a u tô no m o s.

o bje tiv o f in a l d o C oa c h in g é fa z e r c o m qu e o s c lie n te s t o rn e m -s e a u tô no m o s. O r ie n ta ç õ e s In i ci ai s E u, R ic k N e ls o n - P e rs on a l & P rof e s s io n al C o a c h - a c re dito qu e o o bje tiv o f in a l d o C oa c h in g é fa z e r c o m qu e o s c lie n te

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

Circuitos Operadores Matemáticos não lineares

Circuitos Operadores Matemáticos não lineares Crcuts Oprars Matmátcs ã ars ã crcuts qu utlzam lmts ã ars para ralzar praçõs multplcaçã, sã, lgartm, xpcal, tc Esss crcuts utlzam gralmt um lmt ã ar basa uma juçã smcutra ( u trasstr bplar) gura 4: Cura

Leia mais

Desafio em Física 2013 PUC-Rio 05/10/2013

Desafio em Física 2013 PUC-Rio 05/10/2013 Desafio e Física 2013 PUC-Rio 05/10/2013 Noe: GABARITO Idetidade: Nº iscrição o vestibular: Questão Nota 1 2 3 4 5 6 7 8 Total O teo de duração da rova é de 3 horas É eritido o uso de calculadora eletrôica;

Leia mais

Revista de Administração FACES Journal ISSN: 1517-8900 faces@fumec.br Universidade FUMEC Brasil

Revista de Administração FACES Journal ISSN: 1517-8900 faces@fumec.br Universidade FUMEC Brasil Revsta de Adnstração FACES Journal ISSN: 1517-8900 faces@fuec.br Unversdade FUMEC Brasl Martns Guarães, César; Torres Guarães, Rosane Revsta de Adnstração FACES Journal, vol. 5, nú., ayo-agosto, 006,.

Leia mais

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES

RESOLUÇÃO DE EQUAÇÕES POR MEIO DE DETERMINANTES RESOLUÇÃO DE EQUAÇÕES POR EIO DE DETERINANTES Dtrmt um mtrz su orm Sj mtrz: O trmt st mtrz é: Emlo: Vmos suor o sstm us quçõs om us óts y: y y Est sstm quçõs o sr srto orm mtrl: y Est qução r três mtrzs:.

Leia mais

Mérito Desenvolvimento Imobiliário I FII. Fundo de Investimento Imobiliário

Mérito Desenvolvimento Imobiliário I FII. Fundo de Investimento Imobiliário 03 09 10 11 13 15 16 18 20 22 24 26 27 29 31 02 1. 03 1. 04 1. 05 1. 06 1. 07 1. 08 2. ¹ ¹ ¹ 09 3. 10 4. 11 4. 12 5. ¹ ² ³ 13 5. x MIL ago.2013 ago.2014 ago.2015 ¹ ³ ² ¹ 14 6. 15 6. ² 16 6. B C D E F A

Leia mais

Estruturas. Também chamadas de registro. Conjunto de uma ou mais variáveis agrupadas sob um único nome *

Estruturas. Também chamadas de registro. Conjunto de uma ou mais variáveis agrupadas sob um único nome * Estruturas Estruturas Também chamadas d rgistro Conjunto d uma ou mais variávis agrupadas sob um único nom * As variávis qu compõm uma strutura são chamadas campos *Damas, L. Linguagm C. Rio d Janiro:

Leia mais

G r u p o P E T C o m p u t a ç ã o. U n i v e r s i d a d e F e d e r a l d e C a m p i n a G r a n d e U F C G

G r u p o P E T C o m p u t a ç ã o. U n i v e r s i d a d e F e d e r a l d e C a m p i n a G r a n d e U F C G M E T O D O L O G I A U T I L I Z A D A P E L O P E T C O M P U T A Ç Ã O D A U F C G P A R A M I N I S T R A R C U R S O S DE I N F O R M À T I C A B À S I C A G r u p o P E T C o m p u t a ç ã o C u

Leia mais

CAPÍTULO 9 COORDENADAS POLARES

CAPÍTULO 9 COORDENADAS POLARES Luiz Frncisco d Cruz Drtmnto d Mtmátic Uns/Buru CAPÍTULO 9 COORDENADAS POLARES O lno, tmbém chmdo d R, ond R RR {(,)/, R}, ou sj, o roduto crtsino d R or R, é o conjunto d todos os rs ordndos (,), R El

Leia mais

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado.

PSICROMETRIA 1. É a quantificação do vapor d água no ar de um ambiente, aberto ou fechado. PSICROMETRIA 1 1. O QUE É? É a quantificação do vapor d água no ar d um ambint, abrto ou fchado. 2. PARA QUE SERVE? A importância da quantificação da umidad atmosférica pod sr prcbida quando s qur, dntr

Leia mais

REGULAMENTO DE INSTALAÇÃO E FUNCIONAMENTO DOS ESTABELECIMENTOS DE HOSPEDAGEM No u s o d a c o mp e t ê n c i a p r e v i s t a al í n e a v ) d o n. º 1 d o ar t i g o 64º d o De c r e t o -Le i n. º 1

Leia mais

RESULTADOS DA PESQUISA DE SATISFAÇÃO DO USUÁRIO EXTERNO COM A CONCILIAÇÃO E A MEDIAÇÃO

RESULTADOS DA PESQUISA DE SATISFAÇÃO DO USUÁRIO EXTERNO COM A CONCILIAÇÃO E A MEDIAÇÃO RESULTADOS DA PESQUISA DE SATISFAÇÃO DO USUÁRIO EXTERNO COM A CONCILIAÇÃO E A MEDIAÇÃO 1. RESULTADOS QUESTIONÁRIO I - PARTES/ CONCILIAÇÃO 1.1- QUESTIONÁRIO I - PARTES/ CONCILIAÇÃO: AMOSTRA REFERENTE AS

Leia mais

APONTAMENTOS PRÁTICOS PARA OFICIAIS DE JUSTIÇA

APONTAMENTOS PRÁTICOS PARA OFICIAIS DE JUSTIÇA ESQUEMA PRÁTICO ) Prazo Máximo Duração do Inquérito 2) Prazo Máximo Duração do Sgrdo d Justiça 3) Prazo Máximo Duração do Sgrdo d Justiça quando stivr m causa a criminalidad rfrida nas al.ªs i) a m) do

Leia mais

Cadastro Territorial Multifinalitário no planejamento e gestão territorial urbana

Cadastro Territorial Multifinalitário no planejamento e gestão territorial urbana Mundo Geo Connect Seminário Geotecnologia na Gestão Municipal Sessão Desafios para as Prefeituras: o CTM como instrumento de política fiscal e urbana São Paulo, 16 de junho de 2011 Cadastro Territorial

Leia mais

www.investorbrasil.com

www.investorbrasil.com Proposta curso preparatório para CPA 20 - ANBIMA www.investorbrasil.com Apresentação INVESTOR APRESENTAÇÃO A INVESTOR é uma escola que nasceu da necessidade das pessoas aprenderem as ferramentas e instrumentos

Leia mais

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto

Faculdade de Economia, Administração e Contabilidade de Ribeirão Preto Faculdade de Ecooma, Admstração e Cotabldade de Rberão Preto Ecooma Moetára Curso de Ecooma / º. Semestre de 014 Profa. Dra. Rosel da Slva Nota de aula CAPM Itrodução Há dos modelos bastate utlzados para

Leia mais

Gabarito Zero de Função

Gabarito Zero de Função Gabaito Zo d Fução Ecício : Um mlo é -, R A aiz ão od s dtmiada lo Método da Bissção oqu R. Tmos também qu muda d sial quado s aoima d. Ecício : Sja a aiz d. O método d Nwto-Raso od ão covgi s gad. [ U

Leia mais

Edital. V Mostra LEME de Fotografia e Filme Etnográficos e II Mostra LEME de Etnografia Sonora

Edital. V Mostra LEME de Fotografia e Filme Etnográficos e II Mostra LEME de Etnografia Sonora Edital V Mostra LEME d Fotografia Film Etnográficos 5º SEMINÁRIO DO LABORATÓRIO DE ESTUDOS EM MOVIMENTOS ÉTNICOS - LEME 19 a 21 d stmbro d 2012 Univrsidad Fdral do Rcôncavo da Bahia Cachoira-BA O 5º Sminário

Leia mais

TECNOLOGIA DE INFORMAÇÃO

TECNOLOGIA DE INFORMAÇÃO FUNDAÇÃO EDUCACIONAL DE ALÉM PARAÍBA INSTITUTO SUPERIOR DE EDUCAÇÃO NAIR FORTES ABU-MERHY TECNOLOGIA DE INFORMAÇÃO PLANEJAMENTO DO PARQUE TECNOLÓGICO 2011-2013 Tcnologia d Informação - FEAP 1 - Rlação

Leia mais

ÍNDICE DE THEIL Referência Obrigatória: Hoffman cap 4 pags 99 a 116 e cap 3 pgs (seção 3.4).

ÍNDICE DE THEIL Referência Obrigatória: Hoffman cap 4 pags 99 a 116 e cap 3 pgs (seção 3.4). Cetro de Polítcas Socas - Marcelo Ner ÍNDICE DE HEIL Referêca Obrgatóra: Hoffma cap 4 pags 99 a 6 e cap 3 pgs 42-44 (seção 3.4).. Coteúdo Iformatvo de uma mesagem Baseado a teora da formação, que aalsa

Leia mais

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita:

Em cada ciclo, o sistema retorna ao estado inicial: U = 0. Então, quantidade de energia W, cedida, por trabalho, à vizinhança, pode ser escrita: Máquinas Térmicas Para qu um dado sistma raliz um procsso cíclico no qual rtira crta quantidad d nrgia, por calor, d um rsrvatório térmico cd, por trabalho, outra quantidad d nrgia à vizinhança, são ncssários

Leia mais

2. A C l a s s i f i c a ção M S C 01 H i s t o r y a n d b i o g r a p h y 03 M a t h e m a t i c a l l o g i c a n d f o u n d a t i o n s 05 C o m

2. A C l a s s i f i c a ção M S C 01 H i s t o r y a n d b i o g r a p h y 03 M a t h e m a t i c a l l o g i c a n d f o u n d a t i o n s 05 C o m Áreas Científicas do Departamento de Matemática Docu mento de trab al h o 1. Introdução O D e p a r t a m e n t o d e M a t e m á t i c a e st á or g a n i z a d o e m q u a t r o S e c ç õ e s: S 8 1

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Facera 2007.1 Prof.: Luz Gozaga Damasceo 1 E-mals: damasceo1204@yahoo.com.br damasceo@terjato.com.br damasceo12@hotmal.com http://www. damasceo.fo www. damasceo.fo damasceo.fo Obs.: (1 Quado

Leia mais

Introdução aos estudos de instalações hidráulicas. Inicia-se considerando a instalação hidráulica denominada de instalação de

Introdução aos estudos de instalações hidráulicas. Inicia-se considerando a instalação hidráulica denominada de instalação de Introdução aos estudos de nstalações hdráulcas. Inca-se consderando a nstalação hdráulca denonada de nstalação de recalque reresentada ela oto a seur. Foto 1 1 Dene-se nstalação de recalque toda a nstalação

Leia mais

Streptococcus mutans, mas podem me

Streptococcus mutans, mas podem me Estação Saída Estação 1 - Olá moçada!! Mu nom é Strptococcus mutans, mas podm m chamar d Sr. Mutans. Vocês nm imaginam, mas u stou prsnt m uma part muito important do su corpo: a cavidad bucal!! Eu sou

Leia mais

Confirmação dos dados cadastrais + Alerta de Documentos + Confirmação do telefone

Confirmação dos dados cadastrais + Alerta de Documentos + Confirmação do telefone Tabla d Prços C PRODUTO Dscritivo Insumos Consultas d Balcão Consulta com imprssão d xtrato simplificado d rgistros, com composição idêntica à Dclaração Consumidor SóChqu Confirm PJ Confirmação dos dados

Leia mais

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão

LCE2112 Estatística Aplicada às Ciências Sociais e Ambientais 2010/02. Exemplos de revisão LCE Etatítca Aplcada à Cêca Soca e Ambeta 00/0 Eemplo de revão Varável Aleatóra Cotíua Eemplo: Para e etudar o comportameto de uma plata típca de dua, a Hydrocotlle p., quato ao eu deevolvmeto, medu-e

Leia mais

ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES

ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES ASSUNTO Nº 4 POLARIDADE INSTANTÂNEA DE TRANSFORMADORES 17 As associaçõs d pilhas ou batrias m séri ou parallo xigm o domínio d suas rspctivas polaridads, tnsõs corrnts. ALGUMAS SITUAÇÕES CLÁSSICAS (pilhas

Leia mais

Dinâmica Longitudinal do Veículo

Dinâmica Longitudinal do Veículo Dinâmica Longitudinal do Vículo 1. Introdução A dinâmica longitudinal do vículo aborda a aclração frnagm do vículo, movndo-s m linha rta. Srão aqui usados os sistmas d coordnadas indicados na figura 1.

Leia mais

Associação de Resistores e Resistência Equivalente

Associação de Resistores e Resistência Equivalente Associção d sistors sistêci Equivlt. Itrodução A ális projto d circuitos rqurm m muitos csos dtrmição d rsistêci quivlt prtir d dois trmiis quisqur do circuito. Além disso, pod-s um séri d csos práticos

Leia mais

LICENCIATURAS EM ECONOMIA E GESTÃO

LICENCIATURAS EM ECONOMIA E GESTÃO LCENCATURAS EM ECONOMA E GESTÃO ESTATÍSTCA - º TESTE - 4 DE ABRL DE 202 Resoda e folhas searadas ara cada gruo. Se ão fzer algu gruo, etregue e braco a folha resectva devdaete detfcada, ara efetos de cotrolo.

Leia mais

Agregação das Demandas Individuais

Agregação das Demandas Individuais Deanda Agregada Agregação da Deanda Indvdua A curva de deanda agregada é a oa horzontal da curva de deanda. Deve-e ter e ente que a deanda ndvdua (, ) ão ua função do reço e da renda. A, a curva de deanda

Leia mais

mediadores de seguros, bem como as regras do seguro autom el obrigat io5;

mediadores de seguros, bem como as regras do seguro autom el obrigat io5; PN 960.021: Ag. TC. Amarant; Ag.2: ; Ag.os: Em confr 麩 cia, no Tribunal da Rla 鈬 o do Po rto 1. A Ag. n 縊 s conformou com o dspacho plo qual foram havidos como parts ilg 咜 imas (por consguint, absolvidos

Leia mais

P PÓ P. P r r P P Ú P P. r ó s

P PÓ P. P r r P P Ú P P. r ó s P PÓ P P r r P P Ú P P r ó s P r r P P Ú P P ss rt çã s t à rs r t t r rt s r q s t s r t çã r str ê t çã r t r r P r r Pr r r ó s Ficha de identificação da obra elaborada pelo autor, através do Programa

Leia mais

Restricao Orcamentaria

Restricao Orcamentaria Fro the SelectedWorks of Sergio Da Silva January 008 Restricao Orcaentaria Contact Author Start Your Own SelectedWorks Notify Me of New Work Available at: htt://works.beress.co/sergiodasilva/5 Restrição

Leia mais

SIG Acesso Público. Manual do Usuário

SIG Acesso Público. Manual do Usuário SIG Acesso Público Manual do Usuário Brasília Dezembro de 2013 Sumário Apresentação......2 1. O que é o SIG Acesso Público?.........3 2. Para acessa r o Sistema............3 3. Conjuntos de Pesquisa de

Leia mais