PINDYCK & RUBINFELD, CAP 5; VARIAN, CAP.12

Tamanho: px
Começar a partir da página:

Download "PINDYCK & RUBINFELD, CAP 5; VARIAN, CAP.12"

Transcrição

1 Escolha sob Icrtza PINDYCK & RUBINFELD, CAP 5; VARIAN, CAP. OBS.: ESTAS NOTAS DE AULA NÃO FORAM SUBMETIDAS A REVISÃO, TENDO COMO ÚNICA FINALIDADE A ORIENTAÇÃO DA APRESENTAÇÃO EM CLASSE. COMENTÁRIOS SÃO BEM VINDOS E PODEM SER ENVIADOS A REPRODUÇÃO SOB QUAISQUER MEIOS OU DISTRIBUIÇÃO PROIBIDA SEM AUTORIZAÇÃO PRÉVIA DO AUTOR. Rolad Saldaha Pága 9/04/004

2 INTRODUÇÃO o Icrtza x Rsco - Prob. Subjtva Objtva: classcação duvdosa o Graldad da Hóts da Maxzação da Utldad: As ras axza a utldad lbrar do Axoa do Idvdualso Mtodológco (Buchaa, 984) o Savag: Eoqu das Probabldads Pssoas ou Subjtvas (rsoal robablts) : os dvíduos ag coo s ls assocass utldads b ddas (ão robablístcas) a todo vto qu ossa acotcr, ou, qu ls assoca robabldads b ddas ara todo vto (, ortato, utldad) qu ossa ocorrr. o Estados do Mudo S, S, S 3,..., S. o Rlação tr Estados do Mudo a Varávl Ecoôca V=g(S) o Rlação tr a Utldad a Varávl Ecoôca U = (V) o Rlação tr Estados do Mudo a Utldad U=(g(S))=k(S) Utldad Esrada o Utldad Esrada: S a utldad dd d vtos altratvos assocados a dtradas robabldads (ssoas), suõ-s qu os agts coôcos axza a Utldad Esrada: Méda das Utldads assocadas a cada vto ossívl, odrada las robabldads d ocorrêca d cada vto altratvo. Evtos Altratvos são, o Vara, Estados d Mudo (Stats o th World) altratvos. As scolhas qu dd d stados do udo altratvos são scolhas cotgts. Rolad Saldaha Pága 9/04/004

3 Dscrvdo o Rsco: o Covêca (as ão cssdad) d trabalhar co rdas altratvas U(V), od V é a rda otára, ara rços rlatvos costat, tabé a rda ral. o Valor Esrado = Valor édo, odrado las robabldads E ( V ) = V = V co, = o Varabldad: Dsvo Médo D ( V ) = ( V V ) o Probla co os D : os dsvos ostvos cosa os dsvos gatvos dstorcdo avalação do rsco assocado. Varâca Dsvo Padrão ( a ) = ( V V ) ( V ) = D ( V ) D a ( V ) = ( V V ) Rsco x Rtoro: Escolha sob Icrtza o As ossbldads são dscrtas las drts lotras, cobaçõs altratvas tr rsco rtoro dsoívs. Mas Rolad Saldaha Pága 3 9/04/004

4 Ecooa, ara tdr as scolhas é sr cssáro cotrastar dsjos ossbldads. o Dsjos sob crtza: Utldad Esrada E ( U ( V )) = U ( V ) = U ( V ) o S a Utldad Margal da Rda or ostva: du ( V ) = U V ( ) > 0 o Os agts sr rrrão ua rda aor a ua rda or. Ocorr qu sto val ara rdas crtas. S houvr crtza, a scolha rcsa clur o rsco, é cssáro trabalhar co a utldad srada. o Pod-s suor, coo ara a rda crta, qu todo dvíduo rr ua rda srada aor a ua rda srada or, ou sja, qu a du ( V ) Utldad Esrada auta co a rda srada = U ( V ) > 0 o Ocorr qu a utldad srada é ua éda odrada das utldads assocadas a cada stado do udo altratvo Das ossbldads, quado o vto s cocrtzar, sot ua ocorrrá d ato. Ass, é cssáro sabr coo os agts s oscoa co rlação aos ossívs dsvos d rda: o agt é drt a rcbr R$0 co crtza a tr ua rda srada (as crta) d R$0; ou l rr R$0 co crtza a R$0 srado (od sr as ou os do qu R$0); ou, ada, rr R$0 srado a R$0 co crtza? o Para vsualzar sta qustão é covt trabalhar co a oção d quvalt crtza, ou sja, qual a utldad assocada lo agt à rda R$x, caso rcbda co crtza, coarar a utldad do quvalt crtza co a utldad assocada a ua rda srada d R$x. Rolad Saldaha Pága 4 9/04/004

5 o Gracat, o quvalt crtza é obtdo rojtado o valor srado da rda a ução utldad. S a utldad do quvalt crtza or aor do qu a utldad srada ara dtrada lotra, dz-s qu o agt é avsso ao rsco. S or guas, dz-s qu o agt é drt ao rsco. S a utldad do quvalt crtza or or qu a utldad srada, o agt é dto aat do rsco. o Algbrcat: o Mostrar qu d U d U d U ( V ) ( V ) ( V ) = U V = U V = U V ( ) < 0 ( ) = 0 ( ) > 0 agt avsso ao rsco agt drt ao rsco agt aat do rsco o É sls rcbr agora qu sot agts avssos ao rsco stão dsostos a azr sguros. Qual o rêo d rsco áxo qu stão dsostos a agar? o Coo ora as sguradoras? L dos Grads Núros. o Maras d s rotgr do Rsco: Dvrscação, Sguros, Ivstto Ioração o Probla do uso d gostos drts ara xlcar coortatos drts Ecooa: Ds Gustbus No Est Dsutadu. Dada or sguros: o Suoha u agt avsso ao rsco (aqul qu az sguros). A rguta é: qual o valor áxo qu l stara dsosto a agar ara dxar d corrr o rsco (o qu corrsod a rcbr da sguradora a drça tr a rda o vto dsavorávl a rda srada, s o vto dsavorávl acotcr)? Rolad Saldaha Pága 5 9/04/004

6 o Solução: S há rsco, a rda do dvíduo od varar, dddo da ocorrêca d vtos crtos. Cosdr o valor srado da utldad ara st agt: E( U ( V )) = U ( V ) = U ( V ) rocur, a ução utldad, o valor da rda (crta) qu gra a sa satsação, ou sja, ach o V tal qu U (V)=U(V ). Etão, s o agt ão gosta do rsco agar até V-V ara dxar d corrr o rsco: o s o vto dsavorávl acotcr, l rcbrá o sguro trá ua rda d V ds +(V-V ds )-(V-V )=V, ou sja, sua utldad srá, o ío (s ocorrr o vto dsavorávl ), gual à utldad do rcbto do valor srado, co crtza. (V-V ds ) é o valor ago la sguradora, (V-V ) é o rêo d rsco, o valor áxo qu o agt stá dsosto a agar ara dxar d corrr o rsco d rcbr os qu o valor srado. Maras d s rotgr do Rsco: o Dvrscação: ão colocar todos os ovos ua sa csta o Sguros: agar ara dxar d corrr o rsco, assar o rsco ara outros. o Ivstto Ioração: rduzr a crtza - Ivstr Ioração até o oto qu o Bíco Margal Esrado = Custo Margal o Not qu as sguradoras, vstdo oraçõs arovtado-s da L dos Grads Núros, od star co rlatva rcsão quatos sstros trão d agar, adcoado sus custos adstratvos, dtra os custos orc sus srvços. o Por qu as sguradoras orc srvços adcoas, to dscotos stacoatos? o Por qu as sguradoras cobra raquas? Dada Por Atvos d Rsco: o Atvos d rsco são atvos co rtoros crtos, xlo tíco as açõs bolsa. Quado s cora u dsts atvos ão s sab, ao crto, qual o rtoro a sr obtdo. No to d alta lação, a varâca a volução dos rços bcava atvos ós-xados, ou Rolad Saldaha Pága 6 9/04/004

7 sja, aquls cujo rtoro ral é cohcdo d íco, as ão o oal. o O odlo as cohcdo ara tdr a dcsão d scolha d atvos co rsco, a vrdad u odlo qu rocura dtrar quas atvos s scolh ara coor ua cartra d atvos co drts ívs d rsco é o CAPM (Catal Asst Prcg Modl), o odlo d rccação d atvos. Est odlo o dsvolvdo lo Nobl Ecooa Wlla Shar (964) ada qu tabé sja atrbuído a Joh Ltr (965). o Cosdr dos atvos: Atvo Lvr d Rsco - rtoro srado = R Atvo co Rsco - rtoro srado = R - rtoro obsrvado = r - rtoro obsrvado = r o Suoha qu o agt só od vstr sts dos atvos: coo coor a cartra? o Sja R o rtoro srado da cartra b a roorção dos atvos co rsco a cartra, tão: R = br + ( b) R o Not qu s b = 0, R = R o Calcul, agora, a varâca da cartra: = [ R E( R )] = [ br + ( b) R br ( b) R ] = b( R r ) [ ] = = b [ R r ] = b o Not qu s usou os atos: E(b )= b R = r o Usado a quação aca tros d dsvos adrõs ( = ): z z Rolad Saldaha Pága 7 9/04/004

8 = b b = o, substtudo a quação ara R : R R ou = = R R + + ( ) R ( R R ) o Itrrtar Itrcto Iclação o Curva d drça rsco x rtoro ara agts avssos ao rsco. o Prguta tíca d rova: U agt avsso ao rsco ão cora açõs bolsa, são uto arrscadas (V/F Por quê?) Prgutas o Todos do Caítulo 5 do Pdyck & Rubld. Bblograa Buchaa, Jas. Exloratos Costtutoal Ecoocs. USA: Txas A&M Uvrsty Prss, 986. Eato, B. Curts, ad Da E. Eato. Mcrocooa. Brasl: Sarava, 999 (995). Pdyck, R. & Rubld, D. Mcrocooa, Makro Books, São Paulo, 993. Vara, Hal R., Mcrocooa: Prcíos Báscos, d. Caus, 999. Rolad Saldaha Pága 8 9/04/004

Código PE-ACSH-2. Título:

Código PE-ACSH-2. Título: CISI Ctro Itrção Srvços Iformtc rão Excução Atv Itr o CISI Cóo Emto por: Grêc o Stor 1. Objtvo cmpo plcção Est ocumto tm como fl fr o prão brtur chmos suport o CISI. A brtur chmos é rlz o sstm hlpsk, qu

Leia mais

A B LM. A onde Y Y ; P. P P, no PONTO. T o que provocará um C 0. T 0 desloca curva IS para a direita IS IS

A B LM. A onde Y Y ; P. P P, no PONTO. T o que provocará um C 0. T 0 desloca curva IS para a direita IS IS Gabarto Blachard Capítulo 7 2) Choqu d gasto médo prazo MODELO AD AS (OA-DA) Rdução do Imposto d Rda (T): C c c T 0 0 c 0 - cosumo autôomo c - propsão margal a cosumr T 0 dsloca curva IS para a drta Dado

Leia mais

CAPÍTULO 9 CORRELAÇÃO E REGRESSÃO

CAPÍTULO 9 CORRELAÇÃO E REGRESSÃO CAPÍTULO 9 CORRELAÇÃO E REGRESSÃO Exst um cojuto d métodos statístcos qu vsam studar a assocação tr duas ou mas varávs alatóras. Dtr tas métodos, a tora da rgrssão corrlação ocupa um lugar d dstaqu por

Leia mais

Capitulo 5 Resolução de Exercícios

Capitulo 5 Resolução de Exercícios Captulo 5 Rsolução Exrcícos FORMULÁRIO Dscoto Racoal Smpls D ; D ; ; D R R R R R R Dscoto Comrcal Smpls D ; ; D C C C C Dscoto Bacáro Smpls D s ; s ; D b b b b s Db ; b Rlaçõs tr o Dscoto Racoal Smpls

Leia mais

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T)

Anexo III Temperatura equivalente de ruído, Figura de ruído e Fator de mérito para estações de recepção (G/T) Axo III mpratura quivalt d ruído, igura d ruído ator d mérito para staçõs d rcpção (/) III.. mpratura Equivalt d Ruído A tmpratura quivalt d ruído d um compot pod sr dfiida como sdo o valor d tmpratura

Leia mais

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia

PROVA DE MATEMÁTICA APLICADA VESTIBULAR 2013 - FGV CURSO DE ADMINISTRAÇÃO RESOLUÇÃO: Profa. Maria Antônia C. Gouveia PROVA DE MATEMÁTICA APLICADA VESTIBULAR 013 - FGV CURSO DE ADMINISTRAÇÃO Profa. Maria Antônia C. Gouvia 1. A Editora Progrsso dcidiu promovr o lançamnto do livro Dscobrindo o Pantanal m uma Fira Intrnacional

Leia mais

C. Almeida (1987) Determinação da transmissividade e coeficiente de armazenamento por ensaios de recuperação

C. Almeida (1987) Determinação da transmissividade e coeficiente de armazenamento por ensaios de recuperação C. Almda (1987 Dtrmação da tramvdad cofct d armazamto or ao d rcuração Hdrogologa y Rcuro Hdráulco, t. XII,. 689-694. IV IMPOIO DE HIDROGEOLOGÍA ALMEIDA, Carlo DEERMINAÇÃO DE RANMIIVIDADE E COEFICIENE

Leia mais

Capitulo 4 Resolução de Exercícios

Capitulo 4 Resolução de Exercícios FORMULÁRIO i Taxa Proporcioal ou quivalt (juros simpls) i k Taxas Equivalts (juros compostos) 3 i i i i i i i 4 6 360 a s q t b m d Taxa Eftiva Nomial k i i p ao príodo d capitalização ; i k Taxa Ral Taxa

Leia mais

Curso: Engenharia Industrial Elétrica. Análise de variáveis Complexas MAT 216 Turma: 01

Curso: Engenharia Industrial Elétrica. Análise de variáveis Complexas MAT 216 Turma: 01 urso: Egharia Idustrial Elétrica Aális d variávis omplas MAT 6 Profssora: Edmary S B Araújo Turma: Lista d Provas Rspodu Jsus: Em vrdad, m vrdad t digo: qum ão ascr da água do Espírito ão pod trar o rio

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS.

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS. PRINCIPAIS DISTRIBUIÇÕES DISCRETAS 1 Uifor Discrta: ocorr quado cada u dos valors possävis d ua va discrta t sa probabilidad 1 P ),,, ), i = 1,, i 1, i i i E ) 1 i Var ) 1 E ) fda: F ) P ) P i ), i od

Leia mais

Exercícios de Cálculo Numérico - Erros

Exercícios de Cálculo Numérico - Erros Ercícios d Cálculo Numérico - Erros. Cosidr um computador d bits com pot máimo ( a rprstação m aritmética lutuat a bas. (a Dtrmi o mor úmro positivo rprstávl sta máquia a bas. (b Dtrmi o maior úmro positivo

Leia mais

FACULDADES UNIFICADAS DA. Curso de Direito Escritório de Assistência Jurídica Registro OAB 6614 DA F UNDAÇ Ã O EDUCACIONAL DE B ARRETOS

FACULDADES UNIFICADAS DA. Curso de Direito Escritório de Assistência Jurídica Registro OAB 6614 DA F UNDAÇ Ã O EDUCACIONAL DE B ARRETOS FACULDADES UNIFICADAS DA FUNDAÇÃO EDUCACIONAL DE BARRETOS Curso de Direito Escritório de Assistência Jurídica Registro OAB 6614 REGULAMENTO DO NÚ CLEO DE PRÁ TICA JURÍ DICA DA F UNDAÇ Ã O EDUCACIONAL DE

Leia mais

Transistor Bipolar de Junção TBJ Cap. 4 Sedra/Smith Cap. 7 Boylestad Cap. 9 Malvino

Transistor Bipolar de Junção TBJ Cap. 4 Sedra/Smith Cap. 7 Boylestad Cap. 9 Malvino Tanssto Bpola d Junção TBJ Cap. 4 Sda/Sth Cap. 7 Boylstad Cap. 9 Malno Análs Pqunos Snas Notas d Aula SEL 313 Ccutos Eltôncos 1 Pat 5 1 o S/2016 Pof. Manol Modlos Pqunos Snas do TBJ Tas odlos são úts paa

Leia mais

Lista de exercícios sugerida Capítulo 28: 28.4,.12, 13, 14, 15, 16, 19, 20, 21, 33, 35, 38, 42, 43, 52

Lista de exercícios sugerida Capítulo 28: 28.4,.12, 13, 14, 15, 16, 19, 20, 21, 33, 35, 38, 42, 43, 52 CAPÍUO 8 9: Física Quâtica Atôica RSOUÇÃO D XRCÍCIOS RVISÃO SIMUADO PARA A PROVA ista d rcícios sugrida Capítulo 8: 8.,., 3,, 5, 6, 9,,, 33, 35, 38,, 3, 5 ista d rcícios sugrida Capítulo 9: 9.,, 7, 9,,

Leia mais

R F. R r. onde: F = 1 fóton/(cm 2 s) = 10 4 fótons/(m 2 s) λ R hc

R F. R r. onde: F = 1 fóton/(cm 2 s) = 10 4 fótons/(m 2 s) λ R hc Prob. : Ua lâada d sódo co oênca P W rrada nrga ( 589 n) unorn odas as drçõs. Quanos óons or sgundo (R) são dos la lâada? b) A qu dsânca da lâada ua la oaln absorn absor óons à razão (ou luo: F) d, óon/(c

Leia mais

Matemática Financeira

Matemática Financeira Cocetos Báscos de Matemátca Facera Uversdade do Porto Faculdade de Egehara Mestrado Itegrado em Egehara Electrotécca e de Computadores Ecooma e Gestão Na prátca As decsões faceras evolvem frequetemete

Leia mais

Capítulo 4 EQUAÇÃO DA ENERGIA PARA REGIME PERMANENTE

Capítulo 4 EQUAÇÃO DA ENERGIA PARA REGIME PERMANENTE Caítulo EUÇÃO EEI P EIE PEEE t caítulo o liro difrncia- batant d todo o outro obr o aunto. Coo já foi fito rlação à quação da continuidad no Caítulo, rtrin- a quação a alicaçõ ri rannt. oant, a auência

Leia mais

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc.

Estatística II. Aula 8. Prof. Patricia Maria Bortolon, D. Sc. Estatística II Aula 8 Pro. Patricia Maria Bortolon, D. Sc. Tsts Qui Quadrado Objtivos da Aula 8 Nsta aula, você aprndrá: Como quando utilizar o tst qui-quadrado para tablas d contingência Como utilizar

Leia mais

Variáveis aleatórias Conceito de variável aleatória

Variáveis aleatórias Conceito de variável aleatória Variávis alatórias Muitos primtos alatórios produzm rsultados ão-uméricos. Ats d aalisá-los, é covit trasformar sus rsultados m úmros, o qu é fito através da variávl alatória, qu é uma rgra d associação

Leia mais

(1) Raízes n-ésimas. r cos. nϕ = θ + 2kπ; k = 0, 1, 2, 3, 4,... ρ n cos nϕ = r cos θ ρ n = r ρ= (r) 1/n. Portanto:

(1) Raízes n-ésimas. r cos. nϕ = θ + 2kπ; k = 0, 1, 2, 3, 4,... ρ n cos nϕ = r cos θ ρ n = r ρ= (r) 1/n. Portanto: Raís -ésmas A ra -ésma d um úmro complxo s é o complxo s Vamos vr qu os complxos possum raís dfrts!!! Em coordadas polars: s r cos θ s θ ρ cos ϕ s ϕ Aplcado Movr trmos: r cos θ s θ ρ cos ϕ s ϕ Portato:

Leia mais

Cálculo IV EP7 Tutor

Cálculo IV EP7 Tutor Fundação ntro d iências Educação Suprior a Distância do Estado do Rio d Janiro ntro d Educação Suprior a Distância do Estado do Rio d Janiro álculo IV EP7 Tutor Ercício 1: Us a intgral d linha para ncontrar

Leia mais

Fluxo de caixa em condições de risco

Fluxo de caixa em condições de risco JUL. AGO. SET. 5 ANO XI, Nº 4 9-4 INTEGRAÇÃO 9 Fluxo d caixa m codiçõs d risco ANTONIO SCORCIAPINO* Rsumo Est trabalho tm como obtivo mostrar algus métodos d avaliação d rotos, or mio d fluxos d caixa,

Leia mais

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES

ONDAS ELETROMAGNÉTICAS EM MEIOS CONDUTORES LTROMAGNTISMO II 3 ONDAS LTROMAGNÉTICAS M MIOS CONDUTORS A quação d onda dduida no capítulo antrior é para mios sm prdas ( = ). Vamos agora ncontrar a quação da onda m um mio qu aprsnta condutividad não

Leia mais

CAP RATES, YIELDS E AVALIAÇÃO DE IMÓVEIS pelo método do rendimento

CAP RATES, YIELDS E AVALIAÇÃO DE IMÓVEIS pelo método do rendimento CAP RATES, YIELDS E AALIAÇÃO DE IMÓEIS pelo étodo do rendento Publcado no Confdencal Iobláro, Março de 2007 AMARO NAES LAIA Drector da Pós-Graduação de Gestão e Avalação Ioblára do ISEG. Docente das caderas

Leia mais

EPUSP-PQI-3104 a8 2/10 /17 misturas não ideais aantunha Pag. 1 de 14 Termodinâmica e Operações Unitárias

EPUSP-PQI-3104 a8 2/10 /17 misturas não ideais aantunha Pag. 1 de 14 Termodinâmica e Operações Unitárias PUP-PQI-34 a8 / /7 isturas não idais aantunha Pag. d 4 rodinâica Oraçõs Unitárias PUP-PQI-34 a8 / /7 isturas não idais aantunha Pag. d 4 No quacionanto d 3 stados/corrnts binários, isobáricos, quiantos/stágios

Leia mais

Exemplo um: Determinar a distribuição da variável Y = 3X, dada a distribuição de X da tabela:

Exemplo um: Determinar a distribuição da variável Y = 3X, dada a distribuição de X da tabela: Prof. Lorí Viali, Dr. UFRGS Istituto d Matmática - D partam to d Estatística Sja X uma variávl alatória discrta com fp p(x i ). Sja Y f(x). S X for moótoa, tão i f(x i ), od x i são os valors d X, com

Leia mais

Estratégico. III Seminário de Planejamento. Rio de Janeiro, 23 a 25 de fevereiro de 2011

Estratégico. III Seminário de Planejamento. Rio de Janeiro, 23 a 25 de fevereiro de 2011 Estratégico III Seminário de Planejamento Rio de Janeiro, 23 a 25 de fevereiro de 2011 G es tão Em pre sa rial O rie nta ção pa ra om erc ado Ino vaç ão et

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Eam Fial d ª Época m d Jairo 9 Tópicos d Corrcção Duração: horas miutos É proibido usar máquias d calcular ou tlmóvis

Leia mais

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000

, onde F n é uma força de tracção e d o alongamento correspondente. F n [N] -1000 -2000 º Tst d CONTROLO DE SISTEMS (TP E PRO) Licciatura m Eg.ª Mcâica Prof. Rsposávl: Pdro Maul Goçalvs Lourti d bril d 00 º Smstr Duração: hora miutos. Tst com cosulta. Rsolução. Cosidr o sistma rprstado a

Leia mais

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre

Faculdade de Economia Universidade Nova de Lisboa EXAME DE CÁLCULO I. Ano Lectivo º Semestre Faculdad d Ecoomia Uivrsidad Nova d Lisboa EXAME DE CÁLCULO I Ao Lctivo 8-9 - º Smstr Eam Fial d ª Época m d Jairo 9 Tópicos d Corrcção Duração: horas miutos É proibido usar máquias d calcular ou tlmóvis

Leia mais

6. Inferência para Duas Populações USP-ICMC-SME 2013

6. Inferência para Duas Populações USP-ICMC-SME 2013 6. Iferêca ara Duas Poulações UP-ICMC-ME 3 8.. Poulações deedetes co dstrbução oral Poulação Poulação,,,, ~ N, ~ N, ~ N, Obs. e a dstrbução de e/ou ão for oral, os resultados são váldos aroxadaete. Testes

Leia mais

O que são dados categóricos?

O que são dados categóricos? Objtivos: Dscrição d dados catgóricos por tablas gráficos Tst qui-quadrado d adrência Tst qui-quadrado d indpndência Tst qui-quadrado d homognidad O qu são dados catgóricos? São dados dcorrnts da obsrvação

Leia mais

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados

CAPÍTULO III. Aproximação de funções pelo método dos Mínimos Quadrados Métodos Nuércos CAPÍULO III C. Balsa & A. Satos Aproxação de fuções pelo étodo dos Míos Quadrados. Algus cocetos fudaetas de Álgebra Lear Relebraos esta secção algus cocetos portates da álgebra Lear que

Leia mais

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas

30/09/2015. Distribuições. Distribuições Discretas. p + q = 1. E[X] = np, Var[X] = npq DISTRIBUIÇÃO BINOMIAL. Contínuas. Discretas Dstrbuçõs Dscrtas Dstrbuçõs 30/09/05 Contínuas DISTRIBUIÇÃO DE PROBABILIDADE Dscrtas DISTRIBUIÇÃO BIOMIAL Bnomal Posson Consdramos n tntatvas ndpndnts, d um msmo prmnto alatóro. Cada tntatva admt dos rsultados:

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

Teoria dos Jogos. Prof. Maurício Bugarin ECO/UnB 2013-I. Aula 09-Parte 2 Teoria dos Jogos Maurício Bugarin

Teoria dos Jogos. Prof. Maurício Bugarin ECO/UnB 2013-I. Aula 09-Parte 2 Teoria dos Jogos Maurício Bugarin Toria dos Jogos Prof. Maurício Bugarin CO/UnB -I Aula 9-Part Toria dos Jogos Maurício Bugarin Cap.. Jogos Dinâmicos com Informação Complta Rotiro Capítulo. Jogos Dinâmicos com Informação Complta.. Jogos

Leia mais

SISTEMA DE PONTO FLUTUANTE

SISTEMA DE PONTO FLUTUANTE Lógica Matmática Computacional - Sistma d Ponto Flutuant SISTEM DE PONTO FLUTUNTE s máquinas utilizam a sguint normalização para rprsntação dos númros: 1d dn * B ± 0d L ond 0 di (B 1), para i = 1,,, n,

Leia mais

NR-35 TRABALHO EM ALTURA

NR-35 TRABALHO EM ALTURA Sgurança Saúd do Trabalho ao su alcanc! NR-35 TRABALHO EM ALTURA PREVENÇÃO Esta é a palavra do dia. TODOS OS DIAS! PRECAUÇÃO: Ato ou fito d prvnir ou d s prvnir; A ação d vitar ou diminuir os riscos através

Leia mais

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas

Cálculo Numérico. Integração Numérica. Prof: Reinaldo Haas Cálculo Numérico Intgração Numérica Pro: Rinaldo Haas Intgração Numérica Em dtrminadas situaçõs, intgrais são diícis, ou msmo impossívis d s rsolvr analiticamnt. Emplo: o valor d é conhcido apnas m alguns

Leia mais

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x

Definição de Área entre duas curvas - A área A entre região limitada pelas curvas. x onde f e g são contínuas e x g x Aula Capítulo 6 Aplicaçõs d Intração (pá. 8) UFPA, d junho d 5 Ára ntr duas curvas Dinição d Ára ntr duas curvas - A ára A ntr rião limitada plas curvas a y plas rtas a,, é ond são contínuas A a d y para

Leia mais

sen( x h) sen( x) sen xcos h sen hcos x sen x

sen( x h) sen( x) sen xcos h sen hcos x sen x MAT00 Cálculo Difrcial Itgral I RESUMO DA AULA TEÓRICA Livro do Stwart: Sçõs 3., 3.4 3.8. DEMONSTRAÇÕES Nssa aula srão aprstadas dmostraçõs, ou sboços d dmostraçõs, d algus rsultados importats do cálculo

Leia mais

Álgebra. Matrizes. . Dê o. 14) Dada a matriz: A =.

Álgebra. Matrizes.  . Dê o. 14) Dada a matriz: A =. Matrizs ) Dada a matriz A = Dê o su tipo os lmntos a, a a ) Escrva a matriz A, do tipo x, ond a ij = i + j ) Escrva a matriz A x, ond a ij = i +j ) Escrva a matriz A = (a ij ) x, ond a ij = i + j ) Escrva

Leia mais

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos

( k) Tema 02 Risco e Retorno 1. Conceitos Básicos FEA -USP Graduação Cêcas Cotábes EAC05 04_0 Profa. Joaíla Ca. Rsco e Retoro. Cocetos Báscos Rotero BE-cap.6 Tema 0 Rsco e Retoro. Cocetos Báscos I. O que é Retoro? II. Qual é o Rsco de um Atvo Idvdual

Leia mais

o bje tiv o f in a l d o C oa c h in g é fa z e r c o m qu e o s c lie n te s t o rn e m -s e a u tô no m o s.

o bje tiv o f in a l d o C oa c h in g é fa z e r c o m qu e o s c lie n te s t o rn e m -s e a u tô no m o s. O r ie n ta ç õ e s In i ci ai s E u, R ic k N e ls o n - P e rs on a l & P rof e s s io n al C o a c h - a c re dito qu e o o bje tiv o f in a l d o C oa c h in g é fa z e r c o m qu e o s c lie n te

Leia mais

dy dx dy dx Obs.: a forma canônica pode ser obtida da forma geral dividindo-se a equação geral por a 0 , desde que a ( x) 0 no intervalo x ( a,b)

dy dx dy dx Obs.: a forma canônica pode ser obtida da forma geral dividindo-se a equação geral por a 0 , desde que a ( x) 0 no intervalo x ( a,b) 3 EQUAÇÕES DIFEENIAIS INEAES 3 Toria Gral Estas quaçõs são uito iortats, ois são alicadas à Egharia ara rsolvr roblas d vibraçõs câicas, circuitos létricos, tc Escial atção srá dada às quaçõs d sguda ord

Leia mais

NOTA SOBRE INDETERMINAÇÕES

NOTA SOBRE INDETERMINAÇÕES NOTA SOBRE INDETERMINAÇÕES HÉLIO BERNARDO LOPES Rsumo. Em domínios divrsos da Matmática, como por igual nas suas aplicaçõs, surgm com alguma frquência indtrminaçõs, d tipos divrsos, no cálculo d its, sja

Leia mais

Fundação Escola Técnica Liberato Salzano Vieira da Cunha Curso de Eletrônica Eletrônica de Potência Prof. Irineu Alfredo Ronconi Junior

Fundação Escola Técnica Liberato Salzano Vieira da Cunha Curso de Eletrônica Eletrônica de Potência Prof. Irineu Alfredo Ronconi Junior Fundação Escola écnica Librato Salzano Viira da Cunha Curso d Eltrônica Eltrônica d Potência Prof. Irinu Alfrdo onconi Junior Introdução: O rsnt txto dvrá tratar d uma art da Eltrônica conhcida como Eltrônica

Leia mais

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL)

4.1 Método das Aproximações Sucessivas ou Método de Iteração Linear (MIL) 4. Método das Aproimaçõs Sucssivas ou Método d Itração Linar MIL O método da itração linar é um procsso itrativo qu aprsnta vantagns dsvantagns m rlação ao método da bisscção. Sja uma função f contínua

Leia mais

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo

2 x. ydydx. dydx 1)INTEGRAIS DUPLAS: RESUMO. , sendo R a região que. Exemplo 5. Calcule integral dupla. xda, no retângulo Intgração Múltipla Prof. M.Sc. Armando Paulo da Silva UTFP Campus Cornélio Procópio )INTEGAIS DUPLAS: ESUMO Emplo Emplo Calcul 6 Calcul 6 dd dd O fato das intgrais rsolvidas nos mplos srm iguais Não é

Leia mais

Transformador Monofásico

Transformador Monofásico Trasformador Moofásico. Cocito O trasformador (TR) é um quipamto qu rcb rgia létrica com uma tsão uma corrt forc ssa rgia, a mos das prdas, m outra tsão outra corrt. A frqüêcia létrica s matém ialtrada.

Leia mais

TEOREMA DE TAYLOR 2! 1 1. (n) n (n 1) 0 + f x0 x x0 + f (c) x

TEOREMA DE TAYLOR 2! 1 1. (n) n (n 1) 0 + f x0 x x0 + f (c) x (Tóp. Tto Complmta) TEOREMA DE TAYLOR TEOREMA DE TAYLOR S uma ução suas pimias divadas istm um itvalo abto I cotdo, sgu-s do toma do valo médio galizado (dado o tópico dsta aula), substituido a ou b po,

Leia mais

Transistores Bipolares de Junção Parte II Transistores Bipolares de Junção (TBJs) Parte II

Transistores Bipolares de Junção Parte II Transistores Bipolares de Junção (TBJs) Parte II ansstos Bpolas d Junção Pat ansstos Bpolas d Junção (BJs) Pat apítulo 4 d (SDA SMH, 1996). SUMÁO 4.7. O anssto oo Aplfado 4.8. Modlos qualnts paa Pqunos Snas 4.9. Análs Gáfa 4.7. O ANSSO OMO AMPLFADO Paa

Leia mais

RESULTADOS DA PESQUISA DE SATISFAÇÃO DO USUÁRIO EXTERNO COM A CONCILIAÇÃO E A MEDIAÇÃO

RESULTADOS DA PESQUISA DE SATISFAÇÃO DO USUÁRIO EXTERNO COM A CONCILIAÇÃO E A MEDIAÇÃO RESULTADOS DA PESQUISA DE SATISFAÇÃO DO USUÁRIO EXTERNO COM A CONCILIAÇÃO E A MEDIAÇÃO 1. RESULTADOS QUESTIONÁRIO I - PARTES/ CONCILIAÇÃO 1.1- QUESTIONÁRIO I - PARTES/ CONCILIAÇÃO: AMOSTRA REFERENTE AS

Leia mais

Missa Ave Maris Stella

Missa Ave Maris Stella Missa Av Maris Stlla Para coro a calla a quatro vozs SATB Notas sobr a comosição A rsnt comosição constituis a artir d um ordinário da missa m latim ara coro a quatro vozs a calla, sm divisi Sorano, Alto,

Leia mais

CONTRATO Nº 229/ 2014

CONTRATO Nº 229/ 2014 CONTRATO Nº 229/ 2014 Prestação de Serviços de Consultoria especializada em gestão na área de planejamento estratégico e mapeamento de processos. Que fazem entre si de um lado a Prefeitura Municipal de

Leia mais

Leonardo da Vinci ( ), artista, engenheiro e cientista italiano

Leonardo da Vinci ( ), artista, engenheiro e cientista italiano ormas dos rabalhos Vrtuas Itrodução Loardo da Vc (45-59), artsta, ghro ctsta talao Aplcou oçõs do prcípo dos dslocamtos vrtuas para aalsar o qulíbro d sstmas d polas alavacas PEF-40 Prof. João Cyro Adré

Leia mais

1. A cessan do o S I G P R H

1. A cessan do o S I G P R H 1. A cessan do o S I G P R H A c esse o en de reç o w w w.si3.ufc.br e selec i o ne a o p ç ã o S I G P R H (Siste m a I n te g ra d o de P la ne ja m e n t o, G estã o e R e c u rs os H u m a n os). Se

Leia mais

MÃE. M esmo q u e o s eu f ilho j á t enha sido regi strad o procu r e o cartóri o d e R egi stro Civil de

MÃE. M esmo q u e o s eu f ilho j á t enha sido regi strad o procu r e o cartóri o d e R egi stro Civil de APRESENTAÇÃO O T r i b u n a l d e J u st i ç a d e S ã o P a u l o d e s e n v o l ve, d e s d e 2 0 0 7, o P r o j e to P a t e r n i d a d e R e s p o n s á v e l. S u a d i s c i p l i n a e s t á

Leia mais

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma:

NÚMEROS COMPLEXOS. Podemos definir o conjunto dos números complexos como sendo o conjunto dos números escritos na forma: NÚMEROS COMPLEXOS DEFINIÇÃO No cojuto dos úmros ras R, tmos qu a a a é smpr um úmro ão gatvo para todo a Ou sja, ão é possívl xtrar a ra quadrada d um úmro gatvo m R Portato, podmos dfr um cojuto d úmros

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

Equações Diferenciais Lineares

Equações Diferenciais Lineares Equaçõs Diriais Liars Rordmos a orma gral d uma quação dirial liar d ordm a d d d d a a a, I d d m qu as uçõs a i são idpdts da variávl. S, a quação diz-s liar homogéa. Caso otrário, diz-s liar omplta.

Leia mais

O siste ma foi de se nvolvido e m C # atra vé s da fe rrame nta Microsoft Visual S tudio 2008. Banco de dados Microsoft S QL S e rve r 2008 r2

O siste ma foi de se nvolvido e m C # atra vé s da fe rrame nta Microsoft Visual S tudio 2008. Banco de dados Microsoft S QL S e rve r 2008 r2 His tó ric o O de s e nvolvime nto do S is te ma Voto E le trônico do Ministé rio P úblico do E stado de S ão P aulo te ve s e u início e m 2009 com a fina lidade de automatiza r os proce ssos e le itorais

Leia mais

MEDIÇÃO DA ACELERAÇÃO DA GRAVIDADE COM UM PÊNDULO SIMPLES

MEDIÇÃO DA ACELERAÇÃO DA GRAVIDADE COM UM PÊNDULO SIMPLES Medção da Aceleração da Gravdade co u Pêndulo Sples MEDIÇÃO DA ACEERAÇÃO DA GRAVIDADE COM UM PÊNDUO SIMPES O Relatóro deste trabalho consste no preenchento dos espaços neste texto Fundaento Teórco O pêndulo

Leia mais

Profa. Dra. C ristina Pereira G aglianone

Profa. Dra. C ristina Pereira G aglianone Profa. Dra. C ristina Pereira G aglianone C en t r o C o l a b o r a d o r em A l i m en t aç ão e N u t r i ç ão E sc o l ar U n i v e r si d ad e F ed er al d e S ão P au l o P r o je t o d e L e i 6

Leia mais

QUESTÕES DISCURSIVAS Módulo

QUESTÕES DISCURSIVAS Módulo QUESTÕES DISCURSIVAS Módulo 0 009 D (FUVEST-SP 008 A fgura ao lado represeta o úero + o plao coplexo, sedo a udade agára Nessas codções, a detere as partes real e agára de e b represete e a fgura a segur

Leia mais

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros.

JUROS SIMPLES. i 100 i 100. TAXA PROPORCIONAL: É aquela que aplicada ao mesmo capital, no mesmo prazo, produze o mesmo juros. JUROS MONTANTE JUROS SIMPLES J = C 0 * * t 00 M = C * + * t 00 TAXA PROPORCIONAL: É aquela que aplcada ao mesmo captal, o mesmo prazo, produze o mesmo juros. * = * JUROS COMPOSTOS MONTANTE M = C * + 00

Leia mais

Exercícios Complementares 1.2

Exercícios Complementares 1.2 Exercícios Comlemetares 1. 1.A Dê exemlo de uma seqüêcia fa g ; ão costate, ara ilustrar cada situação abaixo: (a) limitada e crescete (c) limitada e ão moótoa (e) ão limitada e ão moótoa (b) limitada

Leia mais

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1

1) Determine o domínio das funções abaixo e represente-o graficamente: 1 1 ) Dtrmin dmíni das funçõs abai rprsnt- graficamnt: z + z 4.ln( ) z ln z z arccs( ) f) z g) z ln + h) z ( ) ) Dtrmin dmíni, trac as curvas d nívl sbc gráfic das funçõs: f (, ) 9 + 4 f (, ) 6 f (, ) 6 f

Leia mais

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO

MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO II/05 UNIVERSIDADE DE BRASÍLIA DEPARTAMENTO DE ECONOMIA 0//5 MESTRADO PROFISSIONAL EM ECONOMIA DO SETOR PÚBLICO ECONOMIA DA INFORMAÇÃO E DOS INCENTIVOS APLICADA À ECONOMIA DO SETOR PÚBLICO Prof. Maurício

Leia mais

Capitulo 7 Resolução de Exercícios

Capitulo 7 Resolução de Exercícios FORMULÁRIO Audades Costates Postecpadas HP C [g][end] Cp LN 1 1 1 1 C p R Cp R R a, R C p, 1 1 1 a LN 1 Sp LN 1 1 1 S p R S p R R s, R S p, 1 1 s LN 1 Audades Costates Atecpadas HP C [g][beg] 1 (1 ) 1

Leia mais

Capítulo 2 Circuitos Resistivos

Capítulo 2 Circuitos Resistivos EA53 Crcutos Elétrcos I DECOMFEECUICAMP Caítulo Crcutos esstos EA53 Crcutos Elétrcos I DECOMFEECUICAMP. Le de Ohm esstor: qualquer dsosto que exbe somete uma resstêca. a resstêca está assocada ao úmero

Leia mais

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno.

E-mails: damasceno1204@yahoo.com.br damasceno@interjato.com.br damasceno12@hotmail.com http://www. damasceno.info www. damasceno.info damasceno. Matemátca Facera 2007.1 Prof.: Luz Gozaga Damasceo 1 E-mals: damasceo1204@yahoo.com.br damasceo@terjato.com.br damasceo12@hotmal.com http://www. damasceo.fo www. damasceo.fo damasceo.fo Obs.: (1 Quado

Leia mais

Tópicos Quem é é a a PP aa nn dd ui t t?? PP oo rr qq ue um CC aa bb ea men tt oo PP er ff oo rr ma nn cc e? dd e AA ll tt a a Qua ll ii dd aa dd e e PP aa nn dd ui t t NN et ww oo rr k k II nn ff rr aa

Leia mais

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP)

2ª série LISTA: Ensino Médio. Aluno(a): Questão 01 - (FUVEST SP) Matmática Profssor: Marclo Honório LISTA: 04 2ª séri Ensino Médio Turma: A ( ) / B ( ) Aluno(a): Sgmnto tmático: GEOMETRIA ESPACIAL DIA: MÊS: 05 206 Pirâmids Cilindros Qustão 0 - (FUVEST SP) Três das arstas

Leia mais

Alencar Instalações. Resolvo seu problema elétrico

Alencar Instalações. Resolvo seu problema elétrico Alencar Instalações Resolvo seu problema elétrico T r a b a lh a m o s c o m : Manutenção elétrica predial, residencial, comercial e em condomínios Redes lógicas Venda de material elétrico em geral. Aterramentos

Leia mais

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br

AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE. azevedoglauco@unifei.edu.br AUTO CENTRAGEM DA PLACA DE RETENÇÃO DE UMA MÁQUINA DE PISTÕES AXIAIS TIPO SWASHPLATE Glauco José Rodrigus d Azvdo 1, João Zangrandi Filho 1 Univrsidad Fdral d Itajubá/Mcânica, Av. BPS, 1303 Itajubá-MG,

Leia mais

PESQUISA PERFIL DO TURISTA

PESQUISA PERFIL DO TURISTA PESQUISA PERFIL DO TURISTA 1) Qual país de origem? Categoria em (%) Brasil 98,19 98,66 97,55 América Latina 0,86 0,55 1,28 Outros países 0,95 0,80 1,16 País de origem América La tina 1% Outros pa íses

Leia mais

Vieiras com palmito pupunha ao molho de limão

Vieiras com palmito pupunha ao molho de limão Vs o to nh o oho d ão Oá, ss ntd fo ns dos tos fz s gost. Aé d nd dd, obnção d sbos sson té os s xgnts. A t s dfí v s onsg vs fss. Ingdnts: 1 to nh; 3 dúzs d vs; s nt t; d do. Modo d fz: t s tbhos é bs

Leia mais

Custo de Capital. O enfoque principal refere-se ao capital de longo prazo, pois este dá suporte aos investimentos nos ativos permanentes da empresa.

Custo de Capital. O enfoque principal refere-se ao capital de longo prazo, pois este dá suporte aos investimentos nos ativos permanentes da empresa. Custo e Captal 1 Custo e Captal Seguno Gtman (2010, p. 432) o custo e Captal é a taxa e retorno que uma empresa precsa obter sobre seus nvestmentos para manter o valor a ação nalterao. Ele também poe ser

Leia mais

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03

DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 03 DICAS PARA CÁLCULOS MAIS RÁPIDOS ARTIGO 0 Em algum momnto da sua vida você dcorou a tabuada (ou boa part dla). Como você mmorizou qu x 6 = 0, não prcisa fazr st cálculo todas as vzs qu s dpara com l. Além

Leia mais

λ, para x 0. Outras Distribuições de Probabilidade Contínuas

λ, para x 0. Outras Distribuições de Probabilidade Contínuas abilidad Estatística I Antonio Roqu Aula 3 Outras Distribuiçõs d abilidad Contínuas Vamos agora studar mais algumas distribuiçõs d probabilidads para variávis contínuas. Distribuição Eponncial Uma variávl

Leia mais

4. Análise de Sistemas de Controle por Espaço de Estados

4. Análise de Sistemas de Controle por Espaço de Estados Sisma para vrificação Lógica do Corolo Dzmro 3 4. ális d Sismas d Corol por Espaço d Esados No capiulo arior, vimos qu a formulação d um Prolma Básico d Corolo Ópimo Liar, ra cosidrado um sisma diâmico

Leia mais

Certifico que este documento da empresa CELG DISTRIBUIÇÃO S.A. - CELG D, Nire: 52 30000295-8, foi deferido e arquivado na Junta Comercial do Estado

Certifico que este documento da empresa CELG DISTRIBUIÇÃO S.A. - CELG D, Nire: 52 30000295-8, foi deferido e arquivado na Junta Comercial do Estado Pág 12 de 60 Pág 13 de 60 Pág 14 de 60 Pág 15 de 60 Pág 16 de 60 Pág 17 de 60 Pág 18 de 60 Pág 19 de 60 Pág 20 de 60 Pág 21 de 60 Pág 22 de 60 Pág 23 de 60 Pág 24 de 60 Pág 25 de 60 Pág 26 de 60 Pág 27

Leia mais

Certifico que este documento da empresa COOPERATIVA DE CRÉDITO LIVRE ADMISSÃO DO VALE DO SÃO PATRÍCIO LTDA, Nire: 52 40000248-8, foi deferido e

Certifico que este documento da empresa COOPERATIVA DE CRÉDITO LIVRE ADMISSÃO DO VALE DO SÃO PATRÍCIO LTDA, Nire: 52 40000248-8, foi deferido e Pág 38 de 74 Pág 39 de 74 Pág 40 de 74 Pág 41 de 74 Pág 42 de 74 Pág 43 de 74 Pág 44 de 74 Pág 45 de 74 Pág 46 de 74 Pág 47 de 74 Pág 48 de 74 Pág 49 de 74 Pág 50 de 74 Pág 51 de 74 Pág 52 de 74 Pág 53

Leia mais

Junta Comercial do Estado de Minas Gerais Certifico registro sob o nº 5496096 em 23/04/2015 da Empresa OMEGA GERACAO S.A., Nire 31300093107 e

Junta Comercial do Estado de Minas Gerais Certifico registro sob o nº 5496096 em 23/04/2015 da Empresa OMEGA GERACAO S.A., Nire 31300093107 e pág. 1/21 pág. 2/21 pág. 3/21 pág. 4/21 pág. 5/21 pág. 6/21 pág. 7/21 pág. 8/21 pág. 9/21 pág. 10/21 pág. 11/21 pág. 12/21 pág. 13/21 pág. 14/21 pág. 15/21 pág. 16/21 pág. 17/21 pág. 18/21 pág. 19/21 pág.

Leia mais

Junta Comercial do Estado de Minas Gerais Certifico registro sob o nº 5512916 em 22/05/2015 da Empresa UNIMED BELO HORIZONTE COOPERATIVA DE TRABALHO

Junta Comercial do Estado de Minas Gerais Certifico registro sob o nº 5512916 em 22/05/2015 da Empresa UNIMED BELO HORIZONTE COOPERATIVA DE TRABALHO pág. 2/33 pág. 3/33 pág. 4/33 pág. 5/33 pág. 6/33 pág. 7/33 pág. 8/33 pág. 9/33 pág. 10/33 pág. 11/33 pág. 12/33 pág. 13/33 pág. 14/33 pág. 15/33 pág. 16/33 pág. 17/33 pág. 18/33 pág. 19/33 pág. 20/33

Leia mais

Certifico que este documento da empresa COOPERATIVA DE CRÉDITO DOS MAGISTRADOS, SERVIDORES DA JUSTIÇA DO ESTADO DE GOIÁS E EMPREGADOS DA CELG LTDA,

Certifico que este documento da empresa COOPERATIVA DE CRÉDITO DOS MAGISTRADOS, SERVIDORES DA JUSTIÇA DO ESTADO DE GOIÁS E EMPREGADOS DA CELG LTDA, Pág 9 de 58 Pág 11 de 58 Pág 13 de 58 Pág 15 de 58 Pág 17 de 58 Pág 19 de 58 Pág 21 de 58 Pág 23 de 58 Pág 25 de 58 Pág 27 de 58 Pág 29 de 58 Pág 31 de 58 Pág 33 de 58 Pág 35 de 58 Pág 37 de 58 Pág 39

Leia mais

Junta Comercial do Estado de Minas Gerais Certifico registro sob o nº em 21/11/2014 da Empresa ANDRADE GUTIERREZ S/A, Nire e

Junta Comercial do Estado de Minas Gerais Certifico registro sob o nº em 21/11/2014 da Empresa ANDRADE GUTIERREZ S/A, Nire e pág. 1/46 pág. 2/46 pág. 3/46 pág. 4/46 pág. 5/46 pág. 6/46 pág. 7/46 pág. 8/46 pág. 9/46 pág. 10/46 pág. 11/46 pág. 12/46 pág. 13/46 pág. 14/46 pág. 15/46 pág. 16/46 pág. 17/46 pág. 18/46 pág. 19/46 pág.

Leia mais

Junta Comercial do Estado de Minas Gerais Certifico registro sob o nº em 19/10/2015 da Empresa COOPERATIVA DE CONSUMO DOS SERVIDORES DO

Junta Comercial do Estado de Minas Gerais Certifico registro sob o nº em 19/10/2015 da Empresa COOPERATIVA DE CONSUMO DOS SERVIDORES DO pág. 1/26 pág. 2/26 pág. 3/26 pág. 4/26 pág. 5/26 pág. 6/26 pág. 7/26 pág. 8/26 pág. 9/26 pág. 10/26 pág. 11/26 pág. 12/26 pág. 13/26 pág. 14/26 pág. 15/26 pág. 16/26 pág. 17/26 pág. 18/26 pág. 19/26 pág.

Leia mais

Junta Comercial do Estado de Minas Gerais Certifico registro sob o nº em 08/05/2015 da Empresa UNIMED JUIZ DE FORA COOPERATIVA DE TRABALHO

Junta Comercial do Estado de Minas Gerais Certifico registro sob o nº em 08/05/2015 da Empresa UNIMED JUIZ DE FORA COOPERATIVA DE TRABALHO pág. 16/49 pág. 17/49 pág. 18/49 pág. 19/49 pág. 20/49 pág. 21/49 pág. 22/49 pág. 23/49 pág. 24/49 pág. 25/49 pág. 26/49 pág. 27/49 pág. 28/49 pág. 29/49 pág. 30/49 pág. 31/49 pág. 32/49 pág. 33/49 pág.

Leia mais

Junta Comercial do Estado de Minas Gerais Certifico que este documento da empresa COOPERNOVA COOPERATIVA NOVALIMENSE DE TRANSPORTE DE CARGAS E

Junta Comercial do Estado de Minas Gerais Certifico que este documento da empresa COOPERNOVA COOPERATIVA NOVALIMENSE DE TRANSPORTE DE CARGAS E pág. 1/23 pág. 2/23 pág. 3/23 pág. 4/23 pág. 5/23 pág. 6/23 pág. 7/23 pág. 8/23 pág. 9/23 pág. 10/23 pág. 11/23 pág. 12/23 pág. 13/23 pág. 14/23 pág. 15/23 pág. 16/23 pág. 17/23 pág. 18/23 pág. 19/23 pág.

Leia mais

Junta Comercial do Estado de Minas Gerais Certifico registro sob o nº em 13/04/2016 da Empresa ALGAR TI CONSULTORIA S/A, Nire e

Junta Comercial do Estado de Minas Gerais Certifico registro sob o nº em 13/04/2016 da Empresa ALGAR TI CONSULTORIA S/A, Nire e pág. 1/71 pág. 2/71 pág. 3/71 pág. 4/71 pág. 5/71 pág. 6/71 pág. 7/71 pág. 8/71 pág. 9/71 pág. 10/71 pág. 11/71 pág. 12/71 pág. 13/71 pág. 14/71 pág. 15/71 pág. 16/71 pág. 17/71 pág. 18/71 pág. 19/71 pág.

Leia mais

Certifico que este documento da empresa UNIMED MONTES CLAROS COOPERATIVA DE TRABALHO MEDICO, Nire: , foi deferido e arquivado na Junta

Certifico que este documento da empresa UNIMED MONTES CLAROS COOPERATIVA DE TRABALHO MEDICO, Nire: , foi deferido e arquivado na Junta pág. 1/34 pág. 2/34 pág. 3/34 pág. 4/34 pág. 5/34 pág. 6/34 pág. 7/34 pág. 8/34 pág. 9/34 pág. 10/34 pág. 11/34 pág. 12/34 pág. 13/34 pág. 14/34 pág. 15/34 pág. 16/34 pág. 17/34 pág. 18/34 pág. 19/34 pág.

Leia mais

Prova Escrita de Matemática A

Prova Escrita de Matemática A Eam Final Nacional do Ensino Scundáio Pova Escita d Matmática A 1.º Ano d Escolaidad Dcto-Li n.º 139/01, d 5 d julho Pova 635/1.ª Fas Citéios d Classificação 1 Páginas 014 Pova 635/1.ª F. CC Página 1/

Leia mais

NPQV Variável Educação Prof. Responsáv el : Ra ph a el B i c u d o

NPQV Variável Educação Prof. Responsáv el : Ra ph a el B i c u d o NPQV Variável Educação Prof. Responsáv v el :: Ra ph aa el BB ii cc uu dd o ATIVIDADES DESENVOLVIDAS NA ÁREA DE EDUCAÇÃO 2º Semestre de 2003 ATIVIDADES DESENVOLVIDAS NA ÁREA DE EDUCAÇÃO As atividades realizadas

Leia mais