Matemática E Intensivo V. 2
|
|
|
- Vitória de Carvalho Corte-Real
- 7 Há anos
- Visualizações:
Transcrição
1 Matemática E Intensivo V. Exercícios 0) a) b) c) a) 8 = =!! C = = ( 8 )!!!! b) = =!! C = = ( 0 )!! 8!! n 0 n n c) Cn 0 = =!! = = ( n 0)! 0! n! 0) 0x O terceiro termo é dado por: T r + = n p xn p. a p T = T + = (x ). T = 0.. (x ) T = 0x 0) 0y Como temos n + termos, isto é, + = 7 termos. Temos que o termo médio é. = T + = (y) (y ) = (y). y = y. y = 0y 0) C 0) B Soma é dada para x = y =. S = (. + ) S = () S = x = y = ( + ) n = 0 n = 0 n = 0 Segue, A 0! = ( 0 ) =! 8 =! = =!! 8! 0) C T p + = p x p. x T p + = p x p. x p p T p + = p x p Para termos o termo independente devermos ter x p =, isto é, p = 0 p =. Segue o termo independente, que é dado por: = = =! C ( )!! 07) B = 0 9 =! 9 =!!! 9! =.. 0 = 0 T p + = p. x p. p x T p + = p. x p Para termos o termo independente devermos ter x p =, isto é, p = 0 p =. o termo independente é T p + = T + = T, ou seja, o terceiro termo. 08) D = T + = 8 (x)8. ( ) = 8 x = 8.. x =.. x Terceiro termo: T = T + = 8 (x)8. ( ) T = 8 (x) T = 8.. x Matemática E
2 Logo, o quociente é dado por: T x = = = T 8 x x x 09) 0. Correta. Pois o número de termos é dado por n +, ou seja, se n for par teremos um número ímpar de termos. 0. Correta. Soma dos coeficientes: n + = n = n = 8 n = 8 Segue: n = 8! =! = 0. Correta. Número de termos: n +. n + = n = n = Daí, o binômio é dado por x + x Logo, a soma dos coeficientes é: S = + = = 08. Incorreta. Como n =, temos termos. Então o termo médio é o terceiro termo. T = T + = (x ). x T = (x ). x T =. x. x T = x. Correta. (Considere x n para resolução do exercício.) T. T n = (x ) n. n x T. T n = x n. x n T. T n = x n 0) Verdadeira. T p + = 00 p. (x)00 p. x T p + = 00 p. (x)00 p. x p p T p + = 00 p. x00 p Para obtermos o termo independente devemos ter x 00 p =, isto é, 00 p = 0 p = 0. o termo independente é da ordem 0 + =. ) E Terceiro termo: T = T + = 0 (x)0. T = 0 (x)8. T =. 8. x 8. T =.. x 8 ) D Quinto termo: T = + = 0 (x)0. T = 0 (x). T = 0. x. T = 0.. x Logo, a razão entre os coeficientes é dada por: T 8 = = = = = T T p + = p ( x ) p. p T p + = p p ( ). (x ) p. p T p + = p p. p ( p). x T p + = p p + p. x ( p) Queremos x = x ( p), logo: = ( p) = p p = Portanto o coeficiente de x é: = = = 0. 7 = 0. = 0.. Matemática E
3 ) A = 0. 8 = 80 T p + = 7 p x7 p. a p x T p + = 7 p x7p. x p. a p T p + = 7 p x7 p. a p Como queremos o termo x, então: 7 p = 7 = p p = p = Daí: T = 7 a. x T = a x Como o coeficiente é 8, temos: a = 8 a = 8 a = a = (pois a > 0) a = ) C T 7 = T + = 0 ( x ) 0 x T 7 = 0. x. T 7 = 0. x. x T 7 = 0. x ) 9 x T p + = n p. xn p. x T p + = n p. xn p. x p T p + = n p. xn p p ) B Para que o desenvolvimento possua termo independente devemos ter: n p= p= n 0 n < 00 Então n é múltiplo de. o maior múltiplo de menor que 00 é 9. Casos possíveis: = 0 Caso favorável: 0 Probabilidade: P = 0 0 = = % 7) A Probabilidade do jogador de basquete: 0 = 0% Probabilidade do jogador de vôlei: = % Probabilidade do jogador de futebol: 9 = 0,9% a ordem de probabilidade de ser pego é: basquete, futebol, voleibol. 8) a) b) a) Cristiano lança o dado e, sem perda de generalidade, suponha que obteve o número. Para haver empate Ronaldo deve obter o número. a probabilidade de haver empate é a mesma que a probabilidade de se obter o número. Assim, P =. b) Possibilidades: (, );(, );(, );(, );(, );(, ) (, );(, );(, );(, );(, );(, ) (, );(, );(, );(, );(, );(, ) Possibilidades de Cristiano ser (, );(, );(, );(, );(, );(, ) vencedor (, );(, );(, );(, );(, );(, ) (, );(, );(, );(, );(, );(, ) Casos favoráveis: Casos possíveis: Probabilidade: P = = Matemática E
4 9) A Caso possível: 0 Caso favorável: Probabilidade: P = 0 = 0 0) E Casos possíveis: 0 bolas Casos favoráveis: 8 bolas 0 7,,,,,,, Probabilidade: P = 8 0 = ) C 0% aplicam em caderneta de poupança: 0. 0% aplicam em fundos de investimentos: 90. % aplicam em ambos:. 00 CP 0 NI 0 ) A Casos favoráveis: 8 Casos possíveis: 80 Probabilidade: 8 7 P = = = ) B Sejam a, a,, a os raios da circunferência de menor raio para maior raio, respectivamente. Temos a sequência: PG (a, a, a, a, a ) PG (a, a, a, 8a, a ) raio da circunferência maior Como o diâmetro da mesa é m e 0 cm = 0 cm, então o raio da circunferência maior é 0 cm. Daí: a = 0 a = 0 a = 0 cm Logo: Sejam C, C,,C circunferências e P, P e P regiões pintadas. CP: Caderneta de poupança NI: Fundos de investimentos Probabilidade: 0 00 = 0, P C C ) D Chance de o jogador A ganhar: Probabilidade de se obter os números, 7 e 8: Dado Dado 0 80 P PC C C a probabilidade de o jogador A ganhar é: P = = = = 0,% Logo, a probabilidade de o jogador B ganhar é: P = = = 0,7% Daí, concluímos que o jogador B tem mais chances de ganhar do que o jogador A e, portanto, o jogo é injusto. Área: A P = A C = 0 π = 00π cm Matemática E
5 A P = A C A C = (0) π (0) π = 00π 00π A P = 00π cm A P = A C A C = (0) π (80) π = 9 00π cm Soma das áreas pintadas: Total da porcentagem que possui um dos três defeitos é 0% + % + % + 8% = %. a porcentagem que não possui algum dos três defeitos acima é 00% % = %. lll. Correta. P = 00% P(C S) = 00% 7% = 7%. A P = A P + A P + A P = 00π + 00π π A P = 0 00π cm ) A Probabilidade: P = A P 0 00 π = = 0,8 = 80% AC 00 π Sejam: C: defeitos nas costuras; S: solas descoladas; D: falta um dos cadarços. l. Incorreta. P(C S) = P(C) + P(S) P(C S) Sem perda de generalidade, suponha que existam 00 produtos defeituosos. Vamos calcular P(C). Casos possíveis: 00 Casos favoráveis: Probabilidade: P = 00 = Vamos calcular P(S): P = 7 00 Vamos calcular P(C S): P = 00 Portanto: P(C S) = P(C S) = = = 7% ) D 7) B Casos favoráveis: 9 Casos possíveis: 77 Probabilidade: P = 9 77 o sorteio Casos favoráveis: Casos possíveis: 0 Probabilidade: P = 0 o sorteio Casos favoráveis: Casos possíveis: 9 Probabilidade: P = 9 a probabilidade de se sortear estudantes que pretendem fazer intercâmbio no Chile é: P= P P = = = ll. Correta. sola descolada 0% % % problema na costura 8% falta um cadarço Matemática E
6 8) A Ordem de retirada Probabilidade a carta a carta a carta a carta a carta a carta 7 a carta 8 a carta 9 a carta ímpar par ímpar par ímpar par ímpar par ímpar ) D a probabilidade de ficarem alternadas em pares e ímpares é dada por: P = P = 9 7 P = I. º lançamento º lançamento Probabilidade: P = = = %. II. C, º lançamento º lançamento º lançamento º lançamento Probabilidade: P= C = = =, % III. De forma análoga aos itens anteriores concluímos: P= C8, P= C8 = 7, = = = 0, 87 =, 8 % 8 8 os itens I e II são igualmente prováveis. 0) E A A total X % % 0 % X % 88 % 90 % total 8 % 9 % 00 % A: Presença de um gene A A : Ausência de um gene A X: Sofre da doença X X : Não sofre da doença X Logo, a probabilidade de que uma pessoa dessa população seja portadora do gene A, dado que sofre da doença X, é de: = 0 %. 0 Matemática E
7 ) C Probabilidade de uma bola vermelha na primeira urna: P = Probabilidade de uma bola vermelha na segunda urna: P = Soma das probabilidades: + = 9 0 a probabilidade de sair uma bola vermelha escolhendo uma urna ao acaso é: 9 0 = 9 0 ) 0 0. Incorreta. Casos possíveis: p p p Pelo PFC:.. = possibilidades Casos favoráveis: p p p Pelo PFC:. = Probabilidade: P = = 0, = 0 % 0. Correta. 8, P =! 0 9 8! = 8!! 8!, =.. 9 = 9 caminhos. P 8 0. Incorreta. Números divisíveis por 7: a = 7 a n = 9 r = 7 a n = a + (n )r 9 = 7 + ( n ) 7 9 = 7 + 7n 7 9 = 7n n = 9 7 n= 7 7 Probabilidade: P = 0 ) E ) E 08. Incorreta. Números pares: p p p não pode o 0 (0,, ) Pelo PFC:.. = 7 possibilidades. alternativa incorreta. Livros não lidos são 9. o livro o livro o livro Probabilidade de não ter lido nenhum dos três livros é: 9 8 P = = 0 P = = = Sem perda de generalidade, suponha que a área da terra seja 000 m. Deserto ou regiões cobertas por gelo Pastagens, florestas ou montanhas Área cultivável terra (0 % em m ) água (70 %) total I. Incorreta. Probabilidade: P = II. Correta. Probabilidade: P = = 8 % = 0 = 0 % Matemática E 7
8 ) 7 III. Correta = 0,7 IV. Correta. Probabilidade: P = 0 = = % o dia o dia Casos favoráveis: Casos favoráveis: Casos possíveis: 7 Casos possíveis: Probabilidade: Probabilidade: P = 7 P = a probabilidade de que o valor total gasto pelo cliente nesses dois dias é: P = P. P = = = ) E 7) B menina a criança a criança ( menino) a criança ( menino) a criança ( menino) a probabilidade de nascer em meninos é: P =.. = 8 8) Casos possíveis: P =! Casos favoráveis:!. P. P. P Probabilidade: P =! P P P P P =!!!! 0 P = P = 9) a) ; b). a) O total de números múltiplos de ou de no intervalo de a 90 é: = 8 + = 0. Logo, a probabilidade pedida é: 0 90 =. b) Considere que as 90 bolas são retiradas da urna sem reposição. Os eventos "o número da e-ésima bola retirada não é múltiplo de " e i 90 são equiprováveis. observando novamente que 90 =, a probabilidade pedida é igual à probabilidade de o número da primeira bola retirada não ser múltiplo de, ou seja, 90 =. 0) C coroa cara cara cara ) D Como a moeda com o lado coroa pode estar em posições diferentes, então: P = =. ser doente não doente Probabilidade de ser devorada: 0,0 + 0, = 0, =, % ) doente e ser devorada. = 00 = 0,0 não doente e ser devorada. 0 = 0, Sangue RH + RH Tipo O 80 0 Outros Correta. P = 00 = 0, = 0 % 00 8 Matemática E
9 ) A ) A 0. Correta P = Correta P = = Correta. P = = 0 = 0,8 = 80 % 00 0 = 0, = 0 % 00 0 = 0, = 0 % 00 A probabilidade da lâmpada L (e L ) estar apagada é a probabilidade da chave C estar aberta: P = 0 % Probabilidade da lâmpada L estar acesa e a lâmpada L estar apagada: P = 0,. 0, = 0, = % Probabilidade C fechada Probabilidade C aberta a probabilidade de pelo menos uma lâmpada estar aberta é dada por: P = 0 % + % = 7 %. Cada possibilidade de deslocamento do menino após 9 lançamentos da moeda pode ser interpretada como uma sequência de 9 elementos (L m para leste e 0 m para oeste). Por exemplo, a sequência LLLLLLLLO significa que ele deu oito passos para leste e um passo para oeste, estando, portanto, a uma distância de sete metros do ponto de partida. Pelo princípio fundamental da contagem, existem 9 sequências possíveis. Dessas sequências, estamos interessados nas que aparecem sete vezes a letra L e duas vezes a letra O, pois somente nesses dois casos o menino estará a m de distância do ponto de origem. Assim, temos: P = P 7, 9 9 P = 9! 7!! 9 9 P = 8 7! 7! 9 P = 9 ) 9 P( ) = a ( ) + ( ) 7( ) + = a = a + = a = a = 0 Logo, P(x) = 0x + x 7x +. Assim, temos: P() = P() = P() = 9 ) a + b + c = + ( ) + = ERRATA: Para a resolução do exercício, considere o polinômio P(x) = ax + bx + cx. P(x) = ax + bx + cx P(x + ) = a(x + ) + b(x + ) + c(x + ) P(x + ) = a(x + x + x + ) + b(x + x + ) + c(x + ) = ax + ax + ax + a + bx + bx + b + cx + c = ax + (a + b)x + (a + b + c)x + (a + b+ c) Segue, P(x + ) p(x) = = ax + (a + b)x + (a + b + c)x + (a + b+ c) ax bx cx = (a + b b)x + (a + b + c c)x + (a + b + c) = x = ax + (a + b)x + (a + b + c) = x Da igualdade de polinômios, temos: a= () i a+ b= 0 () ii a+ b+ c = 0 ( iii) De (i), temos: a = a = De (ii), temos: a = a + b = 0. + b = 0 + b = 0 b = b = b = Finalmente, de (iii) temos: a = e b = a + b + c = 0 + ( ) + c = 0 + c = 0 c = a + b + c = + ( ) + = =. Matemática E 9
10 7) C x + a = x x + + b x x + ( x ) ( x+ ) = a x + + b x x + a x b x x x+ = ( ) + ( + ) ( ) ( ) ( x ) ( x+ ) x + = a (x ) + b (x + ) x + = ax a + bx + b x + = (a + b)x + ( a + b) Logo, a+ b= ( ) a+ b= 8) D a+ b= i () a+ b= () ii Fazendo (i) + (ii), teremos: b = b = Substituindo b = em (i), obtemos: a + = a = a + b = + =. x x 9x x+ 7 x + x+ x x x x x / x x x + 7 x + x + x / Logo, q(x) = x x r(x) = x +. 0x x x + x+ / x + Do produto das raízes de q(x) = x x obtemos: P = c a = Já x = é a raiz da equação r(x) = x +. Daí, o produto das raízes de q(x) e r(x) é:. ( ) = 9) E 0) B ) D ) D x + 0x + 0x x + 0x+ x + 0x x + x x + x / x x + 0x + x + x r(x) = x. (x + ) (x ) = x x + x = x x / x + x+ + x / x x + x x x x x + x + x x+ / x x x + x+ / 0 Q(x) = x +. P(x) = (x + 7) (x ) + x + 9 = x x + x + x + 9 = x + x x + x Divisão de P(x) por S(x) = x. Teorema do resto, temos: P() = P() = + + P() = 7 Do enunciado, temos: P(x) = (x ) Q(x) + P(7) = (7 ) Q(7) + P(7) =. Q(7) + (Q(7) = 0) P(7) =. 0 + P(7) = 0 Matemática E
11 ) A ) E f = x 0 x 0 x = ( x ) + + ( x ) = x x x + x + x + + x = x x + x x x + x x x + x x / x + x + x x r(x) = x. Teorema do resto: (). + m. (m + ) = m m = 0 + m = 0 + m = 0 m = m = m = m = = =. ) 0. Correta. De fato, P(x) = x + ax + ax ax. 0. Correta. Temos que m. = 0 m =. P(x) é divisível por x. 0. Correta. a a a a + a + a Logo, a + 8 = a = a =. Daí, P(x) = x x x + x Segue, P(0) = P(0) = ) B 08. Correta. P() = + P() =. Correta. Do item 0, temos: q(x) = x + (a + )x + (a + )x + a + 8 Para a = q(x) = x + x + x + 9 x + x + x + x + x x x 8 x( x + x + x + x + x( x ) 8 ( x + x + x + x + ( x ) Daí, temos: x + x + x 8 + x + = Q(x). (x )(x + ) + ax + b Para x = : = Q() ( ) ( + ) + a. + b = a + b a + b = (i) Para x = : ( ) + ( ) + ( ) 8 + ( ) + = Q( ). ( )( + ) + a( ) + b + + = a+ b a + b = (ii) De (i) e (ii) obtemos o seguinte sistema: a+ b= i () a+ b= () ii Fazendo (i) + (ii), teremos: b = b = b = Substituindo b = em (i), teremos: a + = a = a = o resto é dado por: r'(x) = x +. Assim, x + x + x 8 + x + = Q(x). (x )(x + ) + (x + ) Multiplicando ambos os lados por x, temos: x + x + x 9 + x + x = Q(x). (x x) + ( x + x ) rx ( ) Matemática E
12 7) a) gr(d) = ; gr(r) =. b) r(x) = x + ; d(x) = x + x Como q(x) > r(x), então o resto é da forma r(x) = ax + b. R() = a + b = R( ) = a + b = 0 a+ b= i () a+ b= 0 () ii Fazendo (i) + (ii), teremos: b = b = Substituindo b = em (i), obtemos: a + = a = Logo, r(x) = x +. 8) A a) G(q(x)) = G(p(x)) G(d(x)) = G(d(x)) = G(d(x)).( ) G(d(x)) = Como r(x) = x +, então G(r(x)) =. b) P(x) = d(x). q(x) + r(x) x + x + x + x + = d(x). (x + ) + (x + ) x + x + x + x = d(x). (x + ) d(x) = x + x + x + x x + x + x + x + x x + x x x + x / x + x x x 0 d(x) = x + x. Temos ainda r(x) = x +. x = P() = + b. + c = b + c + = b + c = x = P() = + b + c = + b + c = b + c = Daí, temos: b+ c= i () b+ c= () ii Fazendo (i) (ii), obtemos: b =.( ) b = Substituindo b = em (i), teremos: + c = c = + c = 9) B Os termos com maior expoente serão: o termo: (a )(a )x 7 = (a a + )x 7 (i) o termo: a(a )x (ii) Para que o polinômio p. q possua grau 7, devemos ter: a a + 0 Resolvendo a equação acima, temos: a e a para a e a, o polinômio p. q possui grau 7; para a = e a =, temos que o polinômio possui o grau. 0) x x + 8 P()=. + A.. + B. + = + A + B + = A + B = P( ) = ( ) + A ( ) ( ) + B ( ) + = 0 8A 0 B + = 8A B = 8 ( ) A + B = Temos o seguinte sistema: A+ B= i () A+ B= () ii Fazendo (ii) (i), obtemos: A = A = Substituindo A = em (i), teremos: + B = B = Logo, P(x) = x + x x x +. Por Briot-Ruffini, temos: Logo, q(x) = x x 8. Matemática E
13 ) B O quociente será do o grau da forma: S(x) = cx + dx + ex + f Daí, P(x) = Q(x). S(x) + R(x) x x + x + ax + bx = (x x + ) (cx + dx + ex + f) + 0 = (x x + ) (cx + dx + ex + f) = cx + dx + ex + fx cx dx ex fx + cx + dx + ex + f Agrupando os termos semelhantes, teremos: x x + x + ax + bx = cx + (d c)x + (e d + c)x + (f e + d)x + ( f + e)x + f Como os polinômios são idênticos, teremos: c = f = f = d c = d. = d = 0 e d + c = e 0 +. = e = f e + d = a = a a = e f = b. = b b = 8 (a + b) = + 8 =. ) D Raízes de x x são x' = 0 e x'' =. Como queremos que P(x) seja divisível por x x, então x' e x'' são raízes do polinômio P(x). P(0) = (a + b). 0 + a + b = 0 a + b = 0 P() = +. + (a + b) + a + b = 0 + a + b + a + b = 0 a + 7b = Daí temos: a+ b= a b i 0 ( ) = 0 () a+ 7b= () ii a+ 7b= () ii Fazendo (i) + (ii), teremos: b = b = Substituindo b = em a + b = 0: a + ( ) = 0 a = 0 a = ) a) k = b) / a) Teorema do resto P( ) =. + k + = + k + = 8 + k = k = b) P(x) = x x + + P(x) = x x + Resolvendo a equação acima, temos: x' = + 97 ou x'' = 97 Segue, π π bπ+ aπ ( a b π + = = + ) a b a b a b Temos que, Soma = b ( ) a = Produto = c a = = = Logo, π π π a + b = = 80 = 0 = 0. Daí, π π sen + a b = sen 0 = sen 0 =. Matemática E
14 ) a) S = {, 8, 9} b) S = {,, 8} c) S = {,,, } d) S = {0, i, i} e) {, i, i} a) (x ). (x 8). (x + 9) = 0 Temos: x = 0 x = ou x 8 = 0 x = 8 ou x + 9 = 0 x = 9 a solução é: S = { 9,, 8}. b) (x ). (x ). (x + 8) = 0 Temos, x = 0 x = (raiz dupla) ou x = 0 x = (raiz tripla) ou x + 8 = 0 x = 8 (raiz simples) S = { 8,, }. c) x x + 8 = 0 Seja y = x : y y + 8 = 0 Resolvendo a equação acima, temos: y' = ou y'' = 9 Substituindo y' = em y = x, temos: = x x = ou x = Agora, substituindo y'' = em y = x, temos: 9 = x x = 9 ou x = 9 S = {,,, }. x = x = d) x + x = 0 x (x + ) = 0 Temos: x = 0 ou x + = 0 x = x= i ou x= i s = {0, i, i}. x x + x = 0 Note que x = é raiz da equação. Segue, 0 0 ) B ) A as outras raízes vêm de x + = 0. Então: x + = 0 x = x = i ou x = i A solução é dada por: S = {, i, i}. 0 Logo, Q(x) = x x +. Resolvendo a equação acima, teremos: x' = + i ou x'' = i. Sejam a, (a + ) e (a + ) três números positivos e consecutivos. Do enunciado, temos: a (a + )(a + ) = 8 (a + a + + a + ) (a + a) (a + ) = 8 (a + ) a + a + a + a = a + a + a + a a = 0 a + a + a = 0 Note que x = (não serve) é raiz. Por Briot-Ruffini, temos: 0 Logo, Q(x) = x + x. Resolvendo a equação anterior, obtemos: x' = ou x'' = (não serve) os números são, e. Daí vem: + + = + + = 77. 7) a) m = 8 b) S = {, } a) Pelo teorema de D'Alembert, temos: P() = 0. + m = m = 0 m = 8 Logo, Q(x) = x +. Matemática E
15 8) E b) P(x) = x x x + 8 Note que x = é raiz. Daí, 8 Logo, Q(x) = x. As outras raízes vêm de: x = 0 x = x = ou x = S = {, } Logo, Q(x) = x x + 8 = 0. Resolvendo a equação acima, teremos: x' = ou x'' = 8 Produto o produto de duas raízes poderá ser. 9) (x + )/(x + x + ) Fatorando: x = (x ) (x + ) (x 8) Note que, Logo, Q(x) = x + x +. Assim, x 8 = (x ) ( x + x + ). x x x x x 8 = ( )( + ) x x + x + = + ( )( ) x + x+. 70) D 7) E 7) D p(x) = (x a). (x b). (x + c) = 0 Temos que: x a = 0 x = a ou x b = 0 x = b ou x + c = 0 x = c Logo, as raízes são {a, b, c}. x x + x = 0 Note que x' = é raiz do polinômio Logo, Q(x) = x +. as próximas raízes são dadas por: x + = 0 x = x'' = i ou x''' = i x = f() = () () + m () = 0 + m = 0 m = Logo, f(x) = x x + x. 0 0 Logo, Q(x) = x 0x +. Resolvendo a equação anterior, temos: x' = ou x'' = Vamos verificar se f(x) é divisível por x x +. x x + x x x + x + x 8x x / x + 8x + x 8x f(x) é divisível pelo polinômio x x +. Matemática E
16 7) A p(x) = det A = x x x x 0 x = x x +. x. x x.. x +. x = x + x 0x + x x x + x = 0 x (x x + ) = 0 Logo, x x + = 0 ou x = 0 Temos que a soma das raízes da equação x x + é dada por S =. a = x + x + x = + 0 =. 7) m 7) E x x + x = 0 Volume (m ) V = x. x. x = d = ( ) = a Sejam x e x as raízes. Do enunciado, temos: x x = x = x + Sabemos que: Soma: S = x + x = a x + + x = a x + = a ( ) x = a (i) Produto: P = x. x = a (x + ). x = a (x + ). x + = a (ii) Igualando (i) e (ii), obtemos: ( x + )x + = x x + x + + x + = 0 x + x + = 0 Resolvendo a equação acima, obtemos: x ' = ou x '' = Substituindo x em (i), temos: x ' = ( ) = a a = a = 7) D 77) D 78) E x '' = ( ) = a a = a = x + x 8 = 0 Produto das raízes: P = d = ( ) = = a Soma (S): S = b = ( ) = + a a 0 a =. = 0a 8 = 0a a = 8 0 a = 9 Produto (P): P = c p = = a a p a = p = a = 9 a + p = = 8. Sejam x, x e x raízes do polinômio x x x 0 = 0. Note que x = é raiz. Por Briot-Ruffini, temos: 0 0 Logo, Q(x) = x + x +. Resolvendo a equação acima, teremos: x = x = + + = + + x x x = Matemática E
17 79) E = = = = 8) 7 0. Correta. x x =0 x x x + x x + x x = 0 x + x x = 0 Note que, x'= é raiz. 80) D x = raiz, então: 0 Logo, Q(x) = x x +. o produto das raízes de Q(x) é: P Q = c a = =. Assim, o produto das raízes de p(x) é dado por:. P Q =. =. Logo, a alternativa E está correta. Note que x' = é raiz Logo, Q(x) = x 8x +. Resolvendo a equação acima, obtemos: x'' = ou x''' =. Daí, obtemos a seguinte sequência: P.A. (,,, ) Então temos: a = a n = a + (n )r r = a n = + (0 ) n = 0 a n = + 9. a n = + 8 a n = 9 Soma dos 0 primeiros termos: S = ( a a ) n + n S = ( + 90 ) S = 0. 0 S = 00 0 Logo, Q(x) = x + x. Resolvendo a equação anterior, obtemos: x'' = ou x''' =. S = {,, } [, ]. 0. Temos: P() = P( ) = O resto da divisão de P(x) por (x )(x + ) é de grau máximo. P(x) = Q(x)(x )(x + ) + (ax + b) P( ) = ( ) ( + ) Q( ) + a+ b= 0 P( ) = ( )( + ) Q( ) a + b = 0 a+ b= a+ b= ( ) a+ b= i () a b= () ii Fazendo (i) + (ii), teremos: a = a = Substituindo a = em a + b =, obtemos: + b = b = + b = 8 + b = Matemática E 7
18 8) C 8) D 0. Incorreta. Teorema de D'Alambert. x = P( ) = ( ) + ( ) 7( ) M = 0 =. ( 8) + + M = 0 = + + M = 0 M = 08. Incorreta Logo, Q(x) = x 9x +. o produto das raízes de Q(x) é dado por: P = c a = =.. Correta. Note que x' = é raiz da equação x 7x + = Logo, Q(x) = x + x. Resolvendo a equação anterior, obtemos como raízes: x'' = ou x''' =. Assim, 7 a + b + c = + = + =. Segundo o gráfico temos como raiz x' = ; x'' = e x''' =. Daí o polinômio P(x) é dado por: P(x) = (x + )(x )(x ). Logo, pelo teorema do resto, temos: R(x) = P( ) = ( + )( )( ) R(x) = ( )( )( ) R(x) =. Como o gráfico passa pelo ponto e f(x) é uma função ímpar, então há uma simetria em relação à origem. as raízes de f(x) são: x' = ; x'' = 0 e x''' =. 8) D Logo, f() = ( + ).. ( ) f() = 7.. f() = 8. x+ x+ x+ 8 + ( ) + = 9( ) ( x+ ) x+ ( ) 9[( x+ + + = ) ] x+ x+ x+ ( ) + + = 9( ) x+ Seja y = y + y + = 9y y 9y + y + = 0 Note que y' = é raiz Logo, Q(x) = y 0y +. Resolvendo a equação, teremos: y'' = ou y''' =. Substituindo y' =, y'' = e y''' =, temos: x+ y' = = (absurdo, pois x+ > 0 x [, ]) x+ y'' = = x+ = = x + x + = Então, x + = ou x + = x = x = (não serve) x+ y''' = = x+ = = x + x + = Então, x + = ou x + = x = x = 7 (não serve) S = {, }. Assim, a soma das raízes é + = 8. Daí, temos: f(x) = (x + )(x 0)(x ) f(x) = (x + ). x. (x ) 8 Matemática E
Erivaldo. Polinômios
Erivaldo Polinômios Polinômio ou Função Polinomial Definição: P(x) = a o + a 1.x + a 2.x 2 + a 3.x 3 +... + a n.x n a o, a 1, a 2, a 3,..., a n : Números complexos Exemplos: 1) f(x) = x 2 + 3x 7 2) P(x)
Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x
EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a
4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais
MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:
POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes
Matemática E Extensivo V. 8
Matemática E Extensivo V. 8 Resolva Aula 9 9.) D x + x 7x 6 = x = é raiz. Aula.) x + px + = Se + i é raiz, então i também é. 5 7 6 Soma = b a = p p = + i + i p = p = Q(x) = x + 5x + Resolvendo Q(x) =,
Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:
EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde
Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação
Polinômios 1. (Ufsc 015) Em relação à(s) proposição(ões) abaixo, é CORRETO afirmar ue: 01) Se o gráfico abaixo representa a função polinomial f, definida em por f(x) ax bx cx d, com a, b e c coeficientes
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito
MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas
Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =
Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de
Exercícios de Aprofundamento 2015 Mat - Polinômios
Exercícios de Aprofundamento 05 Mat - Polinômios. (Espcex (Aman) 05) O polinômio (x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( ) é a) 0. b) 4. c) 0. d) 4. e) 0. 5 f(x) x x x, uando dividido
Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner
Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio
Resoluções de Exercícios
Resoluções de Exercícios MATEMÁTICA V Capítulo 05 Noções de Probabilidade Parte II 3 o ) P(I B) = Observação: Diagrama de Árvore Considere as probabilidades seguintes a) P(I) = = P(II) b) P(B I) = e P(V
Matemática 1 a QUESTÃO
Matemática a QUESTÃO IME-007/008 Temos que: i) sen 3 x + cos 3 x = (senx + cosx) (sen x senxcosx + cos x) = (senx + cosx) ( senxcosx) ii) sen xcos x = ( + senxcosx) ( senxcosx) Então, a equação dada é
O problema proposto possui alguma solução? Se sim, quantas e quais são elas?
PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas
Matemática. Questão 1. 3 a série do Ensino Médio Turma. 2 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO
EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 2 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Dada a equação
Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n
POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:
Matemática E Extensivo V. 6
Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +
UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE
www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE
3 + =. resp: A=5/4 e B=11/4
ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 3º ENSINO MÉDIO - PROF. CARLINHOS BONS ESTUDOS! ASSUNTO : POLINÔMIOS 1) Identifique as expressões abaixo que são
MATEMÁTICA MÓDULO 4 PROBABILIDADE
PROBABILIDADE Consideremos um experimento com resultados imprevisíveis e mutuamente exclusivos, ou seja, cada repetição desse experimento é impossível prever com certeza qual o resultado que será obtido,
Matemática E Extensivo V. 6
Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. a) P() = ³ + 7. ² 7. P() = + 7 7
PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA
PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço
Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa
1 Projeto Jovem Nota 10 1. (Ufv 2000) Sabendo-se que o número complexo z=1+i é raiz do polinômio p(x)=2x +2x +x+a,calcule o valor de a. 2. (Ita 2003) Sejam a, b, c e d constantes reais. Sabendo que a divisão
CPV O cursinho que mais aprova na fgv
O cursinho que mais aprova na fgv FGV economia a Fase 0/dezembro/00 MATEMÁTICA 0 Na parte sombreada da figura, as extremidades dos segmentos de reta paralelos ao eixo y são pontos das representações gráficas
Como a PA é decrescente, a razão é negativa. Então a PA é dada por
Detalhamento das Soluções dos Exercícios de Revisão do mestre 1) A PA será dada por Temos Então a PA será dada por:, e como o produto é 440: Como a PA é decrescente, a razão é negativa. Então a PA é dada
Técnicas de. Integração
Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO 7.4 Integração de Funções Racionais por Frações Parciais Nessa seção, vamos aprender como integrar funções racionais reduzindo-as a uma soma de
Matemática E Intensivo V. 1
GABARITO Matemática E Intensivo V. Exercícios 0) 5 0) 5 Seja o termo geral = 3n, então: Par =, temos: a = 3. = 3 = Par =, temos: a = 3. = 6 = 5 Par = 3, temos: a 3 = 3. 3 = 9 = 8 Então a + a + a 3 = +
Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais
Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação
:: Matemática :: 1 lâmpada incandescente a cada 16,3 dias aproximadamente 1 lâmpada fluorescente a cada 128,6 dias aproximadamente 128,6 7,9 16,3
Questão 26 - Alternativa D Proporcionalidade Dados: Em 24 horas temos: 25 0,2 = 5 ml por minuto 25 gotas por minuto 0,2 ml por gota 24. 60 = 1440 minutos 5 ml _ 1 minuto x _ 1.440 minutos x = 5 1.440 =
CPV 82% de aprovação na ESPM
8% de aprovação na ESPM ESPM NOVEMBRO/00 Prova E MATemática. Assinale a alternativa cujo valor seja a soma dos valores das demais: a) 0 + b) 5% c) d) 75% de 3 e) log 0,5 a) 0 + + 3,5 5 b) 5 % 5 00 0 0,5
Álgebra. Polinômios.
Polinômios 1) Diga qual é o grau dos polinômios a seguir: a) p(x) = x³ + x - 1 b) p(x) = x c) p(x) = x 7 - x² + 1 d) p(x) = 4 ) Discuta o grau dos polinômios em função de k R: a) p(x) = (k + 1)x² + x +
Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa
1 1. (Fuvest 97) Suponha que o polinômio do 3 grau P(x) = x + x + mx + n, onde m e n são números reais, seja divisível por x - 1. a) Determine n em função de m. b) Determine m para que P(x) admita raiz
ASSUNTO:POLINÔMIOS. a) Do 3º grau resp: m ±6 b) Do 2º grau resp: m=6 c) do 1 º grau m=-6
ASSUNTO:POLINÔMIOS 1) Identifique as expressões abaixo que são polinômios: a) 3x 3-5x 2 +x-4 b) 5x -4 -x -2 +x-9 c) x 4-16 d)x 2 3 +2x+6 e) x 2 4 resp: a, c,d 2) Dado o polinômio P(x)= 2x 3-5x 2 +x-3.
Primeira Lista de Exercícios
Primeira Lista de Exercícios disciplina: Introdução à Teoria dos Números (ITN) curso: Licenciatura em Matemática professores: Marnei L. Mandler, Viviane M. Beuter Primeiro semestre de 2012 1. Determine
Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2
Polinômios. (ITA 2005) No desenvolvimento de (ax 2 2bx + c + ) 5 obtém-se um polinômio p(x) cujos coeficientes somam 32. Se 0 e são raízes de p(x), então a soma a + b + c é igual a (A) 2 (B) 4 (C) 2 (D)
a) Falsa. Por exemplo, para n = 2, temos 3n = 3 2 = 6, ou seja, um número par.
Matemática Unidade I Álgebra Série - Teoria dos números 01 a) Falsa. Por exemplo, para n =, temos 3n = 3 = 6, ou seja, um número par. b) Verdadeira. Por exemplo, para n = 1, temos n = 1 =, ou seja, um
RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR
RACIOCÍNIO LÓGICO AULA 11 ÁLGEBRA LINEAR I - POLINÔMIOS POLINÔMIOS E EQUAÇÕES ALGÉBRICAS 1 Definição Seja C o conjunto dos números complexos ( números da forma a + bi, onde a e b são números reais e i
. Determine os valores de P(1) e P(22).
Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja
Questão 1. Espaço para rascunho. Solução
Graduação FGV-Rio Vestibular 007 Questão No primeiro turno da eleição para governador em certo estado, suponha que todas as urnas tenham, aproximadamente, o mesmo número de votos. Tendo sido apuradas 75%
EXTENSIVO APOSTILA 11 EXERCÍCIOS DE SALA MATEMÁTICA A
EXTENSIVO APOSTILA EXERCÍCIOS DE SALA MATEMÁTICA A AULA 0 0) Sendo PC Preço de Custo PV Preço de Venda PP Preço de Venda Promocional temos: PV,50 PC PP 0,80 PV Substituindo: PP = 0,80,50 PC PP =,0 PC No
1 Definição Clássica de Probabilidade
Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica
CPV - especializado na ESPM
- especializado na ESPM ESPM NOVEMBRO/006 PROVA E MATEMÁTICA 0. Entre as alternativas abaixo, assinale a de maior valor: a) 8 8 b) 6 c) 3 3 d) 43 6 e) 8 0 Das alternativas a) 8 8 = 3 3 b) 6 = 8 c) 3 3
Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que:
Material by: Caio Guimarães Polinômios A seguir, apresento uma lista de vários exercícios propostos (com gabarito) sobre polinômios. Os exercícios são para complementar a vídeo-aula a respeito de polinômios
MATEMÁTICA CADERNO 6 CURSO E FRENTE 1 ÁLGEBRA. Módulo 24 Números Complexos. Módulo 25 Potências Naturais de i e Forma Algébrica
MATEMÁTICA CADERNO 6 CURSO E FRENTE ÁLGEBRA Módulo 4 Números Complexos ) (5 + 7i) ( i) = 5 0i + i 4i = 5 + i + 4 = 9 + i ) f(z) = z z + f( i) = ( i) ( i) + = = i + i + i + = i ) x + (y )i = y 4 + xi, (x
Resolução das Questões Discursivas
COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 008-010 Prova de Matemática Resolução das Questões Discursivas São apresentadas abaixo possíveis soluções
Aula 10 - Erivaldo. Probabilidade
Aula 10 - Erivaldo Probabilidade Experimento determinístico Dizemos que um experimento é determinístico quando repetido em condições semelhantes conduz a resultados idênticos. Experimento aleatório Dizemos
Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal
Probabilidade Tópicos Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Conjuntos Conjunto: Na matemática, um conjunto é uma coleção de elementos com características
36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase
36ª Olimpíada Brasileira de Matemática GABARITO Segunda Fase Soluções Nível 2 Segunda Fase Parte A CRITÉRIO DE CORREÇÃO: PARTE A Na parte A serão atribuídos 5 pontos para cada resposta correta e a pontuação
MATEMÁTICA CADERNO 3 SEMIEXTENSIVO E FRENTE 1 ÁLGEBRA. n Módulo 9 Sistemas Lineares II
MATEMÁTICA CADERNO SEMIEXTENSIVO E Assim: A tem R$,, B tem R$ 8,, C tem R$ 9, e D tem R$ 6,. FRENTE ÁLGEBRA n Módulo 9 Sistemas Lineares II x + y + z = x + y + z = ) y + z = y + z = 6z = 8 z = ) x + y
Matemática E Extensivo V. 7
Matemática E Etensivo V. 7 Eercícios ) B ) A P() = ³ + a² + b é divisivel por. Pelo teorema do resto, = é raiz de P(). P() = ³ + a. ² + b a + b = Da mesma maneira, P() é divisível por. Pelo teorema do
r O GABARITO - QUALIFICAÇÃO - Março de 2013
GABARITO - QUALIFICAÇÃO - Março de 013 Questão 1. (pontuação: 1,5) É dado um retângulo ABCD tal que em seu interior estão duas circunferências tangentes exteriormente no ponto T, como mostra a figura abaixo.
TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 5. Questão 3. alternativa C. alternativa E. alternativa B.
Questão TIPO DE PROVA: A Se um número natural n é múltiplo de 9ede, então, certamente, n é: a) múltiplo de 7 b) múltiplo de 0 c) divisível por d) divisível por 90 e) múltiplo de Se n é múltiplo de 9 e
Módulo Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 2 ano/e.m.
Módulo Binômio de Newton e o Triângulo de Pascal Desenvolvimento Multinomial. 2 ano/e.m. Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 1 Exercícios Introdutórios Exercício 1.
MATEMÁTICA - CEFET2013 Professor Marcelo QUESTÃO 01
MATEMÁTICA - CEFET013 Professor Marcelo QUESTÃO 01 Em um plano, uma reta que passa pelo ponto P(8,10) tangencia a circunferência x +y 4x 6y 3 = 0 no ponto A. A medida do segmento PA, em unidades de comprimento,
8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau
8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau 9. Quais das seguintes funções são polinomiais? Justifique. a) ( ) b) ( ) c) ( ) d) ( ) e) ( ) 10. Sendo ( ), calcule:
PLANO DE AULA POLINÔMIOS
Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus avançado Sombrio Curso de Licenciatura em Matemática PLANO DE AULA POLINÔMIOS 1 Identificação
Aula 16 - Erivaldo. Probabilidade
Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar
POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3
POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz
MATEMÁTICA SARGENTO DA FAB
MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr
2 a Lista de PE Solução
Universidade de Brasília Departamento de Estatística 2 a Lista de PE Solução 1. a Ω {(d 1, d 2, m : d 1, d 2 {1,..., 6}, m {C, K}}, onde C coroa e K cara. b Ω {0, 1, 2,...} c Ω {(c 1, c 2, c 3, c 4 : c
Polinômios irredutíveis
Polinômios irredutíveis Sérgio Tadao Martins 23 de janeiro de 2009 1 Introdução: polinômios em uma variável Um polinômio de grau n em uma variável x é uma expressão da forma p(x) = a 0 + a 1 x + a 2 x
CRITÉRIO DE EISENSTEIN. Marília Martins Cabral Orientador: Igor Lima
CRITÉRIO DE EISENSTEIN 1 Marília Martins Cabral Orientador: Igor Lima NOTAÇÕES a b a divide b. a b a não divide b x n a variável x elevado a potência n. a n coeficiente de x n 2 INTRODUÇÃO: POLINÔMIOS
Polos Olímpicos de Treinamento. Aula 7. Curso de Álgebra - Nível 3. Miscelânea sobre raízes de polinômios II
Polos Olímpicos de Treinamento Curso de Álgebra - Nível 3 Prof. Cícero Thiago / Prof. Marcelo Aula 7 Miscelânea sobre raízes de polinômios II Definição : Seja P(x) = a n x n +a n x n +...+a x+a 0 um polinômio
PROBABILIDADE. ENEM 2016 Prof. Marcela Naves
PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.
MATEMÁTICA MARATONA AFA 2012 SIMULADO AFA
MARATONA AFA 0 SIMULADO AFA. Duas cidades A e B, que distam entre si 6 km, estão ligadas por uma estrada de ferro de linha dupla. De cada uma das estações, partem trens de 3 em 3 minutos. Os trens trafegam
o) (V) a) D (6) = 6, 3, 2, 4. a) D (220) = 220, 110, 55, 44, 22, 20, 11, 10, 5, 4, 2, 16q 1 = 18q 2 8q 1 = 9q 2 (I) 9q 1 + 9q 2 = 9 68
Matemática 5 aula. DIVISIBILIDADE a) N = 0 = 8. 9. 5 =.. 5 Seja n o número de divisores positivos, n = ( + )( + )( + ) = 4 b) Se n é o número de divisores negativos, n 4. Logo, a quantidade total é 48.
COMENTÁRIOS DA PROVA DA PETROBRAS 2011 ADMINISTRADOR PROF PIO
OMENTÁRIOS DA PROVA DA PETRORAS 2011 ADMINISTRADOR PROF PIO Prezados concurseiros, segue abaixo os comentários das questões de lógica, matemática financeira e estatística propostas pela ESGRANRIO no último
NOTAÇÕES. R : conjunto dos números reais C : conjunto dos números complexos
NOTAÇÕES R : conjunto dos números reais C : conjunto dos números complexos i : unidade imaginária: i = 1 z : módulo do número z C Re(z) : parte real do número z C Im(z) : parte imaginária do número z C
No lançamento de uma moeda, a probabilidade de ocorrer cara ou coroa é a mesma. Como se calcula a probabilidade de determinado evento?
Probabilidade Introdução Dentro de certas condições, é possível prever a que temperatura o leite ferve. Esse tipo de experimento, cujo resultado é previsível, recebe o nome de determinístico. No entanto,
XIX Semana Olímpica de Matemática. Nível 3. Polinômios em Z[x] Matheus Secco
XIX Semana Olímpica de Matemática Nível 3 Polinômios em Z[x] Matheus Secco O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Polinômios em Z[x] N3 Professor Matheus Secco 1 Ferramentas
Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano
Módulo de Equações do Segundo Grau Relações entre coeficientes e raízes. Nono Ano Relações entre Coeficientes e Raízes. Exercícios Introdutórios Exercício. Fazendo as operações de soma e de produto entre
ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR
ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C
Processos Estocásticos
Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer
FGV ADM 04/junho/2017
FGV ADM 04/junho/07 MATEMÁTICA APLICADA 0. a) A Demonstre que, se escolhermos três números inteiros positivos quaisquer, sempre existirão dois deles cuja diferença é um número múltiplo de. b) Considere
Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição
Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função polinomial Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Função polinomial Função polinomial:
Matemática Unidade I Álgebra Série 15 - Progressão geométrica. a 4 = a 1 q 3 54 = 2 q 3 q 3 = 27 q = 3. a 5 = a 1 q 4 a 5 = a 5 = 162
0 a 4 = a q 3 54 = q 3 q 3 = 7 q = 3 a 5 = a q 4 a 5 = 3 4 a 5 = 6 Resposta: C 0 a 8 = a q 4 43 = 3 q6 3 5 3 = q 6 q 6 = 3 6 Como os termos são positivos, q > 0; assim: q = 3 a 5 = a q 3 a 5 = 3 33 a 5
Visite : e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180
) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, então temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d) P(0) = e) N.D.A. ) (UFC) Seja P(x) um
)81'$d 2 *(7Ò/,2 9$5*$6 9(67,%8/$5 5(62/8d 2 ( &20(17È5, )$ 0$5,$ $1721,$ *289(,$
)81'$d 2 *(7Ò/,2 9$*$6 9(67,%8/$ (62/8d 2 ( &20(17È,26 32 32)$ 0$,$ $1721,$ *289(,$ QUESTÃO 01. Os números inteiros x e y satisfazem a equação 2 x 3 2 x 1 y 3 3. y. Então x y é: a) 8 b) c) 9 d) 6 e) 7
Como o número de convidados de Daniel é igual à soma do número de convidados de Bernardo e Carlos, temos que D B C. (Equação 1)
UFJF MÓDULO III DO PISM TRIÊNIO 01-01 PROVA DE MATEMÁTICA Questão 1 Quatro formandos da UFJF, André, Bernardo, Carlos e Daniel, se juntaram para organizar um churrasco O número de convidados de Daniel
Dicas de Matemática Douglas
Dicas de Matemática Douglas 1) De um depósito de contém 79 litros de ácido puro, foram extraídos a litros e o depósito recompletado com água.depois de misturados até que a solução se tornasse homogênea,
XX OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE - Em 19/09/2009
XX OLIMPÍADA DE MATEMÁTICA DO ESTADO DO RIO GRANDE DO NORTE - Em 19/09/2009 PROVA DA SEGUNDA ETAPA NÍVEL I (Estudantes da 6 a e 7 a Séries) Problema 1 A expressão E, a seguir, é o produto de 20 números:
MATEMÁTICA IME a a.a a r a a 9r a 2a r r a 9a r r 7a r 0 r 7a. Questão 1.
MATEMÁTICA IME 06 Questão. Os inteiros a, a, a 3,..., a 5 estão em PA com razão não nula. Os termos a, a e a 0 estão em PG, assim como a 6, a j e a 5. Determine j. Solução: Sendo a PA: a, a,..., a 5 e
( )( ) valor do perímetro do painel, temos então que há 2( 8 + 9)
OBMEP 0 a Fase N3Q Solução a) O valor da área de cada painel é igual ao total de lâmpadas vermelhas que o mesmo usa. Logo, em um painel de 5 metros por 8 metros há 5 8 = 40 lâmpadas vermelhas. b) Um painel
Matemática. 3-3) As diagonais do cubo medem x / ) As diagonais da face do cubo medem 2 y 1/3. Resposta: VFFVV.
Matemática 01. Seja x a área total da superfície de um cubo, e y, o volume do mesmo cubo. Analise as afirmações a seguir, considerando essas informações. 0-0) Se x = 54 então y = 27. 1-1) 6y = x 3 2-2)
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias
Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Matemática Atividades para Estudos Autônomos Data: 5 / 6 / 2017 Aluno(a): N o : Turma: 1) (Ufes)
RREGUOJMatemática Régis Cortes. Matemática Régis Cor POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD
POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD 1 Propriedades importantes: P1 - Toda equação algébrica de grau n possui exatamente n raízes. Exemplo: a equação x 3 - x = 0 possui 3 raízes a saber: x = 0
TIPO DE PROVA: A. Questão 1. Questão 2. Questão 3. Questão 4. alternativa A. alternativa B. alternativa D
TIPO DE PROVA: A Questão Se o dobro de um número inteiro é igual ao seu triplo menos 4, então a raiz quadrada desse número a) b) c) d) 4 e) 5 Sendo o número inteiro em questão, temos: 4 4 Logo a raiz quadrada
Seu pé direito nas melhores Faculdades
10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,
Solução Comentada da Prova de Matemática
Solução Comentada da Prova de Matemática 01. Considere, no plano cartesiano, os pontos P(0,1) e Q(,3). A) Determine uma equação para a reta mediatriz do segmento de reta PQ. B) Determine uma equação para
CAPÍTULO 3 PROBABILIDADE
CAPÍTULO 3 PROBABILIDADE 1. Conceitos 1.1 Experimento determinístico Um experimento se diz determinístico quando repetido em mesmas condições conduz a resultados idênticos. Exemplo 1: De uma urna que contém
DIVISÃO DE POLINÔMIOS
DIVISÃO DE POLINÔMIOS Prof. Patricia Caldana A divisão de polinômios estrutura-se em um algoritmo, podemos enuncia-lo como sendo: A divisão de um polinômio D(x) por um polinômio não nulo E(x), de modo
Assunto: Conjuntos. Assunto: Funções DATA: 01/07/17
DATA: 01/07/17 Assunto: Conjuntos 1) (UECE-2004.2) Das 1200 pessoas intrevistadas numa pesquisa eleitoral, 55% eram mulheres. Das mulheres, 35% eram casadas. O número de mulheres casadas participantes
Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2
Matemática Frente II CAPÍTULO 22 EQUAÇÕES POLINOMIAIS 1 INTRODUÇÃO Nos capítulos anteriores, durante o estudo de polinômios, já estudamos alguns teoremas que nos ajudam a encontrar as raízes de polinômios.
Polinómios. Integração de Fracções Racionais
Polinómios. Integração de Fracções Racionais Escola Superior de Tecnologia e de Gestão, Instituto Politécnico de Bragança. Mário Abrantes 2016 1 / 17 Índice de Matérias 1. Polinómios Denição Factorização
RASCUNHO. a) 1250 m d) 500 m b) 250 m e) 750 m c) 2500 m
ª QUESTÃO Numa figura, desenhada em escala, cada 0, cm equivale a m. A altura real de uma montanha que nesse desenho mede mm, é igual a: a) 0 m d) 00 m b) 0 m e) 70 m c) 00 m ª QUESTÃO Suponha que os ângulos
Questão 2. Questão 1. Questão 3. alternativa D. alternativa D. alternativa B
NOTAÇÕES C: conjunto dos números compleos. Q: conjunto dos números racionais. R: conjunto dos números reais. Z: conjunto dos números inteiros. N {0,,,,...}. N {,,,...}. 0: conjunto vazio. A \ B { A; B}.
2 Uma caixa d'água cúbica, de volume máximo, deve ser colocada entre o telhado e a laje de uma casa, conforme mostra a figura ao lado.
MATEMÁTICA Uma pessoa possui a quantia de R$7.560,00 para comprar um terreno, cujo preço é de R$5,00 por metro quadrado. Considerando que os custos para obter a documentação do imóvel oneram o comprador
MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00
MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde
MATEMÁTICA CADERNO 6 CURSO E FRENTE 1 ÁLGEBRA. n Módulo 24 Números Complexos. n Módulo 25 Potências Naturais de i e Forma Algébrica
MATEMÁTICA CADERNO 6 CURSO E FRENTE ÁLGEBRA n Módulo 4 Números Complexos ) (5 + 7i) ( i) = 5 0i + i 4i = 5 + i + 4 = 9 + i ) f(z) = z z + f( i) = ( i) ( i) + = = i + i + i + = i ) x + (y )i = y 4 + xi,
COMENTÁRIO DA PROVA DE MATEMÁTICA. Professores Adilson Longen, Carlos Walter Kolb, Emerson Marcos Furtado e Oslei Domingos
COMENTÁRIO DA PROVA DE MATEMÁTICA Professores Adilson Longen, Carlos Walter Kolb, Emerson Marcos Furtado e Oslei Domingos Utilizamos a seguir alguns critérios para comentar a prova de Matemática da ª fase
