Aula 16 - Erivaldo. Probabilidade

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Aula 16 - Erivaldo. Probabilidade"

Transcrição

1 Aula 16 - Erivaldo Probabilidade

2 Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar um dado o observar o número que está na face voltada para cima. 2) Sortear um número, entre os 20 primeiros naturais positivos.

3 Probabilidade Espaço Amostral Conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1) Experimento: Lançar um dado honesto Espaço Amostral: E = { 1, 2, 3, 4, 5, 6 } 2) Experimento: Lançar uma moeda honesta Espaço Amostral: E = { cara, coroa }

4 Probabilidade Evento Subconjunto do espaço amostral Exemplos: 1) Aparecer um número par no lançamento de um dado. Espaço Amostral: E = { 1, 2, 3, 4, 5, 6 } Evento: A = { 2, 4, 6 }

5 Probabilidade Evento Subconjunto do espaço amostral Exemplos: 2) Obter-se um número primo no sorteio de um número, entre os 20 primeiros naturais positivos. Espaço Amostral: E = { 1, 2,...,19, 20 } Evento: A = { 2, 3, 5, 7, 11, 13, 17, 19 }

6 Problema 01 Uma urna contém 20 bolinhas numeradas de 1 a 20. Uma bolinha é escolhida e observado seu número. Descreva os seguintes eventos: a) O número obtido é par: A = { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 } b) O número obtido é primo: c) O número obtido é maior que 15: d) O número obtido é múltiplo de 2 e de 3: B = { 2, 3, 5, 7, 11, 13, 17, 19 } C = { 16, 17, 18, 19, 20 } D = { 6, 12, 18 } e) O número obtido é múltiplo de 6 ou de 9: E = { 6, 9, 12, 18 }

7 Problema 02 Um dado é lançado e observa-se o número da face superior. Determine a probabilidade desse número ser par. Resolução Intuitiva: São seis resultados e metade deles é par, portanto: A probabilidade será de: 50%

8 Problema 02 Um dado é lançado e observa-se o número da face superior. Determine a probabilidade desse número ser par. Resolução : Espaço Amostral: E = { 1, 2, 3, 4, 5, 6 } n(e) = 6 Evento: A = { 2, 4, 6 } n(a) = 3 Probabilidade: a probabilidade é de três para seis P(A) = n(a) n(e) P(A) = 3 6 P(A) = 1 2 = 0,5 P(A) = 50%

9 Probabilidade Definição : Sendo: n(e) : número de elementos do espaço amostral. n(a) : número de elementos do evento A. A probabilidade de ocorrer o evento A é dada por: P(A) = n(a) n(e)

10 Problema 03 Uma urna contém 10 bolinhas numeradas de 1 a 10. Uma bolinha é escolhida e observado seu número. Determine a probabilidade de ocorrer: a) um número maior que 4. b) um número menor que 5. c) um número menor que 11. d) um número maior que 15.

11 Problema 03 Uma urna contém 10 bolinhas numeradas de 1 a 10. Uma bolinha é escolhida e observado seu número. Determine a probabilidade de ocorrer: a) um número maior que 4. Espaço Amostral: E = { 1, 2, 3,..., 10 } n(e) = 10 Evento: A = { 5, 6, 7, 8, 9, 10 } n(a) = 6 Probabilidade: P(A) = n(a) n(e) P(A) = 6 10 P(A) = 3 5 = 0, 6 P(A) = 60%

12 Problema 03 Uma urna contém 10 bolinhas numeradas de 1 a 10. Uma bolinha é escolhida e observado seu número. Determine a probabilidade de ocorrer: b) um número menor que 5. Espaço Amostral: E = { 1, 2, 3,..., 10 } n(e) = 10 Evento: A = { 1, 2, 3, 4 } n(a) = 4 Probabilidade: P(A) = n(a) n(e) P(A) = 4 10 P(A) = 2 5 = 0, 4 P(A) = 40%

13 Problema 03 Uma urna contém 10 bolinhas numeradas de 1 a 10. Uma bolinha é escolhida e observado seu número. Determine a probabilidade de ocorrer: c) um número menor que 11. Espaço Amostral: E = { 1, 2, 3,..., 10 } n(e) = 10 Evento: A = { 1, 2, 3,..., 10 } n(a) = 10 Probabilidade: P(A) = n(a) n(e) P(A) = P(A) = 1 Evento Certo P(A) = 100%

14 Problema 03 Uma urna contém 10 bolinhas numeradas de 1 a 10. Uma bolinha é escolhida e observado seu número. Determine a probabilidade de ocorrer: d) um número maior que 15. Espaço Amostral: E = { 1, 2, 3,..., 10 } n(e) = 10 Evento: A = { } = n(a) = 0 Probabilidade: P(A) = n(a) n(e) P(A) = 0 10 P(A) = 0 Evento Impossível P(A) = 0%

15 Probabilidade Observações: Sendo E o espaço amostral de um experimento aleatório e A um evento deste espaço, então: i) P(E) = 1 ii) P( ) = 0 iii) 0 P(A) 1 iv) P(A) + P(A) = 1

16 Problema 04 (UELONDRINA) Uma senhora tem quatro filhos: Carlos, que tem 6 filhos, André que tem 5, Norma que tem 4 e José que tem 5. Essa senhora quer dar um objeto a um de seus netos e resolveu fazê lo por sorteio. Atribuiu um número distinto a cada neto, escreveu cada número em um pedaço de papel, colocou os papéis numa urna e retirou um deles ao acaso. A probabilidade de que o neto sorteado seja filho de Carlos é: a) 30% b) 32% c) 45% d) 50% e) 60%

17 Problema 04 Uma senhora tem quatro filhos: Carlos, que tem 6 filhos, André que tem 5, Norma que tem 4 e José que tem 5. A probabilidade de que o neto sorteado seja filho de Carlos é: a) 30% b) 32% Resolução c) 45% d) 50% e) 60% São, no total, 20 netos, dos quais 6 são filhos de Carlos. Assim: Probabilidade: P(fC) = 6 20 P(A) = 30%

18 Problema 05 Em um grupo de 80 jovens, 16 praticam futebol, natação e voleibol; 24 praticam futebol e natação; 30 praticam futebol e voleibol; 22 praticam natação e voleibol; 16 praticam outros esportes. A probabilidade de escolher, ao acaso, um jovem desse grupo que pratique apenas um dos três esportes citados é de x%. O valor de x é... Futebol, Natação e Vôlei 16 Resolução: 24 Futebol e Natação Futebol e Vôlei Natação e Vôlei Outros esportes Total

19 Problema 05 F, N e V 16 F e N 24 F e V 30 N e V 22 F a b N Outros 16 Total c V Total = 80 a + b + c = 80

20 Problema 05 a + b + c = 80 a + b + c = 20 A probabilidade de escolher, ao acaso, um jovem desse grupo que pratique apenas um dos três esportes citados é de x%. O valor de x é... Total de jovens: 80 x = 25 Jovens que praticam apenas um esporte: 20 Probabilidade: P(A) = P(A) = 25%

21 Problema 06 Um dado verde e outro violeta serão lançados sobre uma mesa, observando-se os números contidos nas faces voltadas para cima. Determine: a) A probabilidade de que a soma dos números seja 6. b) A probabilidade do número encontrado no dado verde seja menor do que o obtido no violeta.

22 Problema 06 Um dado verde e outro violeta serão lançados sobre uma mesa, observando-se os números contidos nas faces voltadas para cima. Resolução : Espaço Amostral: 36 pares (1,1) (1,2) (1,3) (2,1) (4,5) (6,6)

23 Problema 06 Determine: a) A probabilidade de que a soma dos números seja 6. Resolução : Espaço Amostral: 36 pares Evento (soma 6) : {(1,5) ; (5,1) ; (2,4) ; (4,2) ; (3,3)} Probabilidade: P(A) = 5 36

24 Problema 06 Determine: b) A probabilidade do número encontrado no dado verde seja menor do que o obtido no violeta. Resolução : Espaço Amostral: 36 pares Probabilidade: P = = (1,1) (1,2) (1,3) (2,1) (4,5) (6,6)

25 Problema 07 (VUNESP) Dois jogadores A e B vão lançar um par de dados. Eles combinam que, se a soma dos números dos dados for 5, A ganha e se essa for 8, B é quem ganha. Os dados são lançados. Sabe se que A não ganhou. Qual a probabilidade de B ter ganho? a)10/36 b) 5/32 c) 5/36 d) 5/35 Resolução: Espaço Amostral : 36 pares Para A ganhar: (1,4) ; (4,1) ; (2,3) ; (3,2) Para B ganhar: (2,6) ; (6,2) ; (3,5) ; (5,3) ; (4,4)

26 Problema 07 Sabe se que A não ganhou. Qual a probabilidade de B ter ganho? a)10/36 b) 5/32 c) 5/36 d) 5/35 Resolução: Espaço Amostral : 36 pares Para A ganhar: (1,4) ; (4,1) ; (2,3) ; (3,2) Para B ganhar: (2,6) ; (6,2) ; (3,5) ; (5,3) ; (4,4) Se A não ganhou, então o Espaço Amostral é de: 32 pares P(B / A) = 5 32

27 Problema 08 No lançamento de um dado honesto, qual aprobabilidade de sair um número ímpar, sabendo que o resultado é um número primo. Resolução:

28 Problema 09 Uma loja de equipamentos automotivos realizou pesquisa durante um mês para avaliar o perfil dos seus clientes em relação ao sexo e a faixa etária (jovem ou adulto), e obteve os seguintes resultados : - 80% do total é do sexo masculino ; - 40% do total são jovens ; - 50% do total de mulheres é adulta ; Com base nos dados acima determine a probabilidade de, num sorteio realizado entre os clientes pesquisados, obtermos: a) um cliente adulto; b) um cliente jovem e do sexo masculino ; c) um cliente jovem sabendo que é do sexo masculino.

29 Problema 09 Resolução: Dados: - 80% do total é do sexo masculino ; - 40% do total são jovens ; - 50% do total de mulheres é adulta ; Jovem Adulto Total Homem Mulher Total

30 Problema 09 Homem Mulher Total Jovem Adulto Total a) um cliente adulto. P(A) = = 60% b) um cliente jovem e do sexo masculino. P(H) = = 30% c) um cliente jovem sabendo que é do sexo masculino. P(J / H) = = 3 8

31 Problema 09 Jovem Adulto Homem Mulher Total Total P(A / M) = = 1 2 = 50% P(H / A) = = 5 6 = 83,3%

32 Problema 10 Três cavalos A,B e C disputam uma corrida. É duas vezes mais provável que A vença do que B e duas vezes mais provável que B vença do que C. Quais são as suas respectivas probabilidades de vencer? Resolução: Probabilidades: P(C) = x P(B) = 2x P(A) = 4x P(A) + P(B) + P(C) = 1 x + 2x + 4x = 1 x = 1/7 Portanto: P(C) = 1/7 P(B) = 2/7 P(A) = 4/7

33 Aula 16 - Erivaldo FIM

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas?

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas? TERCEIRA LISTA DE EXERCÍCIOS DE PROBABILIDADE CURSO: MATEMÁTICA PROF. LUIZ CELONI 1) Dê um espaço amostral para cada experimento abaixo. a) Uma urna contém bolas vermelhas (V), bolas brancas (B) e bolas

Leia mais

Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento.

Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento. Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento. número de casos favoráveis probabilidade número de casos possíveis Nessa definição convém

Leia mais

1- INTRODUÇÃO 2. CONCEITOS BÁSICOS

1- INTRODUÇÃO 2. CONCEITOS BÁSICOS 1 1- INTRODUÇÃO O termo probabilidade é usado de modo muito amplo na conversação diária para sugerir um certo grau de incerteza sobre o que ocorreu no passado, o que ocorrerá no futuro ou o que está ocorrendo

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

Coordenadoria de Matemática. Apostila de Probabilidade

Coordenadoria de Matemática. Apostila de Probabilidade Coordenadoria de Matemática Apostila de Probabilidade Vitória ES 1. INTRODUÇÃO CAPÍTULO 03 Quando investigamos algum fenômeno, verificamos a necessidade de descrevê-lo por um modelo matemático que permite

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

Exercícios sobre probabilidades Matemática aula por aula Benigno Barreto Filho/Cláudio Xavier Toledo da Silva vol. 2 Ensino Médio.

Exercícios sobre probabilidades Matemática aula por aula Benigno Barreto Filho/Cláudio Xavier Toledo da Silva vol. 2 Ensino Médio. Atividade sobre Probabilidades 4 o bim. 2009 2 os anos 1) No lançamento simultâneo de 2 dados, considere as faces voltadas para cima e determine a) espaço amostral S. b) evento E 1 : números cuja soma

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

Caderno 2: 55 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)

Caderno 2: 55 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/1.ª Fase Caderno 2: 6 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

Matemática Ficha de Apoio Modelos de Probabilidade - Introdução

Matemática Ficha de Apoio Modelos de Probabilidade - Introdução Matemática Ficha de Apoio Modelos de Probabilidade - Introdução 12ºano Introdução às probabilidades No final desta unidade, cada aluno deverá ser capaz de: - Identificar acontecimentos com conjuntos e

Leia mais

Professor Mauricio Lutz PROBABILIDADE

Professor Mauricio Lutz PROBABILIDADE PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO-

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- Matemática Discreta 2009.10 Exercícios CAP2 pg 1 PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- EXCLUSÃO 1. Quantas sequências com 5 letras podem ser escritas usando as letras A,B,C? 2. Quantos

Leia mais

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS

UNITAU APOSTILA PROBABILIDADES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ ALI UNITAU APOSTILA PROAILIDADES ibliografia: Curso de Matemática Volume Único Autores: ianchini&paccola Ed. Moderna Matemática Fundamental - Volume Único Autores:

Leia mais

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO

Raciocínio Lógico Exercícios. Prof. Pacher A B P(A B) P(A/B) = P(B) n(a) P(A) = n(s) PROBABILIDADE DECORRÊNCIA DA DEFINIÇÃO PROBBILIDDE Introdução teoria da probabilidade é o ramo da matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos aleatórios ou não determinísticos.

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1 INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA (CAp/UERJ) MATEMÁTICA ENSINO MÉDIO - PROF. ILYDIO SÁ CÁLCULO DE PROBABILIDADES PARTE 1 1. Origem histórica É possível quantificar o acaso? Para iniciar,

Leia mais

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem Matemática Discreta - 2010/11 Cursos: Engenharia Informática, Informática de Gestão DEPARTAMENTO de MATEMÁTICA ESCOLA SUPERIOR de TECNOLOGIA e de GESTÃO - INSTITUTO POLITÉCNICO de BRAGANÇA Ficha Prática

Leia mais

Matemática. Resolução das atividades complementares. M3 Conjuntos

Matemática. Resolução das atividades complementares. M3 Conjuntos Resolução das atividades complementares Matemática M Conjuntos p. (UEMG) Numa escola infantil foram entrevistadas 8 crianças, com faia etária entre e anos, sobre dois filmes, e. Verificou-se que 4 delas

Leia mais

a) Quantos estudantes não estudam nenhum desses idiomas? b) Quantos estudantes estudam apenas um desses idiomas?

a) Quantos estudantes não estudam nenhum desses idiomas? b) Quantos estudantes estudam apenas um desses idiomas? Conjuntos 1- Conjuntos A, B e C são tais que A possui 10 elementos; A U B, 16 elementos; A U C, 15 elementos; A B, 5 elementos; A C, 2 elementos; B C, 6 elementos; e A B C, 2 elementos. Calcule o número

Leia mais

PROBABILIDADE: DIAGRAMAS DE ÁRVORES

PROBABILIDADE: DIAGRAMAS DE ÁRVORES PROBABILIDADE: DIAGRAMAS DE ÁRVORES Enunciados dos problemas Ana Maria Lima de Farias Departamento de Estatística (GET/UFF) 1. Na gincana anual do Colégio Universitário, 60% dos alunos presentes são do

Leia mais

Estatística Analítica

Estatística Analítica Teste de Hipótese Testes Estatísticos 2 Teste de Hipótese Testes Estatísticos 3 1 Teste de Hipótese Testes Estatísticos 4 Principais Testes: Teste Qui-quadrado Teste T de Student Teste ANOVA Teste de Correlação

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

Matemática. A probabilidade pedida é p =

Matemática. A probabilidade pedida é p = a) Uma urna contém 5 bolinhas numeradas de a 5. Uma bolinha é sorteada, tem observado seu número, e é recolocada na urna. Em seguida, uma segunda bolinha é sorteada e tem observado seu número. Qual a probabilidade

Leia mais

ARRANJO E COMBINAÇÃO. n! n,p. =, com n p. (n - p)! 4! 4! 4,3 = = = 4! = 4.3.2.1 = 24 (4-3)! 1! Prof. Rivelino Matemática Básica TIPOS DE AGRUPAMENTOS

ARRANJO E COMBINAÇÃO. n! n,p. =, com n p. (n - p)! 4! 4! 4,3 = = = 4! = 4.3.2.1 = 24 (4-3)! 1! Prof. Rivelino Matemática Básica TIPOS DE AGRUPAMENTOS RRNJO E COMBINÇÃO TIPOS DE GRUPMENTOS Problema 01 n! n,p =, com n p. (n - p)! No problema 01, devemos contar quantas sequências de três seleções podemos formar com as quatro seleções semifinalistas. 4!

Leia mais

Caique Tavares. Probabilidade Parte 1

Caique Tavares. Probabilidade Parte 1 Caique Tavares Probabilidade Parte 1 Probabilidade: A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais

Leia mais

I. Experimentos Aleatórios

I. Experimentos Aleatórios A teoria do azar consiste em reduzir todos os acontecimentos do mesmo gênero a um certo número de casos igualmente possíveis, ou seja, tais que estejamos igualmente inseguros sobre sua existência, e em

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística AMEI Escolar Matemática 9º Ano Probabilidades e Estatística A linguagem das probabilidades As experiências podem ser consideradas: - aleatórias ou casuais: quando é impossível calcular o resultado à partida;

Leia mais

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE

CAPÍTULO 04 NOÇÕES DE PROBABILIDADE CAPÍTULO 0 NOÇÕES DE PROBABILIDADE. ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. No lançamento de uma moeda perfeita (não viciada) o espaço amostral é S =

Leia mais

AV2 - MA 12-2011 UMA SOLUÇÃO

AV2 - MA 12-2011 UMA SOLUÇÃO Questão 1. Considere os caminhos no plano iniciados no ponto (0, 0) com deslocamentos paralelos aos eixos coordenados, sempre de uma unidade e no sentido positivo dos eixos x e y (não se descarta a possibilidade

Leia mais

Introdução aos Processos Estocásticos - Independência

Introdução aos Processos Estocásticos - Independência Introdução aos Processos Estocásticos - Independência Eduardo M. A. M. Mendes DELT - UFMG Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal de Minas Gerais emmendes@cpdee.ufmg.br Eduardo

Leia mais

Raciocínio Lógico 1 Probabilidade

Raciocínio Lógico 1 Probabilidade PROBABILIDADE 1. CONCEITOS INICIAIS A Teoria da Probabilidade faz uso de uma nomenclatura própria, de modo que há três conceitos fundamentais que temos que passar imediatamente a conhecer: Experimento

Leia mais

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma

Leia mais

1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados:

1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: 1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: A - 48% A e B - 18% B - 45% B e C - 25% C - 50% A e C - 15% nenhuma das

Leia mais

Aula de Exercícios - Teorema de Bayes

Aula de Exercícios - Teorema de Bayes Aula de Exercícios - Teorema de Bayes Organização: Rafael Tovar Digitação: Guilherme Ludwig Primeiro Exemplo - Estagiários Três pessoas serão selecionadas aleatóriamente de um grupo de dez estagiários

Leia mais

CENTRO EDUCACIONAL NOVO MUNDO Matemática

CENTRO EDUCACIONAL NOVO MUNDO  Matemática Desafio de Matemática 3 ano EF 2D 2014 1/ 6 CENTRO EDUCACIONAL NOVO MUNDO www.cenm.com.br 2 o DESAFIO CENM - 2014 Matemática Direção: Ano: 3 Ef 1. Em uma sala de aula, a professora realizou uma pesquisa

Leia mais

Conceitos Básicos de Probabilidade

Conceitos Básicos de Probabilidade Conceitos Básicos de Probabilidade Como identificar o espaço amostral de um experimento. Como distinguir as probabilidades Como identificar e usar as propriedades da probabilidade Motivação Uma empresa

Leia mais

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos

Leia mais

Heredogramas. Capítulo 2 Item 4 Pág. 214 a 216. 2ª Série Ensino Médio Professora Priscila Binatto Fev/ 2013

Heredogramas. Capítulo 2 Item 4 Pág. 214 a 216. 2ª Série Ensino Médio Professora Priscila Binatto Fev/ 2013 Heredogramas Capítulo 2 Item 4 Pág. 214 a 216 2ª Série Ensino Médio Professora Priscila Binatto Fev/ 2013 O que é um heredograma? Também chamado do pedigree ou genealogia. Representa as relações de parentesco

Leia mais

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO

FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO FCHS - FACULDADE DE CIÊNCIAS HUMANAS E SOCIAIS PRIAD PROGRAMA DE REVISÃO INTENSIVA EM ADMINISTRAÇÃO TEMA PRIAD PROBABILIDADES E APLICAÇÕES PRÁTICAS DATA / / ALUNO RA TURMA 1) Num levantamento realizado

Leia mais

PESQUISA DE OPINIÃO PÚBLICA SOBRE ASSUNTOS POLÍTICOS/ ADMINISTRATIVOS

PESQUISA DE OPINIÃO PÚBLICA SOBRE ASSUNTOS POLÍTICOS/ ADMINISTRATIVOS PESQUISA DE OPINIÃO PÚBLICA SOBRE ASSUNTOS POLÍTICOS/ ADMINISTRATIVOS NOVEMBRO/ DEZEMBRO DE 2013 JOB2726-13 ESPECIFICAÇÕES TÉCNICAS DA PESQUISA OBJETIVO LOCAL Trata-se de uma pesquisa de acompanhamento

Leia mais

Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160

Preço de uma lapiseira Quantidade Preço de uma agenda Quantidade R$ 10,00 100 R$ 24,00 200 R$ 15,00 80 R$ 13,50 270 R$ 20,00 60 R$ 30,00 160 Todos os dados necessários para resolver as dez questões, você encontra neste texto. Um funcionário do setor de planejamento de uma distribuidora de materiais escolares verifica que as lojas dos seus três

Leia mais

MATEMÁTICA 32,2 30. 0 2 4 5 6 8 10 x

MATEMÁTICA 32,2 30. 0 2 4 5 6 8 10 x MATEMÁTICA 01. O preço pago por uma corrida de táxi normal consiste de uma quantia fixa de R$ 3,50, a bandeirada, adicionada de R$ 0,25 por cada 100 m percorridos, enquanto o preço pago por uma corrida

Leia mais

COLÉGIO ESTADUAL VISCONDE DE BOM RETIRO - PIBID. Professoras: Fernanda Menegotto, Jéssica Tumelero, Leidi Simonini, Maiara Ghiggi e Patricia Balbinot.

COLÉGIO ESTADUAL VISCONDE DE BOM RETIRO - PIBID. Professoras: Fernanda Menegotto, Jéssica Tumelero, Leidi Simonini, Maiara Ghiggi e Patricia Balbinot. COLÉGIO ESTADUAL VISCONDE DE BOM RETIRO - PIBID Plano de aula ABRIL E MAIO de 2014 Professoras: Fernanda Menegotto, Jéssica Tumelero, Leidi Simonini, Maiara Ghiggi e Patricia Balbinot. Supervisora: Raquel

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 26 A FREQUÊNCIIA RELATIIVA PARA ESTIIMAR A PROBABIILIIDADE Por: Maria Eugénia Graça Martins Departamento de Estatística e Investigação Operacional da FCUL

Leia mais

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa:

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa: Modelo Uniforme Exemplo: Uma rifa tem 100 bilhetes numerados de 1 a 100. Tenho 5 bilhetes consecutivos numerados de 21 a 25, e meu colega tem outros 5 bilhetes, com os números 1, 11, 29, 68 e 93. Quem

Leia mais

ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA

ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA Apresentar a Estatística no contexto do dia-a-dia e fazendo uso da planilha Excel. Espera-se que o estudante ao término do curso esteja apto a usar a planilha

Leia mais

Matemática Discreta - 08

Matemática Discreta - 08 Universidade Federal do Vale do São Francisco urso de Engenharia da omputação Matemática Discreta - 08 Prof. Jorge avalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

PESQUISA DE OPINIÃO PÚBLICA SOBRE ELEIÇÕES 2016

PESQUISA DE OPINIÃO PÚBLICA SOBRE ELEIÇÕES 2016 PESQUISA DE OPINIÃO PÚBLICA SOBRE ELEIÇÕES 2016 DEZEMBRO DE 2015 JOB1629 ESPECIFICAÇÕES TÉCNICAS DA PESQUISA OBJETIVO O principal objetivo desse projeto é levantar opiniões sobre as eleições municipais

Leia mais

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO

ESTATÍSTICA APLICADA À ADMINISTRAÇÃO ESTATÍSTICA APLICADA À ADMINISTRAÇÃO Thiago Marzagão 1 1 marzagao.1@osu.edu PROBABILIDADE Thiago Marzagão (IDP) ESTATÍSTICA APLICADA À ADMINISTRAÇÃO 1/2016 1 / 51 o que é probabilidade? Thiago Marzagão

Leia mais

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira

Probabilidade - Conceitos Básicos. Anderson Castro Soares de Oliveira - Conceitos Básicos Castro Soares de Oliveira é o ramo da matemática que estuda fenômenos aleatórios. está associada a estatística, porque sua teoria constitui a base de estatística inferencial. Conceito

Leia mais

II Olimpíada de Matemática do Grande ABC Primeira Fase Nível 4 ( 3 Série EM e Concluintes )

II Olimpíada de Matemática do Grande ABC Primeira Fase Nível 4 ( 3 Série EM e Concluintes ) Primeira Fase Nível ( Série EM e Concluintes ). Quantas soluções do tipo (x,y), com x,y inteiros, existem para a equação xy=x+y? a) b) c) d) e)nenhuma. Na figura, o triângulo ABC é eqüilátero, o raio da

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

AULÃO DO CARECÃO NÃO TENHO MEDO DE CARA FEIA! E NEM DE PROVA TAMBÉM.

AULÃO DO CARECÃO NÃO TENHO MEDO DE CARA FEIA! E NEM DE PROVA TAMBÉM. AULÃO DO CARECÃO NÃO TENHO MEDO DE CARA FEIA! E NEM DE PROVA TAMBÉM. QUESTÕES Faço a fácil ou a difícil? Como controlar meu tempo? Como controlar a ansiedade? ESTOU COM MEDO!!!!! Fórmula da APROVAÇÃO Ser

Leia mais

Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento

Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova de Agente / PF Neste artigo, farei a análise das questões

Leia mais

Probabilidade Condicional

Probabilidade Condicional PROBABILIDADES Probabilidade Condicional BERTOLO Exemplo Introdutório Vamos introduzir a noção de probabilidade condicional através de um exemplo. Consideremos 250 estudantes que cursam o 4º ano de Ciências

Leia mais

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1 RESUMO TEÓRICO Experimentos aleatórios: são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. Exemplo: Lançar um dado e verificar qual é a face voltada

Leia mais

PESQUISA DE OPINIÃO PÚBLICA SOBRE O GOVERNO FEDERAL

PESQUISA DE OPINIÃO PÚBLICA SOBRE O GOVERNO FEDERAL PESQUISA DE OPINIÃO PÚBLICA SOBRE O GOVERNO FEDERAL OUTUBRO DE 2013 JOB1642 ESPECIFICAÇÕES TÉCNICAS DA PESQUISA OBJETIVO LOCAL O principal objetivo desse projeto é monitorar a administração do Governo

Leia mais

3º Ano do Ensino Médio. Aula nº 05

3º Ano do Ensino Médio. Aula nº 05 Nome: Ano: 3º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº 05 Assunto: Probabilidades 1. Introdução Experimento Aleatório: Considere o lançamento de uma moeda para cima: PARA PENSAR: Qual

Leia mais

I-OBJETIVO DO JOGO ENQUANTO ATIVIDADE DE ENSINO

I-OBJETIVO DO JOGO ENQUANTO ATIVIDADE DE ENSINO 6 I-OBJETIVO DO JOGO ENQUANTO ATIVIDADE DE ENSINO Resolver problemas envolvendo as operações: adição subtração e multiplicação; Desenvolver a habilidade de cálculo mental. II-MATERIAL 1. Fichas com a figura

Leia mais

Oficina de Jogos. Jorge Sabatucci. Universidade Federal de Minas Gerais

Oficina de Jogos. Jorge Sabatucci. Universidade Federal de Minas Gerais Oficina de Jogos Jorge Sabatucci Universidade Federal de Minas Gerais 1 o Colóquio da Região Sudeste Abril de 2011 Prefácio Neste encontro trabalharemos com algumas atividades utilizadas no projeto VISITAS

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São

Leia mais

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO

COLÉGIO NOSSA SENHORA DA ASSUNÇÃO COLÉGIO NOSSA SENHORA DA ASSUNÇÃO FAMALICÃO ANADIA FICHA DE TRABALHO DE MATEMÁTICA ANO LECTIVO 2006/2007 9º ANO DE ESCOLARIDADE PROBABILIDADES E ESTATÍSTICA. Considere a experiência de lançar uma vez o

Leia mais

Polos Olímpicos de Treinamento. Aula 6. Curso de Combinatória - Nível 2. Jogos. 1. Simetria. Prof. Bruno Holanda

Polos Olímpicos de Treinamento. Aula 6. Curso de Combinatória - Nível 2. Jogos. 1. Simetria. Prof. Bruno Holanda Polos Olímpicos de Treinamento Curso de Combinatória - Nível 2 Prof. Bruno Holanda Aula 6 Jogos Quando falamos em jogos, pensamos em vários conhecidos como: xadrez, as damas e os jogos com baralho. Porém,

Leia mais

Unidade II ESTATÍSTICA DESCRITIVA

Unidade II ESTATÍSTICA DESCRITIVA ESTATÍSTICA DESCRITIVA 5 Unidade II 2 PROBABILIDADE 10 15 20 25 30 35 2.1 Panorama histórico O estudo científico da probabilidade é um fato moderno. Segundo Eves (2004), é surpreendente que os matemáticos

Leia mais

Regra do Evento Raro p/ Inferência Estatística:

Regra do Evento Raro p/ Inferência Estatística: Probabilidade 3-1 Aspectos Gerais 3-2 Fundamentos 3-3 Regra da Adição 3-4 Regra da Multiplicação: 3-5 Probabilidades por Meio de Simulações 3-6 Contagem 1 3-1 Aspectos Gerais Objetivos firmar um conhecimento

Leia mais

Escola Secundária de Lousada

Escola Secundária de Lousada Escola Secundária de Lousada Ficha de Trabalho de Matemática 9º ano FT. Data: / / 0 Assunto: Probabilidades Lições nº,. A seguir estão apresentados alguns dados relativos aos alunos da turma do Roberto...

Leia mais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Parte 1 Exercícios do Livro A Matemática do Ensino Médio Volume 3. Autores: Elon Lages Lima, Paulo Cezar Pinto Carvalho, Eduardo Wagner, Augusto

Leia mais

IV Seminário de Iniciação Científica

IV Seminário de Iniciação Científica 385 AVALIAÇÃO DA RESISTÊNCIA À COMPRESSÃO E DO MÓDULO DE ELASTICIDADE DO CONCRETO QUANDO SUBMETIDO A CARREGAMENTO PERMANENTE DE LONGA DURAÇÃO (Dt = 9 dias) Wilson Ferreira Cândido 1,5 ;Reynaldo Machado

Leia mais

3º Ano do Ensino Médio. Aula nº06

3º Ano do Ensino Médio. Aula nº06 Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº06 Assunto: Noções de Estatística 1. Conceitos básicos Definição: A estatística é a ciência que recolhe, organiza, classifica, apresenta

Leia mais

Módulo 04. Fonte: , /photo/1024895, que gostem, muito, vamos lá? Falemos são jogos de ou perde

Módulo 04. Fonte: , /photo/1024895, que gostem, muito, vamos lá? Falemos são jogos de ou perde Módulo 04 Aula 03 TÍTULO: Probabilidade Parte 1. Para início de conversa... Fonte: http:/ //www.sxc. hu/photo/1126780,, http: ://www.sxc.hu/photo/944643, http://www.sxc.hu/ /photo/1024895, http: ://www.sxc.hu/photo/872885

Leia mais

Os dados expostos nesse levantamento têm consequências sociais relacionadas ao trabalho, à família, à educação e a muitos outros temas importantes.

Os dados expostos nesse levantamento têm consequências sociais relacionadas ao trabalho, à família, à educação e a muitos outros temas importantes. Introdução De acordo com um estudo realizado pelo IBGE (Instituto Brasileiro de Geografia e Estatística), a quantidade de mulheres no Brasil é maior que a de homens. As informações de 2007 destacam que

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE Fenômeno Aleatório: situação ou acontecimento cujos resultados não podem ser determinados com certeza. Exemplos: 1. Resultado do lançamento de um dado;. Hábito de fumar de um estudante

Leia mais

AULA 9 - PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

AULA 9 - PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA AULA 9 - PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado

Leia mais

Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran

Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran Camila Gomes de Souza Andrade 1 Denise Nunes Viola 2 Alexandro Teles de Oliveira 2 Florisneide

Leia mais

Estatística e Probabilidade. Aula 5 Cap 03 Probabilidade

Estatística e Probabilidade. Aula 5 Cap 03 Probabilidade Estatística e Probabilidade Aula 5 Cap 03 Probabilidade Na aula anterior vimos... Conceito de Probabilidade Experimento Probabilístico Tipos de Probabilidade Espaço amostral Propriedades da Probabilidade

Leia mais

MANUAL DO USUÁRIO. Figura 1: Tela de Apresentação do FaçaCalc.

MANUAL DO USUÁRIO. Figura 1: Tela de Apresentação do FaçaCalc. Apresentação MANUAL DO USUÁRIO O FAÇACALC é um software que realiza cálculos hidráulicos, tais como: Motor Hidráulico, Trocador de Calor, Acumulador Hidráulico e Cilindro Hidráulico. Na sessão Funcionalidades

Leia mais

Consumo como alcance da felicidade Julho/2015

Consumo como alcance da felicidade Julho/2015 Consumo como alcance da felicidade Julho/2015 Seis em cada dez consumidores consideram-se felizes O estudo O consumo como alcance da felicidade, conduzido pelo SPC Brasil e Meu Bolso feliz, busca compreender

Leia mais

Lista Análise Combinatória

Lista Análise Combinatória NOME: ANO: 2º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Lista Análise Combinatória Exercícios básicos 1. Quatro times de futebol (Vasco, Atlético, Corinthians e Internacional) disputam um torneio. Quantas

Leia mais

COMENTÁRIO DA PROVA DO BANCO DO BRASIL

COMENTÁRIO DA PROVA DO BANCO DO BRASIL COMENTÁRIO DA PROVA DO BANCO DO BRASIL Prezados concurseiros, segue abaixo os comentários das questões de matemática propostas pela CESPE no último concurso para o cargo de escriturário do Banco do Brasil

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia Civil 1º Semestre 2º Folha Nº1 1. Ao dar ordem de compra de um computador é necessário especificar, em relação ao seu sistema, a memória (1, 2 ou 3Gb) e capacidade

Leia mais

Introdução à Probabilidade e Estatística

Introdução à Probabilidade e Estatística Professor Cristian F. Coletti Introdução à Probabilidade e Estatística (1 Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos. a Uma moeda é lançada duas vezes

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

Ano: 8 Turmas: 8.1 e 8.2

Ano: 8 Turmas: 8.1 e 8.2 COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação 2ª Etapa 2013 Disciplina: Matemática Professora: Valeria Ano: 8 Turmas: 8.1 e 8.2 Caro aluno, você está recebendo o conteúdo de recuperação. Faça

Leia mais

Estatística AMOSTRAGEM

Estatística AMOSTRAGEM Estatística AMOSTRAGEM Estatística: É a ciência que se preocupa com a coleta, a organização, descrição (apresentação), análise e interpretação de dados experimentais e tem como objetivo fundamental o estudo

Leia mais

MATEMÁTICA PROVA 2º BIMESTRE 6º ANO

MATEMÁTICA PROVA 2º BIMESTRE 6º ANO PREFEITURA DA CIDADE DO RIO DE JANEIRO SECRETARIA MUNICIPAL DE EDUCAÇÃO SUBSECRETARIA DE ENSINO COORDENADORIA DE EDUCAÇÃO MATEMÁTICA PROVA 2º BIMESTRE 6º ANO 2010 QUESTÃO 1 Para a final dos jogos da Copa

Leia mais

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Lista 2 - Probabilidade. Probabilidade. 1. Uma letra é escolhida entre as letras da palavra PROBABILIDADE Estatística 2 a LISTA DE EXERCÍCIOS Prof. Ânderson Vieira Probabilidade Espaço Amostral Em cada um dos exercícios a 0. Determine o espaço amostral.. Uma letra é escolhida entre as letras da palavra PROBABILIDADE

Leia mais

8 - PROBABILIDADE. 8.1 - Introdução

8 - PROBABILIDADE. 8.1 - Introdução INE 7002 - Probabilidade 1 8 - PROBABILIDADE 8.1 - Introdução No capítulo anterior foi utilizado um raciocínio predominantemente indutivo: os dados eram coletados, e através da sua organização em distribuições

Leia mais

Caixa Econômica Federal

Caixa Econômica Federal 5. Dois dados perfeitos e distinguíveis são lançados ao acaso. A probabilidade de que a soma dos resultados obtidos seja ou 6 é: 8 8 6 5. A probabilidade de se obter soma no lançamento de dois dados diferentes

Leia mais