UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

Tamanho: px
Começar a partir da página:

Download "UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE"

Transcrição

1 Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA

2 Fone: (19) O ELITE RESOLVE UNICAMP SEGUNDA FASE - MATEMÁTICA MATEMÁTICA 1. Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar condicionado [AC]. O consumo da lâmpada equivale a / do consumo da TV e o consumo do AC equivale a 10 vezes o consumo da TV. Se a lâmpada, a TV e o AC forem ligados simultaneamente, o consumo total de energia será de 1,05 quilowatts por hora [kwh]. Pergunta-se: a) Se um kwh custa R$0,40, qual será o custo para manter a lâmpada, a TV e o AC ligados por 4 horas por dia durante 0 dias? b) Qual é o consumo, em kwh, da TV? a) Como os aparelhos são utilizados 4 horas por dia durante 0 dias, temos um total de 10 horas acumuladas durante o período. O consumo total é então de: E consumida = 1,05 10 E consumida = 16 [kwh] Logo, o custo total será: Custo = E consumida 0,40 Custo = 16 0,40 Custo = R$ 50,40 b) Chamando de L, T e A, o consumo da lâmpada, da televisão e do ar-condicionado, respectivamente, temos o seguinte sistema: L = T A = 10 T L + T + A = 1,05 Resolvendo o sistema acima, temos que: A = 0,9 [kwh], L = 0,06 [kwh] e T = 0,09 [kwh]. Assim, o consumo da televisão é de 0,09 [kwh].. Sabe-se que o número natural D, quando dividido por 1, deixa resto r N e que o mesmo número D, quando dividido por 17, deixa resto r. a) Qual é o maior valor possível para o número natural r? b) Se o primeiro quociente for igual a 4 e o segundo quociente for igual a 7, calcule o valor numérico de D. a) Pelo enunciado, podemos montar as seguintes equações: D = 1 q + r (I) D = 17 q + r (II) Como o resto deve ser menor do que o divisor, temos que: 0 r 0 e 0 r 16 Assim, o maior valor que r pode assumir é 8. b) Para: q = 4 e q = 7 Substituindo nas equações (I) e (II) e igualando-as: r = r r = 5 e D = 19.. Um triângulo eqüilátero tem o mesmo perímetro que um hexágono regular cujo lado mede 1,5 cm. Calcule: 1

3 Fone: (19) O ELITE RESOLVE UNICAMP SEGUNDA FASE - MATEMÁTICA a) O comprimento de cada lado do triângulo. b) A razão entre as áreas do hexágono e do triângulo. a) Como: b) Sabemos que: P (triângulo) = P (hexágono) L T = 6 L H L T = L H = 1,5 L T =,0 cm A triangulo eqüilátero = A hexágono regular = Temos então que a razão entre as áreas é: (1,5) A hexágono = A triângulo () 4 L T L H 4 A A hexágono = triângulo 4. Sejam a e b números inteiros e seja N(a, b) a soma do quadrado da diferença entre a e b com o dobro do produto de a por b. a) Calcule N(, 9). b) Calcule N(a, a) e diga qual é o algarismo final de N(a, a) para qualquer a Z. Do enunciado temos: N(a,b) = (a b) + ab = a + b. a) Podemos calcular então: N(,9) = + 9 N(,9) = 90 b) Temos: N(a, a) = a + (a) N(a, a) = 10a Logo, como 10a é múltiplo de 10, para todo a inteiro, o algarismo final de N(a, a) é Entre todos os triângulos cujos lados têm como medidas números inteiros e perímetro igual a 4 cm, apenas um deles é eqüilátero e apenas um deles é retângulo. Sabe-se que um dos catetos do triângulo retângulo mede 8 cm. a) Calcule a área do triângulo eqüilátero. b) Encontre o raio da circunferência circunscrita ao triângulo retângulo. a) Sendo o triângulo eqüilátero com perímetro 4 cm, temos que o seu lado mede: L = 4 / L = 8 cm Para calcular a sua área temos: L A triangulo eqüilátero = A = 16 cm. 4 b) Para o triângulo retângulo com hipotenusa a e catetos b e c: c = 8 cm b = x

4 Fone: (19) O ELITE RESOLVE UNICAMP SEGUNDA FASE - MATEMÁTICA a = 4 8 x a = (16 x) cm Utilizando o teorema de Pitágoras: (16 x) = x + 8 x = 6 cm Como o triângulo é retângulo, sua hipotenusa é igual ao diâmetro da circunferência circunscrita; logo, seu raio mede: r = a / r = 5 cm 6. Suponha que, em uma prova, um aluno gaste para resolver cada questão, a partir da segunda, o dobro de tempo gasto para resolver a questão anterior. Suponha ainda que, para resolver todas as questões, exceto a última, ele tenha gasto 6,5 minutos e para resolver todas as questões, exceto as duas últimas, ele tenha gasto 1,5 minutos. Calcule: a) O número total de questões da referida prova. b) O tempo necessário para que aquele aluno resolva todas as questões da prova. a) Como o aluno gasta para cada questão o dobro de tempo que a questão anterior, os tempos gastos para responder cada questão formam uma PG de razão. Definindo como n o número de questões da prova, podemos montar o seguinte sistema: n-1 a1( q 1) Sn-1 = q -1 n-1 an = a1 q Para responder a penúltima questão o tempo gasto pelo aluno é: S n-1 S n- = a n-1 = 6,5 1,5 = Logo, para responder a última questão: a n = q a n-1 = = 64 Podemos resolver então: n-1 a1( 1) 6,5 = 1 n-1 64 = a1 Substituindo, resulta: 6,5 = 64 a 1 a 1 = ½ Assim: n-1 an = a1 q 64 = ½ n-1 n = 8 b) O tempo gasto é de 6, = 17,5 min. 7. A função L(x) = ae bx fornece o nível de iluminação, em luxes, de um objeto situado a x metros de uma lâmpada. a) Calcule os valores numéricos das constantes a e b, sabendo que um objeto a 1 metro de distância da lâmpada recebe 60 luxes e que um objeto a metros de distância recebe 0 luxes. b) Considerando que um objeto recebe 15 luxes, calcule a distância entre a lâmpada e esse objeto. a) Do enunciado temos as seguintes relações: L(1) = 60 e L() = 0 Assim, podemos montar o seguinte sistema:

5 Fone: (19) O ELITE RESOLVE UNICAMP SEGUNDA FASE - MATEMÁTICA b 60 = a e (I) b 0 = a e (II) Dividindo (I) por (II), temos: = e b e b = ½ b = ln ½ = - ln Substituindo b na equação (I): 60 = a ½ a = 10 b) Do enunciado e utilizando os valores das constantes a e b, calculados acima: L(x) = 15 = 10 -x Logo: x = 1/8 x = metros. 8. Dada a equação polinomial com coeficientes reais x 5x + 9x a = 0: a) Encontre o valor numérico de a de modo que o número complexo + i seja uma das raízes da referida equação. b) Para o valor de a encontrado no item anterior, determine as outras duas raízes da mesma equação. Seja p(x) = x 5x + 9x a = 0. a) Como + i é raiz: p( + i) = 0 ( + i) 5 ( + i) + 9 ( + i) a = i 15 0i i a = 0 a = 5 b) Pelo teorema das raízes complexas, i também é raiz, e portanto, temos duas das três raízes. Para achar a outra raiz, que é real, vamos usar o teorema de Girard: x 1 + x + x = 5 x = 1 9. Considere o conjunto dos dígitos {1,,,..., 9} e forme com eles números de nove algarismos distintos. a) Quantos desses números são pares? b) Escolhendo-se ao acaso um dos números do item (a), qual a probabilidade de que este número tenha exatamente dois dígitos ímpares juntos? a) Como termina por um algarismo par, para o ultimo algarismo temos 4 possibilidades, restando para as outras 8 casa a permutação dos 8 algarismos restantes, logo: Total de possibilidades = 4 8! b) Como exatamente impares devem estar juntos e o número é par, podemos ter as seguintes possibilidades: I I P I P I P I P, I P I I P I P I P, I P I P I I P I P ou I P I P I P I I P Para cada uma dessas possibilidades, basta permutar entre si os algarismos pares e os ímpares. Logo temos: Combinações = 4 4! 5! A probabilidade é dada então por: Combinações 4 4! 5! 1 Probabilidade = = Probabilidade = Total de possibilidades 4 8! Os pontos A, B, C e D pertencem ao gráfico da função y=1/x, x>0. As abcissas de A, B e C são iguais a, e 4, respectivamente, e o segmento AB é paralelo ao segmento CD. a) Encontre as coordenadas do ponto D. b) Mostre que a reta que passa pelos pontos médios dos segmentos AB e CD passa também pela origem. 4

6 Fone: (19) O ELITE RESOLVE UNICAMP SEGUNDA FASE - MATEMÁTICA a) Do enunciado: x A =, x B = e x C = 4 Substituindo na função y=1/x: y A = 1/, y B = 1/ e y C = 1/4 A(,1/), B(,1/) e C(4,1/4) Como o segmento AB é paralelo ao segmento CD, as retas suportes destes segmentos são paralelas, logo: 1/ 1/ 1/4 1/x m AB = m CD = x 11x + 1 = 0 4 x x = 4 (não convém) ou x = /; Portanto: D(/, /) b) Os pontos médios de AB e CD são M(, ) e N(, ), respectivamente. Logo, o coeficiente da reta que passa por esses pontos é: A reta que passa por esses pontos é: Logo, a reta passa pela origem. y m = = = x - x = 6y Dado o sistema linear homogêneo: [ cos ( α) + sen( α) ] x + [ sen( α) ] y = 0 [ cos ( α) ] x + [ cos( α) - sen( α) ] y = 0 a) Encontre os valores de α para os quais esse sistema admite solução não-trivial, isto é, solução diferente da solução x = y = 0. b) Para o valor de α encontrado no item (a) que está no intervalo [0,π/], encontre uma solução não-trivial do sistema. a) Para que o sistema tenha solução não- trivial, o determinante dos coeficientes deve ser nulo, logo: cosα + senα senα D = = 0 cosα cosα senα cos α sen α = senα cosα cosα = senα π α = kπ 4 + α = π kπ +, k Z. 8 b) O valor de α que está no primeiro quadrante é 8 π. Isolando x na primeira equação temos a seguinte relação: Para α = 8 π, temos: x = senα y cosα senα 5

7 Fone: (19) O ELITE RESOLVE UNICAMP SEGUNDA FASE - MATEMÁTICA Uma solução para essa equação é fazer: x = y = 1 x = π tg y 8 π tg 8 1. O quadrilátero convexo ABCD, cujos lados medem, consecutivamente, 1,, 4 e 6 cm, está inscrito em uma circunferência de centro O e raio R. a) Calcule o raio R da circunferência. b) Calcule o volume do cone reto cuja base é o círculo de raio R e cuja altura mede 5 cm. a) De acordo com o enunciado podemos construir a seguinte figura: Onde: AB = 1, BC =, CD = 4 e AD = 6 Seja: AC = d, A BC ˆ = x e ADC ˆ o = x a) Aplicando a lei dos co-senos nos triângulos ABC e ADC, temos: o d = cos(180 - x ) (I) d = cos x (II) Igualando as equações (I) e (II), e usando que cos(180º - x ) = cos x, temos que: 7 cos x = 9 Logo: sen x = 1 cos x sen x =. 9 Substituindo cos x em (I), temos que: 1 d = AC = Sendo R o raio da circunferência, pela lei dos senos, temos: 1 AC 9 66 = R = R R = sen x 8 9 b) Para o volume do cone temos: π R H V cone = V cone π. = V cone 495π = cm 6

8 Fone: (19) O ELITE RESOLVE UNICAMP SEGUNDA FASE - MATEMÁTICA 100% de aprovação na primeira fase da Unicamp 004 (Turma Exatas)! 7

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão

Leia mais

Unicamp - 2 a Fase (17/01/2001)

Unicamp - 2 a Fase (17/01/2001) Unicamp - a Fase (17/01/001) Matemática 01. Três planos de telefonia celular são apresentados na tabela abaio: Plano Custo fio mensal Custo adicional por minuto A R$ 3,00 R$ 0,0 B R$ 0,00 R$ 0,80 C 0 R$

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA A DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 635) 1ª FASE 25 DE JUNHO Grupo I Associação de Professores de Matemática Contactos: Rua Dr. João Couto, n.º 27-A 500-236 Lisboa Tel.: +35 2 76 36 90 / 2 7 03 77 Fa: +35 2 76 64 24 http://www.apm.pt email: geral@apm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a

Definição e elementos. Um plano Um círculo C contido em Um ponto V que não pertence a CONE Cones Definição e elementos Um plano Um círculo C contido em Um ponto V que não pertence a Elementos do cone Base: é o círculo C, de centro O, situado no plano Vértice: é o ponto V Elementos do cone

Leia mais

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições

MATEMÁTICA A - 12o Ano N o s Complexos - Conjuntos e condições MATEMÁTICA A - 1o Ano N o s Complexos - Conjuntos e condições Exercícios de exames e testes intermédios 1. Na figura ao lado, está representado, no plano complexo, um quadrado cujo centro coincide com

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como planificação da superfície lateral de cilindro é um retângulo, cujas medidas

Leia mais

Exercícios de Matemática Geometria Analítica

Exercícios de Matemática Geometria Analítica Eercícios de Matemática Geometria Analítica. (UFRGS) Considere um sistema cartesiano ortogonal e o ponto P(. ) de intersecção das duas diagonais de um losango. Se a equação da reta que contém uma das diagonais

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

POLIGONOS INSCRITOS E CIRCUNSCRITOS. São polígonos que ficam dentro da circunferência e seus vértices fazem parte da circunferência.

POLIGONOS INSCRITOS E CIRCUNSCRITOS. São polígonos que ficam dentro da circunferência e seus vértices fazem parte da circunferência. POLIGONOS INSCRITOS E CIRCUNSCRITOS POLIGONOS INSCRITOS NA CIRCUNFERÊNCIA São polígonos que ficam dentro da circunferência e seus vértices fazem parte da circunferência. Veja: POLIGONOS CIRCUNSCRITOS NA

Leia mais

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015

Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-2015 Exercícios Extras-Relações Métricas no Triângulo Retângulo-Lei dos Cossenos e Senos- 1 s anos-015 1. (Ufsj 013) Um triângulo isósceles inscrito em um círculo de raio igual a 8 cm possui um lado que mede

Leia mais

Exercícios de testes intermédios

Exercícios de testes intermédios Exercícios de testes intermédios 1. Qual das expressões seguintes designa um número real positivo, para qualquer x pertencente 3 ao intervalo,? (A) sin x cos x (B) cos x tan x tan x sin x sin x tan x Teste

Leia mais

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos. Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano

Leia mais

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.

Leia mais

Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas

Ficha Formativa de Matemática 7º Ano Tema 5 Figuras Geométricas 1. Observa as linhas seguintes. 1.1. Identifica: a) as linhas poligonais; b) as linhas poligonais simples; c) as linhas poligonais fechadas. 1.2. Das linhas poligonais, identifica as que definem: a) polígonos

Leia mais

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Inscrição e circunscrição de sólidos geométricos Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Introdução Nosso último estudo em Geometria será destinado aos sólidos inscritos

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013 CÁLCULO DE ÁREA DAS FIGURAS PLANAS Professor: Marcelo Silva Natal-RN, agosto de 013 ÁREA A reunião de um polígono com sua região interior é denominada superfície do polígono. A medida da superfície é expressa

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE. Professor: João Carmo INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RIO GRANDE DO NORTE Professor: João Carmo DEFINIÇÃO Triângulo ou trilátero é um polígono de três lados. Observações: a) O triângulo não possui diagonais;

Leia mais

O conhecimento é a nossa propaganda.

O conhecimento é a nossa propaganda. Lista de Exercícios 1 Trigonometria Gabaritos Comentados dos Questionários 01) (UFSCAR 2002) O valor de x, 0 x π/2, tal que 4.(1 sen 2 x).(sec 2 x 1) = 3 é: a) π/2. b) π/3. c) π/4. d) π/6. e) 0. 4.(1 sen

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais

A Determine o comprimento do raio da circunferência.

A Determine o comprimento do raio da circunferência. Lista de exercícios Trigonometria Prof. Lawrence 1. Um terreno tem a forma de um triângulo retângulo. Algumas de suas medidas estão indicadas, em metros, na figura. Determine as medidas x e y dos lados

Leia mais

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Vestibular 011 Utilize as informações a seguir para responder às questões de números e 3. Um

Leia mais

Rua 13 de junho,

Rua 13 de junho, NOME: QUESTÕES 1. Um recipiente em forma de cone circular reto, com raio da base R e altura h, está completamente cheio com água e óleo. Sabe-se que a superfície de contato entre os líquidos está inicialmente

Leia mais

Tecnologia em Construções de Edifícios

Tecnologia em Construções de Edifícios 1 Tecnologia em Construções de Edifícios Aula 9 Geometria Analítica Professor Luciano Nóbrega 2º Bimestre 2 GEOMETRIA ANALÍTICA INTRODUÇÃO A geometria avançou muito pouco desde o final da era grega até

Leia mais

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS 7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Polígonos Nuno Marreiros Antes de começar Não é possível pois uma circunferência não é formada por segmentos de reta. Nem tudo o que parece é Segmento de reta

Leia mais

FIGURAS PLANAS E O CÁLCULO DE ÁREAS

FIGURAS PLANAS E O CÁLCULO DE ÁREAS unifmu Nome: Professor: Ricardo Luís de Souza Curso de Design Matemática Aplicada Atividade Exploratória III Turma: Data: FIGURAS PLANAS E O CÁLCULO DE ÁREAS Objetivo: Rever o conceito de área de figuras

Leia mais

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é:

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: Lista de Exercícios: Geometria Plana Questão 1 Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: A( ) 20 cm 2. B( ) 10 cm 2. C( ) 24 cm 2. D( )

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROGRESSÃO ARITMÉTRICA E GEOMÉTRICA

BANCO DE QUESTÕES TURMA PM-PE PROGRESSÃO ARITMÉTRICA E GEOMÉTRICA 01. (UNESP 016) A figura indica o padrão de uma sequência de grades, feitas com vigas idênticas, que estão dispostas em posição horizontal e vertical. Cada viga tem 0,5 m de comprimento. O padrão da sequência

Leia mais

Cone (sem outras figuras misturadas)

Cone (sem outras figuras misturadas) Cone (sem outras figuras misturadas) 1. (Pucrj 01) De um disco circular, de raio medindo 6 e centro C, cortamos um setor cujo arco mede 1. Usando o pedaço maior, fazemos um cone reto juntando os lados

Leia mais

Caderno 2: 55 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora)

Caderno 2: 55 minutos. Tolerância: 20 minutos. (não é permitido o uso de calculadora) Prova Final de Matemática 3.º Ciclo do Ensino Básico Decreto-Lei n.º 139/2012, de 5 de julho Prova 92/2.ª Fase Caderno 2: 8 Páginas Duração da Prova (Caderno 1 + Caderno 2): 90 minutos. Tolerância: 30

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano)

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) MTMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) xercícios de provas nacionais e testes intermédios 1. Na figura ao lado, estão representados um cilindro e um prisma quadrangular regular [ ] de bases []

Leia mais

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos.

= 1 1 1 1 1 1. Pontuação: A questão vale dez pontos, tem dois itens, sendo que o item A vale até três pontos, e o B vale até sete pontos. VTB 008 ª ETAPA Solução Comentada da Prova de Matemática 0 Em uma turma de alunos que estudam Geometria, há 00 alunos Dentre estes, 30% foram aprovados por média e os demais ficaram em recuperação Dentre

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Capítulo 6. Geometria Plana

Capítulo 6. Geometria Plana Capítulo 6 Geometria Plana 9. (UEM - 2013 - Dezembro) Com base nos conhecimentos de geometria plana,assinale o que for correto. 01) O maior ângulo interno de um triângulo qualquer nunca possui medida inferior

Leia mais

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2004. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 004 ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Em uma sala há uma lâmpada, uma televisão [TV] e um aparelho de ar codicioado [AC]. O cosumo da lâmpada equivale

Leia mais

Escola E.B. 2,3 General Serpa Pinto Cinfães Proposta de resolução da ficha formativa nº /2013

Escola E.B. 2,3 General Serpa Pinto Cinfães Proposta de resolução da ficha formativa nº /2013 Escola E.B. 2,3 General Serpa Pinto Cinfães Proposta de resolução da ficha formativa nº 2-2012/2013 1. A figura ao lado representa o polígono da base de uma pirâmide. Indica, justificando: 1.1. o nome

Leia mais

SISTEMA DE EQUAÇÕES DO 2º GRAU

SISTEMA DE EQUAÇÕES DO 2º GRAU SISTEMA DE EQUAÇÕES DO 2º GRAU Os sistemas a seguir envolverão equações do 2º grau, lembrando de que suas soluções constituem na determinação do par ordenado { (x, y )(x, y ) }. Resolver um sistema envolvendo

Leia mais

NOTAÇÕES MATEMÁTICAS UTILIZADAS

NOTAÇÕES MATEMÁTICAS UTILIZADAS Prova de MTMÁTI - Modelo R R R + R + R R Q Q Z Z + Z N N f(x) f(a) log a sen α cos α tg α cotg α cossec α x n! NOTÇÕS MTMÁTIS UTILIZS - conjunto dos números reais - conjunto dos números reais não nulos

Leia mais

A 'BC' e, com uma régua, obteve estas medidas:

A 'BC' e, com uma régua, obteve estas medidas: 1 Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A 'C' paralelo a AC, a altura C' H do triângulo A 'BC' e, com uma régua,

Leia mais

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa 1 1. (Fuvest 97) Suponha que o polinômio do 3 grau P(x) = x + x + mx + n, onde m e n são números reais, seja divisível por x - 1. a) Determine n em função de m. b) Determine m para que P(x) admita raiz

Leia mais

Relações Métricas Especiais

Relações Métricas Especiais Relações Métricas Especiais 7//04. (Fuvest 0-Adaptada) Define-se geometricamente a razão áurea do seguinte modo: O ponto C da figura abaixo divide o segmento AB na razão áurea quando os valores AC/AB e

Leia mais

Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação)

Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação) Exercícios sobre Triângulo (Lei Angular, Congruência e Classificação) 1. (Utfpr) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base. Se em um triângulo

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E

TIPO DE PROVA: A. Questão 1. Questão 3. Questão 2. Questão 4. alternativa A. alternativa E. alternativa E Questão TIPO DE PROVA: A Uma empresa entrevistou k candidatos a um determinadoempregoerejeitouumnúmerode candidatos igual a 5 vezes o número de candidatos aceitos. Um possível valor para k é: a) 56 b)

Leia mais

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta 1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento

Leia mais

Exercícios de Matemática Poliedros

Exercícios de Matemática Poliedros Exercícios de Matemática Poliedros 3. (Unitau) Se dobrarmos convenientemente as linhas tracejadas das figuras a seguir, obteremos três modelos de figuras espaciais cujos nomes são: 1. (Uerj) O poliedro

Leia mais

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos Â

A lei dos senos. Na Aula 42 vimos que a Lei dos co-senos é. a 2 = b 2 + c 2-2bc cos  A UA UL LA A lei dos senos Introdução Na Aula 4 vimos que a Lei dos co-senos é uma importante ferramenta matemática para o cálculo de medidas de lados e ângulos de triângulos quaisquer, isto é, de triângulos

Leia mais

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo:

QUESTÕES DE CÁLCULO (2) = 2 ( ) = 1. O valor do limite L = lim se encontra no intervalo: 1. O valor do limite L = lim se encontra no intervalo: a) 0 L 1 b) 1 L c) L 3 d) 3 L 4 e) L 4. A função f(x) é continua em x= quando f() vale: = + 3 10 () = a) - b) -5 c) d) 5 e) 7 3. A derivada da função

Leia mais

Lista de Estudo P2 Matemática 2 ano

Lista de Estudo P2 Matemática 2 ano Lista de Estudo P2 Matemática 2 ano 24) Dada a figura a seguir e sabendo-se que os dois quadrados possuem lados iguais a 4cm, sendo O o centro de um deles, quanto vale a área da parte preenchida? a) 100.

Leia mais

Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã

Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã Exercícios de Revisão Áreas de figuras Planas 3 o Ano Ensino Médio - Manhã ======================================================== 1) Num retângulo, a base tem cm a mais do que o dobro da altura e a diagonal

Leia mais

30's Volume 8 Matemática

30's Volume 8 Matemática 30's Volume 8 Matemática www.cursomentor.com 18 de dezembro de 2013 Q1. Simplique a expressão: Q2. Resolva a expressão: Q3. Calcule o inverso da expressão: ( 3 2 ) 3 16 10 4 8 10 5 10 3 64 10 5 10 6 0,

Leia mais

Canguru sem fronteiras 2005

Canguru sem fronteiras 2005 Duração: 1h30mn Destinatários: alunos do 12 ano de Escolaridade Não podes usar calculadora. Há apenas uma resposta correcta em cada questão. Inicialmente tens 30 pontos. Por cada questão errada, és penalizado

Leia mais

QUESTÕES DISCURSIVAS. Questão 1. Questão 2. Resposta. Resposta

QUESTÕES DISCURSIVAS. Questão 1. Questão 2. Resposta. Resposta QUESTÕES DISCURSIVAS Questão Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A C paralelo a AC, a altura C H do triângulo

Leia mais

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização:

UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO. Realização: UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE TECNOLOGIA PROGRAMA DE EDUCAÇÃO TUTORIAL APOSTILA DE CÁLCULO Realização: Fortaleza, Fevereiro/2010 1. LIMITES 1.1. Definição Geral Se os valores de f(x) puderem

Leia mais

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) 31- (ANAC 2016/ESAF) A negação da proposição se choveu, então o voo vai atrasar pode ser logicamente descrita por a) não choveu

Leia mais

UNICAMP - 2005. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

UNICAMP - 2005. 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR UNICAMP - 2005 2ª Fase MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite,

Leia mais

para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223.

para x = 111 e y = 112 é: a) 215 b) 223 c) 1 d) 1 e) 214 Resolução Assim, para x = 111 e y = 112 teremos x + y = 223. MATEMÁTICA d Um mapa está numa escala :0 000 000, o que significa que uma distância de uma unidade, no mapa, corresponde a uma distância real de 0 000 000 de unidades. Se no mapa a distância entre duas

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação Polinômios 1. (Ufsc 015) Em relação à(s) proposição(ões) abaixo, é CORRETO afirmar ue: 01) Se o gráfico abaixo representa a função polinomial f, definida em por f(x) ax bx cx d, com a, b e c coeficientes

Leia mais

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA

TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA TEORIA 6: EQUAÇÕES E SISTEMAS DO 2º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação

Leia mais

LISTA 1. a) [57, 60] c) [60, 180[ b) ]58, 116] d) ]57, 178]

LISTA 1. a) [57, 60] c) [60, 180[ b) ]58, 116] d) ]57, 178] LISTA 1 1- Seja n N tal que n dividido por 5 deia resto 3, n dividido por 4 deia resto e n dividido por 3 deia resto 1. Os três primeiros números naturais que satisfazem as condições de n pertencem ao

Leia mais

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa

Projeto Jovem Nota 10 Geometria Analítica Circunferência Lista 3 Professor Marco Costa 1 1. (Fgv 97) Uma empresa produz apenas dois produtos A e B, cujas quantidades anuais (em toneladas) são respectivamente x e y. Sabe-se que x e y satisfazem a relação: x + y + 2x + 2y - 23 = 0 a) esboçar

Leia mais

QUESTÃO 16 Dois garotos, tentando pular um muro, encostaram um banco de 50 cm de altura no muro e colocaram uma escada sobre ele, conforme a figura.

QUESTÃO 16 Dois garotos, tentando pular um muro, encostaram um banco de 50 cm de altura no muro e colocaram uma escada sobre ele, conforme a figura. Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 Dois garotos, tentando pular um muro, encostaram um banco de 50

Leia mais

Matemática 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS POLINÔMIOS I. P(x) = 4x (x 1) + (x 1)

Matemática 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS POLINÔMIOS I. P(x) = 4x (x 1) + (x 1) Matemática aula POLINÔMIOS I. COMENTÁRIOS ATIVIDADES PARA SALA b a P() b P() + + Calculando P (), temos: b a P() b b + b + a ab b a P () b + ( ab) + b + a b Se P () P (), podemos observar que: b + ( ab)

Leia mais

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2012/2013 1º ANO DO ENSINO MÉDIO

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2012/2013 1º ANO DO ENSINO MÉDIO CONCURSO DE ADMISSÃO 01/013 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 0 E TRANSCREVA

Leia mais

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO

35ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 2 (8º e 9º anos do Ensino Fundamental) GABARITO 5ª OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (8º e 9º anos do Ensino Fundamental) GABARITO GABARITO NÍVEL 1) D) 6) D) 11) E) 16) B) 1) Anulada ) A) 7) D) 1) C) 17) C) ) B) ) D) 8) E) 1) D)

Leia mais

QUESTÃO 17 A área da região escurecida representa quantos por cento da área do retângulo ABCD?

QUESTÃO 17 A área da região escurecida representa quantos por cento da área do retângulo ABCD? Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 014 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 16 A soma de todos os divisores naturais do número. 5, que são

Leia mais

TESTES PARA O SIMULADO COC

TESTES PARA O SIMULADO COC TESTES PARA O SIMULADO COC 1-) Para obter certo resultado, Rodrigo deverá pensar em um número natural, multiplicá-lo por 2, subtrair 3 do resultado e, finalmente, subtrair o quadrado do número pensado.

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: ª Ensino Médio Professor: Elias Bittar Matemática Atividades para Estudos Autônomos Data: 9 / 0 / 016 1) (UFMG) Observe a figura.

Leia mais

Aula 10 Triângulo Retângulo

Aula 10 Triângulo Retângulo Aula 10 Triângulo Retângulo Projeção ortogonal Em um plano, consideremos um ponto e uma reta. Chama-se projeção ortogonal desse ponto sobre essa reta o pé da perpendicular traçada do ponto à reta. Na figura,

Leia mais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Funções racionais

MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Funções racionais MATEMÁTICA (11º ano) Exercícios de Exames e Testes Intermédios Funções racionais 1 Na figura ao lado, está representada, num referencial o.n., parte da hipérbole que é o gráfico de uma função As retas

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta Questão São conhecidos os valores calóricos dos seguintes alimentos: uma fatia de pão integral, 55 kcal; um litro de leite, 550 kcal; 00 g de manteiga,.00 kcal; kg de queijo,.00 kcal; uma banana, 80 kcal.

Leia mais

B { } e o produto. . Resolve a equação. x admite raízes m e a sua altura mede da base. Calcula o comprimento da diagonal

B { } e o produto. . Resolve a equação. x admite raízes m e a sua altura mede da base. Calcula o comprimento da diagonal Escola Secundária com 3ºCEB de Lousada Ficha de Trabalho de Matemática do 9º ano - nº Data / / 010 Assunto: Preparação para o teste nº Lições nº, e Apresentação dos Conteúdos e Objectivos para o º Teste

Leia mais

Nome: N.º: Endereço: Data: Telefone: PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA

Nome: N.º: Endereço: Data: Telefone:   PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 2016 Disciplina: MATEMÁTICA Nome: N.º: Endereço: Data: Telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO DO ENSINO FUNDAMENTAL EM 06 Disciplina: MATEMÁTICA Prova: DESAFIO NOTA: QUESTÃO 6 Analise cada item com atenção: I. O antecedente

Leia mais

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada

Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada 1) Velocidade e Aceleração 1.1 Velocidade Universidade Federal de Pelotas Cálculo com Geometria Analítica I Prof a : Msc. Merhy Heli Rodrigues Aplicações da Derivada Suponhamos que um corpo se move em

Leia mais

GABARITO IME 2013 DISCURSIVAS

GABARITO IME 2013 DISCURSIVAS GABARITO IME 01 DISCURSIVAS PROVA DE MATEMÁTICA MATEMÁTICA 1 a QUESTÃO O polinômio P() = 5 4 + 10 0 + 81 4 possui raízes compleas simétricas e uma raiz com valor igual ao módulo das raízes compleas. Determine

Leia mais

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e

Leia mais

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos:

Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Lei dos Cossenos Consideremos um triângulo de lados a,b e c. Temos duas possibilidades: ou o triângulo é acutângulo ou é obtusângulo. Vejamos: Triângulo Obtusângulo Tomemos um triângulo Obtusângulo qualquer,

Leia mais

Dado um triângulo eqüilátero, cujo lado mede 6 cm, calcule: a) o raio da circunferência circunscrita; b) a medida do apótema.

Dado um triângulo eqüilátero, cujo lado mede 6 cm, calcule: a) o raio da circunferência circunscrita; b) a medida do apótema. EXERÍIO OMPLEMENTRES - MTEMÁTI - 1ª SÉRIE - ENSINO MÉDIO - ª ETP ============================================================================================== 01- ssunto: Função Logarítmica Determine

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

Da linha poligonal ao polígono

Da linha poligonal ao polígono Polígonos Da linha poligonal ao polígono Uma linha poligonal é formada por segmentos de reta consecutivos, não alinhados. Polígono é uma superfície plana limitada por uma linha poligonal fechada. Dos exemplos

Leia mais

Sistemas de Equações Diferenciais Lineares

Sistemas de Equações Diferenciais Lineares Capítulo 9 Sistemas de Equações Diferenciais Lineares Agora, estamos interessados em estudar sistemas de equações diferenciais lineares de primeira ordem: Definição 36. Um sistema da linear da forma x

Leia mais

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas.

Assinale as proposições verdadeiras, some os valores obtidos e marque os resultados na Folha de Respostas. PROVA APLICADA ÀS TURMAS DO O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM MARÇO DE 009. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES DE 0 A 08.

Leia mais

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS

1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS Matemática 2 Pedro Paulo GEOMETRIA PLANA X 1 - POLÍGONOS REGULARES E CIRCUNFERÊNCIAS 1.2 Triângulo equilátero circunscrito A seguir, nós vamos analisar a relação entre alguns polígonos regulares e as circunferências.

Leia mais

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são:

TRIÂNGULO RETÂNGULO. Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: TRIÂNGULO RETÂNGULO Triângulo retângulo é todo triângulo que tem um ângulo reto. O triângulo ABC é retângulo em A e seus elementos são: a: hipotenusa b e c: catetos h: altura relativa a hipotenusa m e

Leia mais

Sistema ELITE de Ensino IME - 2013/2014 COMENTÁRIO DA PROVA

Sistema ELITE de Ensino IME - 2013/2014 COMENTÁRIO DA PROVA Sistema ELITE de Ensino IME - 01/01 1 COMENTÁRIO DA PROVA 01. O polinômio P() = 5 + 10 0 + 81 possui raízes compleas simétricas e uma raiz com valor igual ao módulo das raízes compleas. Determine todas

Leia mais

SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR

SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR 2ª AVALIAÇÃO DIAGNÓSTICA DO 8º ANO DO ENSINO FUNDAMENTAL 2012 MATEMÁTICA

Leia mais

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando áreas de figuras geométricas planas

C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O. matemática. Calculando áreas de figuras geométricas planas C U R S O T É C N I C O E M S E G U R A N Ç A D O T R A B A L H O 05 matemática Calculando áreas de figuras geométricas planas Elizabete Alves de Freitas Governo Federal Ministério da Educação Projeto

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C

TIPO DE PROVA: A. Questão 1. Questão 4. Questão 2. Questão 3. alternativa D. alternativa A. alternativa D. alternativa C Questão TIPO DE PROVA: A Se a circunferência de um círculo tiver o seu comprimento aumentado de 00%, a área do círculo ficará aumentada de: a) 00% d) 00% b) 400% e) 00% c) 50% Aumentando o comprimento

Leia mais

III) se deste número n subtrairmos o número 3816, obteremos um número formado pelos mesmos algarismos do número n, mas na ordem contrária.

III) se deste número n subtrairmos o número 3816, obteremos um número formado pelos mesmos algarismos do número n, mas na ordem contrária. 1 Projeto Jovem Nota 10 1. (Fuvest 2000) Um número inteiro positivo n de 4 algarismos decimais satisfaz às seguintes condições: I) a soma dos quadrados dos 1 e 4 algarismos é 58; II) a soma dos quadrados

Leia mais

Geometria Analítica. Geometria Analítica 28/08/2012

Geometria Analítica. Geometria Analítica 28/08/2012 Prof. Luiz Antonio do Nascimento luiz.anascimento@sp.senac.br www.lnascimento.com.br Conjuntos Propriedades das operações de adição e multiplicação: Propriedade comutativa: Adição a + b = b + a Multiplicação

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência)

EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) EXERCÍCIOS DE REVISÃO MATEMÁTICA II GEOMETRIA ANALÍTICA PLANA (Ponto, reta e circunferência) ************************************************************************************* 1) (U.F.PA) Se a distância

Leia mais

SIMULADO. Matemática 1 (UFCG-PB) 2 (IBMEC)

SIMULADO. Matemática 1 (UFCG-PB) 2 (IBMEC) (UFCG-PB) (IBMEC) Um jornalista anuncia que, em determinado momento, o público presente em um comício realizado numa praça com formato do trapézio isósceles ABCD, com bases medindo 00 m e 40 m (vide figura

Leia mais

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Isometrias (8 o ano) Propostas de resolução MTMÁT - 3o ciclo sometrias (8 o ano) Propostas de resolução xercícios de provas nacionais e testes intermédios 1. omo a reflexão do ponto e eixo é o ponto a imagem do ponto pela translação associada ao

Leia mais

Notas de Aula de Física

Notas de Aula de Física Versão preliminar 9 de setembro de 00 Notas de Aula de ísica. EQUIÍBRIO... CONDIÇÕES ARA O EQUIÍBRIO... SOUÇÃO DE AGUNS ROBEMAS... 0... 5... 9... 4 5... 5 7... 6 4... 7 5... 8 9... 8 rof. Romero Tavares

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais