Aula 10 - Erivaldo. Probabilidade

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Aula 10 - Erivaldo. Probabilidade"

Transcrição

1 Aula 10 - Erivaldo Probabilidade

2 Experimento determinístico Dizemos que um experimento é determinístico quando repetido em condições semelhantes conduz a resultados idênticos. Experimento aleatório Dizemos que um experimento é aleatório quando repetido sob as mesmas condições produzem resultados geralmente diferentes.

3 Fenômenos aleatórios do nosso cotidiano: Choverá amanhã? Qual será a temperatura mínima na próxima semana? Quais serão os números sorteados na Mega-Sena? Quantos habitantes terá em Santa Catarina no ano 2100? Estudar Probabilidade é buscar modelos matemáticos que expliquem os fenômenos aleatórios

4 Conceitos básicos: Espaço Amostral Conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1) Experimento: Lançar um dado honesto Espaço Amostral: E = { 1, 2, 3, 4, 5, 6 } 2) Experimento: Lançar uma moeda honesta Espaço Amostral: E = { cara, coroa }

5 Evento Subconjunto do espaço amostral Exemplos: 1) Aparecer um número par no lançamento de um dado. Espaço Amostral: E = { 1, 2, 3, 4, 5, 6 } Evento: A = { 2, 4, 6 }

6 Evento Subconjunto do espaço amostral Exemplos: 2) Obter-se um número primo no sorteio de um número, entre os 20 primeiros naturais positivos. Espaço Amostral: E = { 1, 2,...,19, 20 } Evento: A = { 2, 3, 5, 7, 11, 13, 17, 19 }

7 1) Uma urna contém 20 bolinhas numeradas de 1 a 20. Uma bolinha é escolhida e observado seu número. Descreva os seguintes eventos: a) O número obtido é par: A = { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 } b) O número obtido é primo: B = { 2, 3, 5, 7, 11, 13, 17, 19 } c) O número obtido é maior que 15: C = { 16, 17, 18, 19, 20 } d) O número obtido é múltiplo de 2 e de 3: e) O número obtido é múltiplo de 6 ou de 9: D = { 6, 12, 18 } E = { 6, 9, 12, 18 }

8 2) Um dado é lançado e observa-se o número da face superior. Determine a probabilidade desse número ser par. Resolução Intuitiva: São seis resultados possíveis e metade deles é par, portanto: A probabilidade será de: 50%

9 2) Um dado é lançado e observa-se o número da face superior. Determine a probabilidade desse número ser par. Resolução : Espaço Amostral: E = { 1, 2, 3, 4, 5, 6 } n(e) = 6 Evento: A = { 2, 4, 6 } n(a) = 3 Probabilidade: a probabilidade é de três para seis P = 3 6 P = 1 2 = 0,5 P = 50%

10 Definição : Define-se probabilidade como o quociente do número de casos favoráveis sobre o número de casos possíveis. Jerônimo Cardano ( ) Probabilidade = Número de casos favoráveis Número de casos possíveis

11 Sendo: n(e) : número de elementos do espaço amostral. n(a) : número de elementos do evento A. A probabilidade de ocorrer o evento A é dada por: P(A)= n(a) n(e)

12 3) Uma urna contém 10 bolinhas numeradas de 1 a 10. Uma bolinha é escolhida e observado seu número. Determine a probabilidade de ocorrer: a) um número maior que 4. Espaço Amostral: E = { 1, 2, 3,..., 10 } n(e) = 10 Evento: A = { 5, 6, 7, 8, 9, 10 } n(a) = 6 Probabilidade: P(A) = n(a) n(e) P(A) = 6 10 P(A) = 3 5 = 0, 6 P(A) = 60%

13 3) Uma urna contém 10 bolinhas numeradas de 1 a 10. Uma bolinha é escolhida e observado seu número. Determine a probabilidade de ocorrer: b) um número menor que 5. Espaço Amostral: E = { 1, 2, 3,..., 10 } n(e) = 10 Evento: A = { 1, 2, 3, 4 } n(a) = 4 Probabilidade: P(A) = n(a) n(e) P(A) = 4 10 P(A) = 2 5 = 0, 4 P(A) = 40%

14 3) Uma urna contém 10 bolinhas numeradas de 1 a 10. Uma bolinha é escolhida e observado seu número. Determine a probabilidade de ocorrer: c) um número menor que 11. Espaço Amostral: E = { 1, 2, 3,..., 10 } n(e) = 10 Evento: A = { 1, 2, 3,..., 10 } n(a) = 10 Probabilidade: P(A) = n(a) n(e) P(A) = P(A) = 1 Evento Certo P(A) = 100%

15 3) Uma urna contém 10 bolinhas numeradas de 1 a 10. Uma bolinha é escolhida e observado seu número. Determine a probabilidade de ocorrer: d) um número maior que 15. Espaço Amostral: E = { 1, 2, 3,..., 10 } n(e) = 10 Evento: A = { } = n(a) = 0 Probabilidade: P(A) = n(a) n(e) P(A) = 0 10 P(A) = 0 Evento Impossível P(A) = 0%

16 Observações: Sendo E o espaço amostral de um experimento aleatório e A um evento deste espaço, então: i) P(E)= 1 ii) P( )= 0 iii) 0 P(A) 1 iv) P(A)+ P(A)= 1

17 4) (ENEM) O gráfico mostra a velocidade de conexão à internet utilizada em domicílios no Brasil. Esses dados são resultado da mais recente pesquisa, de 2009, realizada pelo Comitê Gestor da Internet (CGI). Escolhendo-se, aleatoriamente, um domicílio pesquisado, qual a chance de haver banda larga de conexão de pelo menos 1 Mbps neste domicílio? a) 0,45 b) 0,42 c) 0,30 d) 0,22 e) 0,15

18 Total de domicílios: 100 Domicílios de interesse: 22 Escolhendo-se, aleatoriamente, um domicílio pesquisado, qual a chance de haver banda larga de conexão de pelo menos 1 Mbps neste domicílio?

19 Total de domicílios: 100 Domicílios de interesse: 22 Probabilidade: P = P = 0,22 Gabarito: d

20 5) Em um grupo de 80 jovens, 16 praticam futebol, natação e voleibol; 24 praticam futebol e natação; 30 praticam futebol e voleibol; 22 praticam natação e voleibol; 16 praticam outros esportes. A probabilidade de escolher, ao acaso, um jovem desse grupo que pratique apenas um dos três esportes citados é de x%. O valor de x é... Futebol, Natação e Vôlei 16 Resolução: 24 Futebol e Natação Futebol e Vôlei Natação e Vôlei Outros esportes Total

21 F, N e V 16 F e N 24 F e V 30 N e V 22 F a b N Outros 16 Total c V Total = 80 a + b + c = 80

22 a + b + c = 80 a + b + c = 20 A probabilidade de escolher, ao acaso, um jovem desse grupo que pratique apenas um dos três esportes citados é de x%. O valor de x é... Total de jovens: 80 x = 25 Jovens que praticam apenas um esporte: 20 Probabilidade: P(A) = P(A) = 25%

23 6) (FUVEST) Francisco deve elaborar uma pesquisa sobre dois artrópodes distintos. Eles serão selecionados, ao acaso, da seguinte relação: aranha, besouro, barata, lagosta, camarão, formiga, ácaro, caranguejo, abelha, carrapato, escorpião e gafanhoto. Qual é a probabilidade de que ambos os artrópodes escolhidos para a pesquisa de Francisco não sejam insetos? a) 49/144 b) 14/33 c) 7/22 d) 5/22 d) 15/144

24 Artrópodes: (12 ) aranha, besouro, barata, lagosta, camarão, formiga, ácaro, caranguejo, abelha, carrapato, escorpião e gafanhoto. Insetos: ( 5 ) besouro, barata, formiga, abelha, gafanhoto. Não Insetos: ( 7 ) aranha, lagosta, camarão, ácaro, caranguejo, carrapato, escorpião Qual é a probabilidade de que ambos os artrópodes escolhidos para a pesquisa de Francisco não sejam insetos? a) 49/144 b) 14/33 c) 7/22 d) 5/22 d) 15/144

25 Artrópodes: (12 ) Não Insetos: ( 7 ) Total de casos: escolher dois artrópodes C 2 12 = 12! 2!.10! C 2 12 = 66 Casos de interesse: escolher dois não insetos C 2 7 = 7! 2!.5! C 7 2 = 21 Probabilidade: dois não insetos P = P = 7 22 Gabarito: c

26 7) Um dado verde e outro violeta serão lançados sobre uma mesa, observando-se os números contidos nas faces voltadas para cima. Determine: a) A probabilidade de que a soma dos números seja 6. b) A probabilidade do número encontrado no dado verde seja menor do que o obtido no violeta.

27 7) Um dado verde e outro violeta serão lançados sobre uma mesa, observando-se os números contidos nas faces voltadas para cima. Resolução : Espaço Amostral: 36 pares (1,1) (1,2) (1,3) (2,1) (4,5) (6,6)

28 Determine: a) A probabilidade de que a soma dos números seja 6. Resolução : Espaço Amostral: 36 pares Evento (soma 6) : {(1,5) ; (5,1) ; (2,4) ; (4,2) ; (3,3)} Probabilidade: P(A) = 5 36

29 Determine: b) A probabilidade do número encontrado no dado verde seja menor do que o obtido no violeta. Resolução : Espaço Amostral: 36 pares Probabilidade: P = = (1,1) (1,2) (1,3) (2,1) (4,5) (6,6)

30 8) No lançamento de um dado honesto, qual aprobabilidade de sair um número ímpar, sabendo que o resultado é um número primo. Resolução:

31 9) (VUNESP) Dois jogadores A e B vão lançar um par de dados. Eles combinam que, se a soma dos números dos dados for 5, A ganha e se essa for 8, B é quem ganha. Os dados são lançados. Sabe se que A não ganhou. Qual a probabilidade de B ter ganho? a)10/36 b) 5/32 c) 5/36 d) 5/35 Resolução: Espaço Amostral : 36 pares Para A ganhar: (1,4) ; (4,1) ; (2,3) ; (3,2) Para B ganhar: (2,6) ; (6,2) ; (3,5) ; (5,3) ; (4,4)

32 Sabe se que A não ganhou. Qual a probabilidade de B ter ganho? a)10/36 b) 5/32 c) 5/36 d) 5/35 Resolução: Espaço Amostral : 36 pares Para A ganhar: (1,4) ; (4,1) ; (2,3) ; (3,2) Para B ganhar: (2,6) ; (6,2) ; (3,5) ; (5,3) ; (4,4) Se A não ganhou, então o Espaço Amostral é de: 32 pares P(B / A) = 5 32

33 10) (Espm) Numa empresa, 60% são homens, dos quais, 10% são fumantes. Sabe-se que 5% das mulheres são fumantes. Escolhendo-se ao acaso um dos fumantes dessa empresa, a probabilidade de ser uma mulher é igual a: a) 25% b) 15% c) 10% d) 30% e) 20% Resolução: Fumante Não Fumante Total Homem Mulher Total a6 11 a2 12 a8 13 a54 21 a38 22 a92 23 a a a 33 P(M / F)= 2 8 P(M / F)= 1 4 P(M / F)= 25%

34 11) Três cavalos A,B e C disputam uma corrida. É duas vezes mais provável que A vença do que B e duas vezes mais provável que B vença do que C. Quais são as suas respectivas probabilidades de vencer? Resolução: Probabilidades: P(C) = x P(B) = 2x P(A) = 4x P(A) + P(B) + P(C) = 1 x + 2x + 4x = 1 x = 1/7 Portanto: P(C) = 1/7 P(B) = 2/7 P(A) = 4/7

35 12)(UERJ) Três modelos de aparelhos de ar-condicionado, I, II e III, de diferentes potências, são produzidos por um determinado fabricante. Uma consulta sobre intenção de troca de modelo foi realizada com 1000 usuários desses produtos. Observe a matriz A, na qual cada elemento representa o número daqueles que pretendem trocar do modelo i para o modelo j Escolhendo-se aleatoriamente um dos usuários consultados, a probabilidade de que ele não pretenda trocar seu modelo de ar-condicionado é igual a:

36 Resolução: Uma consulta sobre intenção de troca de modelo foi realizada com 1000 usuários desses produtos. Observe a matriz A, na qual cada elemento representa o número daqueles que pretendem trocar do modelo i para o modelo j a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 13 = usuários querem mudar do modelo 1 para modelo 3. a 22 = usuários pretendem continuar com o modelo 2.

37 Uma consulta sobre intenção de troca de modelo foi realizada com 1000 usuários desses produtos a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 Escolhendo-se aleatoriamente um dos usuários consultados, a probabilidade de que ele não pretenda trocar seu modelo de ar-condicionado é igual a: Probabilidade: P = P = = 35%

38 13) (UFRGS) O resultado de uma partida de futebol foi 3x2. A probabilidade de que o time vencedor tenha marcado os dois primeiros gols é: Resolução: Sejam os times A e B, onde A seja o vencedor. Evolução do placar final: AAABB, ABABA, BBAAA, BABAA,... Total de maneiras de obtermos o placar de 3x2: AAABB P 3,2 5 = 5! 3!.2! P 3,2 5 = 10

39 O resultado de uma partida de futebol foi 3x2. A probabilidade de que o time vencedor tenha marcado os dois primeiros gols é: Resolução: Total de maneiras de obtermos o placar de 3x2: 10 Casos de interesse: A A B A B fixo fixo P 2 3 = 3! 2! P 2 3 = 3 Probabilidade: P = 3 10 P = 30%

40 Aula 10 - Erivaldo FIM

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 0 a Fase Profa. Maria Antônia Gouveia. QUESTÃO 58. Em uma festa com n pessoas, em um dado instante, mulheres se retiraram e restaram convidados na razão de homens

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

a) 6,0% b) 6,4% c) 7,2% d) 7,8% e) 8,0% a) 7. d) 14. total de lançamentos c) 15

a) 6,0% b) 6,4% c) 7,2% d) 7,8% e) 8,0% a) 7. d) 14. total de lançamentos c) 15 . (Ufsm 204) A tabela mostra o resultado de uma pesquisa sobre tipos sanguíneos em que foram testadas 600 pessoas. Qual é a probabilidade de uma pessoa escolhida ao acaso ter sangue do tipo A + ou A? 4.

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três. 1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

AULA 13 Probabilidades

AULA 13 Probabilidades AULA Probabilidades Espaço amostral e evento: Em um experimento (ou fenômeno) aleatório, o conjunto formado por todos os resultados possíveis é chamado espaço amostral (Ω) Qualquer subconjunto do espaço

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S. PROBABILIDADE A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade.

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M. Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE 01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP

Leia mais

LISTA DE EXERCÍCIOS: PROBABILIDADE PROBLEMAS GERAIS Prof. Rogerinho

LISTA DE EXERCÍCIOS: PROBABILIDADE PROBLEMAS GERAIS Prof. Rogerinho LISTA DE EXERCÍCIOS: PROBABILIDADE PROBLEMAS GERAIS Prof. Rogerinho NOME: Nº: TURMA: 0. (Ufscar) Um espaço amostral é um conjunto cujos elementos representam todos os resultados possíveis de algum experimento.

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Exercícios. 1. (Uerj 2017) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes:

Exercícios. 1. (Uerj 2017) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes: Probabilidade - Questões Extras Exercícios 1. (Uerj 01) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes: A {0, 1,, 3, 4, 5, 6,, 8, 9} 1. Cada número primo de A foi multiplicado

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

Mat1- Lista Probabilidade-2 série- 2013

Mat1- Lista Probabilidade-2 série- 2013 Mat1- Lista Probabilidade-2 série- 2013 1. (Unicamp simulado 2011) Uma empresa tem 5000 funcionários. Desses, 48% têm mais de 30 anos e 36% são especializados. Entre os especializados, 1400 têm mais de

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES

LEIA ATENTAMENTE AS INSTRUÇÕES Matemática e suas Tecnologias CÓDIGO DA PROVA / SIMULADO Aluno(a): POMA - Matemática Questões Professores: Neydiwan PC 0-0 - 4 ª Série º Bimestre - N 0 / 06 / 06 LEIA ATENTAMENTE AS INSTRUÇÕES Este caderno

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Aula 3 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3

Leia mais

ANÁLISE COMBINATÓRIA II E PROBABILIDADE

ANÁLISE COMBINATÓRIA II E PROBABILIDADE 1. (Fac. Albert Einstein - Medicina 2016) Suponha que nos Jogos Olímpicos de 2016 apenas um representante do Brasil faça parte do grupo de atletas que disputarão a final da prova de natação dos 100 metros

Leia mais

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com 25 círculos dos quais 5 são premiados.

1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com 25 círculos dos quais 5 são premiados. COLÉGIO SANTA MARIA Matemática I / II - Professor: Flávio Verdugo Ferreira Lista de exercícios: Probabilidades 1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios ) (UFRGS/20) Observe a figura abaixo. Na figura, um triângulo equilátero está inscrito em um círculo, e um hexágono regular está circunscrito ao mesmo círculo. Quando se lança um

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3

Leia mais

ESTATÍSTICA EXPLORATÓRIA

ESTATÍSTICA EXPLORATÓRIA ESTATÍSTICA EXPLORATÓRIA Prof Paulo Renato A. Firmino praf62@gmail.com Aulas 07-08 Probabilidade Apanhado Geral Seguimos nossas discussões sobre a Incerteza Decidir usualmente envolve incerteza Uma presa

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano Escola Secundária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 0/ Distribuição de probabilidades.º Ano Nome: N.º: Turma:. Numa turma do.º ano, a distribuição dos alunos por idade e sexo

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Nome: Data: / / 1. Das seguintes experiências diz, justificando, quais são as aleatórias: 1.1. Deitar um berlinde num copo de água

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos Primeira Lista de Exercícios Introdução à probabilidade e à estatística Prof Patrícia Lusié Assunto: Probabilidade. 1. (Apostila 1 - ex.1.1) Lançam-se três moedas. Enumerar o espaço amostral e os eventos

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA

UNIVERSIDADE FEDERAL DA PARAÍBA UNIVERSIDADE FEDERAL DA PARAÍBA Probabilidade Departamento de Estatística UFPB Luiz Medeiros Introdução Encontramos na natureza dois tipos de fenômenos Determinísticos: Os resultados são sempre os mesmos

Leia mais

Combinatória. Matemática Professor: Paulo César 04/12/2014. Lista de Exercícios

Combinatória. Matemática Professor: Paulo César 04/12/2014. Lista de Exercícios Combinatória 1. (Espcex (Aman) 2015) De uma caixa contendo 50 bolas numeradas de 1 a 50 retiram-se duas bolas, sem reposição. A probabilidade do número da primeira bola ser divisível por 4 e o número da

Leia mais

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES 1) Determine a probabilidade de cada evento: a) Um nº par aparece no lançamento de um dado; b) Uma figura

Leia mais

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 Um teste de múltipla escolha e composto de 12 questões, com 5 alternativas de resposta, sendo que somente uma, é correta. Qual a probabilidade de uma pessoa, marcando aleatoriamente

Leia mais

d) 2 e) 3 d) 5 22 e) 15

d) 2 e) 3 d) 5 22 e) 15 PROBABILIDADE E MÉTODOS DE CONTAGEM 1) Nove cartões, com os números de 11 a 19 escritos em um de seus versos, foram embaralhados e postos um sobre o outro de forma que as faces numeradas ficaram para baixo.

Leia mais

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas?

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas? TERCEIRA LISTA DE EXERCÍCIOS DE PROBABILIDADE CURSO: MATEMÁTICA PROF. LUIZ CELONI 1) Dê um espaço amostral para cada experimento abaixo. a) Uma urna contém bolas vermelhas (V), bolas brancas (B) e bolas

Leia mais

As três definições de probabilidades

As três definições de probabilidades As três definições de probabilidades Prof. Ilydio Pereira de Sá UERJ -USS INTRODUÇÃO ÀS PROBABILIDADES Para iniciar, vamos considerar algumas hipóteses: Rita espera ansiosamente o nascimento de seu filho,

Leia mais

Aula 17. Qual é a chance? Ricardo Ferreira Paraizo. e-tec Brasil Matemática Instrumental. Dhiego Andrade.

Aula 17. Qual é a chance? Ricardo Ferreira Paraizo. e-tec Brasil Matemática Instrumental. Dhiego Andrade. Qual é a chance? Ricardo Ferreira Paraizo Dhiego Andrade Aula 17 e-tec Brasil Matemática Instrumental www.sxc.hu Meta Apresentar conhecimentos elementares de Probabilidade. Objetivos Ao concluir esta aula,

Leia mais

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci Termo-Estatística (2013) 2ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

c) 17 b) 4 17 e) 17 21

c) 17 b) 4 17 e) 17 21 Probabilidade I Exercícios. Dois jogadores A e B vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, B é quem ganha. Os dados são lançados. Sabe-se

Leia mais

Exercícios resolvidos sobre Teoremas de Probabilidade

Exercícios resolvidos sobre Teoremas de Probabilidade Exercícios resolvidos sobre Teoremas de Probabilidade Aqui você tem mais uma oportunidade de estudar os teoremas da probabilidade, por meio de um conjunto de exercícios resolvidos. Observe como as propriedades

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES 0 1 INTRODUÇÃO A teoria das probabilidades é utilizada para determinar as chances de um experimento aleatório acontecer. 1.1

Leia mais

Aula 3: Estudando Arranjos

Aula 3: Estudando Arranjos Aula 3: Estudando Arranjos No campeonato mundial de Fórmula 1 de 2012, participaram 25 pilotos, entre quais se destacaram o alemão Sebastian Vettel, que foi o campeão, o espanhol Fernando Alonso, que foi

Leia mais

Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento.

Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento. Probabilidade é o quociente entre o número de casos favoráveis e o número de casos possíveis em um dado experimento. número de casos favoráveis probabilidade número de casos possíveis Nessa definição convém

Leia mais

Matéria Exame 2 Colegial. Aula 1 Matrizes. Aula 2 Matrizes: Igualdade, adição e subtração. Aulas 3 e 4 Multiplicação de matrizes

Matéria Exame 2 Colegial. Aula 1 Matrizes. Aula 2 Matrizes: Igualdade, adição e subtração. Aulas 3 e 4 Multiplicação de matrizes Matéria Eame Colegial Aula Matries Aula Matries: Igualdade, adição e subtração Aulas e Multiplicação de matries Aulas 5 e 6 Determinantes: Ordens, e Aula 7 Sistemas Lineares Aulas 8 Sistemas Lineares:

Leia mais

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Perguntas 1. Um novo aparelho para detectar um certo tipo de

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA

Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA 01. Num saco estão 10 bolas indistinguíveis ao tato, das quais 6 são azuis e 4 são verdes. Retiram-se, sucessivamente e sem reposição duas bolas. Determine

Leia mais

Matemática 2 Prof. Heitor Achilles

Matemática 2 Prof. Heitor Achilles 2 ª SÉRIE EM ORIENTAÇÕES FINAIS Matemática 2 Prof. Heitor Achilles ORIENTAÇÃO DE ESTUDO CONTEÚDOS PARA A RECUPERAÇÃO FINAL COMBINATÓRIA: PFC, Permutações simples, Combinações simples, Permutação com elementos

Leia mais

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos Processos Estocásticos Luiz ffonso Guedes Sumário Probabilidade Variáveis leatórias Funções de Uma Variável leatória Funções de Várias Variáveis leatórias Momentos e Estatística Condicional Teorema do

Leia mais

Lista de Exercícios de Recuperação de MATEMÁTICA 2

Lista de Exercícios de Recuperação de MATEMÁTICA 2 Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM ) Uma prova tem 4 testes com 5 alternativas cada um. Respondendo aleatoriamente

Leia mais

Lista de Exercícios 4

Lista de Exercícios 4 Introdução à Teoria de Probabilidade. Informática Biomédica. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 30 de maio de 2007. Lista de Exercícios 4 são difíceis, são bem mais difíceis.

Leia mais

Será que vai chover amanhã? Quantificando a incerteza. Probabilidades Aula 1

Será que vai chover amanhã? Quantificando a incerteza. Probabilidades Aula 1 Será que vai chover amanhã? Quantificando a incerteza Probabilidades Aula 1 Nosso dia-a-dia está cheio de incertezas Vai chover amanhã? Quanto tempo levarei de casa até a universidade? Em quanto tempo

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como

Leia mais

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1 RESUMO TEÓRICO Experimentos aleatórios: são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. Exemplo: Lançar um dado e verificar qual é a face voltada

Leia mais

LISTA DE EXERCÍCIOS ANÁLISE COMBINATÓRIA E PROBABILIDADE.

LISTA DE EXERCÍCIOS ANÁLISE COMBINATÓRIA E PROBABILIDADE. LISTA DE EXERCÍCIOS ANÁLISE COMBINATÓRIA E PROBABILIDADE. 03 EXERCÍCIOS EXTRAÍDOS LIVRO: MATEMÁTICA NOS VESTIBULARES VOL 5 (FUVEST) Um recenseamento revelou as seguintes características sobre a idade e

Leia mais

Lista Extra:Probabilidade +10-Mat1-2 anos

Lista Extra:Probabilidade +10-Mat1-2 anos Lista Extra:Probabilidade +10-Mat1-2 anos 1. (Upe 2014) Dois atiradores, André e Bruno, disparam simultaneamente sobre um alvo. - A probabilidade de André acertar no alvo é de 80%. - A probabilidade de

Leia mais

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7

C Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br RACIOCÍNIO LÓGICO AULA 7 RACIOCÍNIO LÓGICO AULA 7 TEORIA DAS PROBABILIDADES Vamos considerar os seguintes experimentos: Um corpo de massa m, definida sendo arrastado horizontalmente por uma força qualquer, em um espaço definido.

Leia mais

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO 1. (Magalhães e Lima, pg 40) Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos: (a) Uma moeda é lançada duas vezes

Leia mais

Exercícios de Aprofundamento Mat. Combinação e Probabilidade

Exercícios de Aprofundamento Mat. Combinação e Probabilidade 1. (Unifesp 2015) Um tabuleiro de xadrez possui 64 casas quadradas. Duas dessas casas formam uma dupla de casas contíguas se estão lado a lado, compartilhando exatamente um de seus lados. Veja dois exemplos

Leia mais

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36

a) Considerando o lançamento de dois dados, o espaço amostral é Tabela 1: Tabela de distribuição de X. X P 11/36 9/36 7/36 5/36 3/36 1/36 1 Exercício 1 Um par de dados não viciados é lançado. Seja X a variável aleatória denotando o menor dos dois números observados. a) Encontre a tabela da distribuição dessa variável. b) Construa o gráfico

Leia mais

Probabilidade. Arrumando-se ao acaso os dez halteres, a probabilidade de que eles formem um armazenamento perfeito equivale a: 1

Probabilidade. Arrumando-se ao acaso os dez halteres, a probabilidade de que eles formem um armazenamento perfeito equivale a: 1 Probabilidade. (Fuvest 0) Francisco deve elaborar uma pesquisa sobre dois artrópodes distintos. Eles serão selecionados, ao acaso, da seguinte relação: aranha, besouro, barata, lagosta, camarão, formiga,

Leia mais

Coordenadoria de Matemática. Apostila de Probabilidade

Coordenadoria de Matemática. Apostila de Probabilidade Coordenadoria de Matemática Apostila de Probabilidade Vitória ES 1. INTRODUÇÃO CAPÍTULO 03 Quando investigamos algum fenômeno, verificamos a necessidade de descrevê-lo por um modelo matemático que permite

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

Matemática. Alex Amaral (Allan Pinho) Probabilidade

Matemática. Alex Amaral (Allan Pinho) Probabilidade Probabilidade Probabilidade 1. Observe a figura que mostra um desses baralhos, no qual as cartas representadas pelas letras A, J, Q e K são denominadas, respectivamente, ás, valete, dama e rei. Uma criança

Leia mais

Experiência Aleatória

Experiência Aleatória Probabilidades Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados possíveis. Exemplo

Leia mais

Resoluções. Aula 1 NÍVEL 2. Classe

Resoluções. Aula 1 NÍVEL 2. Classe www.cursoanglo.com.br Treinamento para Olimpíadas de Matemática NÍVEL 2 Resoluções Aula 1 Classe 1. Observe que: 14 1 = 14 14 2 = 196 14 par termina em 6 e 14 ímpar termina em 4 14 3 = 2.744 14 4 = 38.416...

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Probabilidade Matemática Ensino médio 4min32seg. Habilidades: H10. Utilizar os princípios probabilísticos

Leia mais

Matemática 4 Módulo 9

Matemática 4 Módulo 9 Matemática 4 Módulo 9 ANÁLISE COMBINATÓRIA I COMENTÁRIOS ATIVIDADES PARA SALA (n + )! (n + )(n )!. I. Dada a função ƒ (n). Simplificando, temos: n! + (n )! (n + ).n.(n )! (n + ).(n )! (n )![(n + ).n (n

Leia mais

Experiências aleatórias e probabilidade

Experiências aleatórias e probabilidade Experiências aleatórias e probabilidade L.J. Amoreira UBI Novembro 2010 Experiências aleatórias Experiências aleatórias são aquelas cujos resultados não são conhecidos de antemão. Espaço de resultados

Leia mais

REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO ALUNO(A): Nº: MATEMÁTICA

REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO ALUNO(A): Nº: MATEMÁTICA REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul MATEMÁTICA 0. (UFRGS - VESTIBULAR 205) Escolhe-se

Leia mais

Definição de Probabilidade

Definição de Probabilidade INTRODUÇÃO A TEORIA DAS PROBABILIDADES A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número

Leia mais

Definição: É uma coleção bem definida de

Definição: É uma coleção bem definida de EST029 Cálculo de Probabilidade I Cap. 1: Introdução à Probabilidade Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Conjuntos: Definição e notação Definição: É uma coleção bem definida de objetos,

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

AULA 02 AULA 01 (D) 9. ITEM 01 No lançamento de um dado e uma moeda, qual é a probabilidade de se obter cara na moeda e face 5 no dado?

AULA 02 AULA 01 (D) 9. ITEM 01 No lançamento de um dado e uma moeda, qual é a probabilidade de se obter cara na moeda e face 5 no dado? AULA 01 No lançamento de um dado e uma moeda, qual é a probabilidade de se obter cara na moeda e face 5 no dado? Em um conjunto de 50 cartões numerados de 1 a 50, retirando ao acaso um desses cartões,

Leia mais

Exercícios sobre probabilidades Matemática aula por aula Benigno Barreto Filho/Cláudio Xavier Toledo da Silva vol. 2 Ensino Médio.

Exercícios sobre probabilidades Matemática aula por aula Benigno Barreto Filho/Cláudio Xavier Toledo da Silva vol. 2 Ensino Médio. Atividade sobre Probabilidades 4 o bim. 2009 2 os anos 1) No lançamento simultâneo de 2 dados, considere as faces voltadas para cima e determine a) espaço amostral S. b) evento E 1 : números cuja soma

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Resoluções de Exercícios MATEMÁTICA V Capítulo 05 Noções de Probabilidade Parte II 3 o ) P(I B) = Observação: Diagrama de Árvore Considere as probabilidades seguintes a) P(I) = = P(II) b) P(B I) = e P(V

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

Noções sobre probabilidade

Noções sobre probabilidade Capítulo 3 Noções sobre probabilidade Um casal tem dois filhos. Qual é a probabilidade de: o primogênito ser homem? os dois filhos serem homens? pelo menos um dos filhos ser homem? A teoria das probabilidades

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

Professor Mauricio Lutz PROBABILIDADE

Professor Mauricio Lutz PROBABILIDADE PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos

Leia mais

3 d) 3 e) 9. NUCE Concursos Públicos A sequência a seguir é uma progressão aritmética:

3 d) 3 e) 9. NUCE Concursos Públicos A sequência a seguir é uma progressão aritmética: 1. A sequência a seguir é uma progressão aritmética: 00 15 0 45... 2010 Acima, aparecem apenas os quatro primeiros termos e o último. O número total de elementos dessa sequência é a) 11 b) 107 c) 109 d)

Leia mais