TEORIA DAS PROBABILIDADES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "TEORIA DAS PROBABILIDADES"

Transcrição

1 TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da melhor forma possível. A teoria das probabilidades é um modelo matemático utilizado para explicar fenômenos aleatórios coletivos e fornecem estratégias para a tomada de decisão. Estes fenômenos, mesmo em condições normais de experimentação, seus resultados variam de uma observação para outra, dificultando a previsão de um resultado futuro. 1.2 Tipos de Fenômenos a) Determinísticos Os resultados são sempre os mesmos, quaisquer que sejam as n repetições. Exemplo: a água submetida à temperatura de 100º, passará de líquido para gasoso, sempre. b) Aleatórios ou Não-determinísticos Os resultados não são previsíveis, mesmo que hajam n repetições. Exemplo: Num pomar com centenas de laranjeiras, as produções da cada planta serão diferentes e não previsíveis, mesmo estando todas, sob as mesmas condições de solo, temperatura, umidade, etc... sejam as mesmas para todas as árvores Obs. 1.Quando um fenômeno é a teoria das probabilidades não fornece um modelo matemático adequado para explicar o fenômeno; 2. O objeto da teoria , são os fenômenos aleatórios; 3. Para facilitar o desenvolvimento da teoria sem usar recursos matemáticos mais sofisticados, por ora, vamos restringir nosso estudo a uma classe de fenômenos aleatórios chamados de experimentos.

2 1.3 Experimento Aleatório E Os experimentos são fenômenos aleatórios e mesmo que as condições iniciais sejam sempre as mesmas, os resultados finais de cada tentativa, serão diferentes e não previsíveis e possui as seguintes características: a) Poderá ser repetido indefinidamente sob as mesmas condições ; b) Não se conhece, a priori, um valor particular do experimento, porém pode-se descrever todos seus possíveis resultados; c) Quando for repetido um grande número de vezes, surgirá uma regularidade, ou seja, haverá uma estabilidade da fração f = r/n, onde : r = o número de sucessos de um particular resultado estabelecido antes da realização do experimento n = o número de repetições f Espaço Amostral Finito Equiprovável S Um Espaço Amostral é o conjunto de todos os possíveis resultados de um experimento aleatório. Ele será Equiprovável ou Uniforme quando se associa a cada ponto amostral a mesma probabilidade. Exemplos E 1 = Lançar um dado não viciado e anotar o número de pontos; S 1 = 1, 2, 3, 4, 5, 6 n

3 Exemplos E 2 = Lançar uma moeda e anotar a face voltada para cima; S 2 = E 3 = Retirar uma carta de um baralho com 52 cartas, anotar o naipe S 3 = E 4 = lançar duas moedas e observar as faces voltadas para cima. S 4 = E 5 = Lançar uma moeda sucessivamente até que se obtenha a 1ª cara S 5 = E 6 = Escolha de um ponto no intervalo 3, 12 e anote a distância do ponto escolhido P ao ponto 5; S 6 = E 7 = Jogar uma moeda 4 vezes e anotar o número de caras obtidas S 7 = E 8 = O número de rebites utilizados na asa de um avião S 8 = 1.4 Evento e Operações com Eventos É qualquer subconjunto do espaço amostral S. Considere S = 1, 2, 3, 4, 5, 6, o espaço amostral relativo ao lançamento de um dado. Note que, se A = 1, 2 ; B = 2, 4 e C = e portanto são eventos. Dessa forma:, são subconjuntos de S O próprio espaço amostral S e o são eventos S é dito o evento certo de ocorrer e o evento impossível Usando as operações com conjuntos, podemos formar novos eventos: I) A B = x S / x A ou x B evento que ocorre se A ocorre ou B ocorre, ou ambos ocorrem. II) A B x S / x A ou x B evento que ocorre se A e B ocorrerem. III) A ou C A evento que ocorre se A não ocorrer

4 Exemplo Seja S = 1, 2, 3, 4, 5, 6 Se A = 1, 2, 3 B = 2, 3, 6 C = 2, 3, 4 A B = A C= C A = C B = C (A B) = C (A C) = Eventos Mutuamente Exclusivos Dois eventos A e B são mutuamente exclusivos quando a ocorrência de um deles exclui a possibilidade da ocorrência do outro, ou seja, eles não podem ocorrer simultaneamente, isto é, Exemplo: A B = E : jogar um dado e observar o resultado S = 1, 2, 3, 4, 5, 6 Sejam os eventos : A = ocorrer nº par A = 2, 4, 6 B = ocorrer nº ímpar B = 1, 3, 5 Logo, A B =. O que isto significa? ANOTAÇÕES

5 1.5 Definição de Probabilidade É uma função que associa a cada evento satisfaz aos seguintes axiomas: S R P B A 0,1 C S um número real e I) 0 P (A) 1 II) P(S) =1 III) Se A e B forem mutuamente exclusivos, (A B ) =, então P(A B) = P(A) + P(B) 1.6 Principais Teoremas 1. Se é o conjunto vazio, então P( ) = 0 1. S A é o complementar de A, então P(A) = 1 P(A) 2. Se A B, então P(A) P(B) 3. Se A e B são dois eventos quaisquer, então 1.7 Eventos Equiprováveis P(A B) = P(A) + P(B) P(A B) São aqueles que têm a mesma probabilidade de ocorrerem, ou seja se o espaço amostral S contém n pontos e a probabilidade de cada ponto será : P i = 1 np = 1 p = 1/n Por outro lado, se um evento A contém r pontos, então:

6 P(A) = r. (1/n). Este é o método de avaliar P(A). e é enunciado da seguinte forma: Enunciado P(A) = Nº de casos favoráveis Nº de casos possíveis Exemplo Retira-se uma carta de um baralho comum, bem embaralhado de 52 cartas. Qual a probabilidade de: a) A = Sair um rei P(A) = 4/52 b) B = Sair uma carta de espadas P(B) = 13/52 c) C = Sair um rei ou uma carta de espadas P(A B) =? P(A B) = P(A) + P(B) P(A B) P(A B) = Logo, P(A B) = Tente outra vez. Praticando o que aprendeu 1. Considere o espaço amostral do lançamento de um dado e a observação da face superior. Descreva, por seus elementos, os seguintes eventos; a) A: Sair face par b) B: Sair face primo c) C:Sair face maior que 3 d) Sair face maior que 6 e) Sair face múltipla de 3 f) Sair face menor ou igual a 4 2. Considere o espaço amostral S = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 e os seguintes eventos: A = 2, 3, 4 ; B = 1, 3, 5, 7, 9 ; C = 5 ; D = 1, 2, 3 ; E = 2, 4, 6 Determine: a) A B = b) A B = c) A C = d) C A = e) C B = f)c (A B) = 3. Se P(A) = ½ ; P(B) = ¼, sendo A e B mutuamente exclusivos, calcular:

7 a) P(A) b) P(B) c) e) P(A B) d) P(A B) e) P(A B) 2. determine a probabilidade de cada evento: a) um número par aparecer no lançamento de um dado não viciado; b) um rei aparecer ao extrair-se uma carta de um baralho; c) pelo menos uma cara aparece no lançamento de três moedas; d) duas copas aparecem ao retirarem-se duas cartas de um baralho. 3. Dois dados são lançados simultaneamente. Qual a probabilidade de: a) A soma ser menor que 4 b) a soma ser 9 c) o primeiro resultado ser maior do que o segundo d) o primeiro resultado ser igual ao segundo 4. Uma urna contém 5 bolas brancas e 6 pretas. Três bolas são retiradas. Calcular a probabilidade de: a) todas serem pretas b) exatamente uma ser branca c) ao menos uma ser preta 5. Um lote é formado por 10 peças boas, 4 com defeitos e duas com defeitos graves. Uma peça é escolhida ao acaso. Calcule a probabilidade de que: a) ela não tenha defeitos graves b) ela não tenha defeitos c) ela ou seja boa ou tenha defeitos graves 6. Um experimento consiste em lançar três moedas e observar a diferença entre o número de caras e o número de coroas obtidos neste lançamento, Explicite esse espaço amostral. 7. Num grupo de 300 turistas cadastrados por uma agência de viagens, 100 viajam para Petrolina e 80 para Juazeiro e 30 viajam para as duas cidades simultaneamente. Qual a probabilidade de um turista escolhido ao acaso estar de viagem para: a) Petrolina b) Juazeiro c) Petrolina ou Juazeiro

8 1.8 Probabilidade Condicional P(A/B) Dados dois eventos A e B, a probabilidade condicionada do evento A, quando B tiver ocorrido será dada por: P(A B) P(A/B) = com P(B) 0 P(B) Também: P(B A) P(B/A) = com P(A) 0 P(A) P(A / B) Lê-se P de A dado B Exemplo : Sendo P(A) = 1/3 P(B) =3/4 e P(A B) = 11/12, calcular P(A/B) P(A B) Como P(A/B) =, devemos calcular: P(B) P(A B) = P(A) + P(B) P(A B) Daí, P(A B) = 1/6. Logo P(A/B) = 1.9 Teorema do Produto Sejam A e B dois eventos contidos em S, então: P(A P(A B) = P(B) P(A/B) ou B) = P(A) P(B/A) Exemplo: Duas bolas são retiradas de uma urna que contém 2 bolas brancas, 3 pretas e 4 verdes. Qual a probabilidade de que ambas:

9 a) sejam verdes; b) sejam brancas; c) sejam da mesma cor. 2 B a) P(V V) = P(V) P(V/V) = 4/9 3/8 = 1/6 3 P 4 V b) c) P(MC) = 1.10 Eventos Independentes Intuitivamente se A e B são independentes é porque: P(A/B) = P(A) e P(B/A) = P(B) Definição : Dois eventos A e B são independentes se: P(A B) = P(A) P(B) Exemplo: Lançam-se 3 moedas. Os eventos A e B são independentes : A = Saída de cara na 1ª moeda B = Saída de coroa na 2ª e 3ª moedas E = c,c,c), (c,c,k), (c,k,c), (k,c,c), (k,k c), (k,c,k), (c,k,k), (k,k,k) A = P(A) = B = P(B) = A B = P(A B) = P(A). P(B) = Conclusão: Importante 1 3 eventos A, B, e C serão independentes, se todas as 4 proposições abaixo forem satisfeitas: P(A B C) = P(A). P(B). P(C) P(A B) = P(A). P(B) P(A C) = P(A). P(C) P(B C ) = P(B). P(C)

10 2 Se A e B são mutuamente exclusivos, então A e B são dependentes, pois se A ocorre, B não ocorre, isto é, a ocorrência de um evento condiciona a não-ocorrência do outro. Teste seus conhecimentos 1. determinar a probabilidade p, ou sua estimativa, para cada um dos eventos: a) de aparecer um número ímpar em um único lançamento de um dado honesto. b) de ocorrer pelo menos uma cara em dois lances de uma moeda honesta. c) de surgir um ás, um dez de ouros ou um dois de espadas na retirada de uma carta única de um baralho, bem embaralhado, de 52 cartas d) de aparecer o total 7 em um único lançamento de dois dados 1. Uma bola é retirada ao acaso de uma urna que contém 6 bolas vermelhas, 4 brancas e 5 azuis. Determinar a probabilidade de ela: a) ser vermelha b)ser branca c) ser azul d) não ser vermelha e) ser vermelha ou branca 2. Uma moeda é lançada três vezes. Ache a probabilidade de se obterem: a) Três caras b) Duas caras e uma coroa c) Uma cara d) Pelo menos uma cara e) Nenhuma cara 3. São lançados dois dados. Qual a probabilidade de: a) obter-se um par de pontos iguais; b) um para de pontos diferentes c) um par em que o 1º > 2º d) a soma dos pontos ser um número par; e) obter-se a soma 7, se o par de pontos é diferente; f) obter-se a soma 6, dado que o par de pontos é igual; g) a soma ser A probabilidade Manoel resolver um problema de estatística é de 3/5 e de Anne resolver esse mesmo problema é de 4/7. Qual a probabilidade de que o problema seja resolvido?

11 5. No lançamento de um dado, qual a probabilidade de sair o número 5 ou um número par? 7. A probabilidade de que um homem esteja vivo daqui a 30 anos é 2/5; a e sua mulher é de 2/3. Determinar a probabilidade de que daqui a 30 anos: a) ambos estejam vivos; b) somente o homem esteja vivo; c) somente a mulher esteja viva; d) nenhum esteja vivo; e) pelo menos um esteja vivo; 8. A e B jogam 120 partidas de xadrez, das quais A ganha 60, B ganha 40 e 20 terminam empatadas. A e B concordam em jogar 3 partidas. Determinar a probabilidade de: a) A ganhar todas as três; b) Duas partidas terminarem empatadas; c) A e B ganharem alternadamente. 9. Uma urna contém 5 bolas brancas, 4 vermelhas e 3 azuis. Extraem-se simultaneamente 3 bolas. Achar a probabilidade de que: a. nenhuma seja vermelha; b. exatamente uma seja vermelha; c. todas sejam da mesma cor. 10. As probabilidades de 3 jogadores A, B, e C marcarem um gol quando cobram um pênalti são 2/3, 4/5 e 7/10, respectivamente. Se cada um cobrar uma única vez, qual a probabilidade de que pelo menos um marque um gol. a) todos acertarem b) apenas um acertar c) todos errarem 11. A tabela abaixo descreve os hóspedes registrados pelo período de uma semana num hotel de Petrolina. A distribuição segue de acordo com o sexo e a idade. Idade Sexo Total Feminino Masculino Abaixo de 20 anos Entre 20 e 40 anos Acima de 40 anos Total Se um hóspede é escolhido aleatoriamente, qual a probabilidade:

12 a) de ser mulher? b) de ser mulher e ter acima de 40 anos? c) de ser homem e ter menos de 20 anos? d) de ser mulher entre 20 e 40 anos? e) de ser homem e ter menos de 40 anos? f) ter entre 20 e 40 anos?

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S. PROBABILIDADE A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade.

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

Coordenadoria de Matemática. Apostila de Probabilidade

Coordenadoria de Matemática. Apostila de Probabilidade Coordenadoria de Matemática Apostila de Probabilidade Vitória ES 1. INTRODUÇÃO CAPÍTULO 03 Quando investigamos algum fenômeno, verificamos a necessidade de descrevê-lo por um modelo matemático que permite

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa

Leia mais

1- INTRODUÇÃO 2. CONCEITOS BÁSICOS

1- INTRODUÇÃO 2. CONCEITOS BÁSICOS 1 1- INTRODUÇÃO O termo probabilidade é usado de modo muito amplo na conversação diária para sugerir um certo grau de incerteza sobre o que ocorreu no passado, o que ocorrerá no futuro ou o que está ocorrendo

Leia mais

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos Primeira Lista de Exercícios Introdução à probabilidade e à estatística Prof Patrícia Lusié Assunto: Probabilidade. 1. (Apostila 1 - ex.1.1) Lançam-se três moedas. Enumerar o espaço amostral e os eventos

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA

UNIVERSIDADE FEDERAL DA PARAÍBA UNIVERSIDADE FEDERAL DA PARAÍBA Probabilidade Departamento de Estatística UFPB Luiz Medeiros Introdução Encontramos na natureza dois tipos de fenômenos Determinísticos: Os resultados são sempre os mesmos

Leia mais

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três. 1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Lista de Exercícios de Probabilidades

Lista de Exercícios de Probabilidades Lista de Exercícios de Probabilidades Joel M. Corrêa da Rosa 2011 1. Lançam-se três moedas. Enumere o espaço amostral e os eventos : Ω = {(c, c, c); (k, k, k); (c, k, k); (k, c, k); (k, k, c); (k, c, c);

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES 0 1 INTRODUÇÃO A teoria das probabilidades é utilizada para determinar as chances de um experimento aleatório acontecer. 1.1

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

Será que vai chover amanhã? Quantificando a incerteza. Probabilidades Aula 1

Será que vai chover amanhã? Quantificando a incerteza. Probabilidades Aula 1 Será que vai chover amanhã? Quantificando a incerteza Probabilidades Aula 1 Nosso dia-a-dia está cheio de incertezas Vai chover amanhã? Quanto tempo levarei de casa até a universidade? Em quanto tempo

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

Definição: É uma coleção bem definida de

Definição: É uma coleção bem definida de EST029 Cálculo de Probabilidade I Cap. 1: Introdução à Probabilidade Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Conjuntos: Definição e notação Definição: É uma coleção bem definida de objetos,

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

Probabilidade e Estatística Preparação para P1

Probabilidade e Estatística Preparação para P1 robabilidade e Estatística reparação para rof.: Duarte ) Uma TV que valia R$ 00,00, entrou em promoção e sofreu uma redução de 0% em seu preço. Qual é o novo preço da TV? ) Um produto foi vendido por R$

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI Teoria de Probabilidade FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km, Tel: +5 4007, Fax: +5 400, Maputo Cursos de Licenciatura em Ensino de Matemática e de

Leia mais

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO 1. (Magalhães e Lima, pg 40) Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos: (a) Uma moeda é lançada duas vezes

Leia mais

Aula - Introdução a Teoria da Probabilidade

Aula - Introdução a Teoria da Probabilidade Introdução a Teoria da Probabilidade Prof. Magnos Martinello Aula - Introdução a Teoria da Probabilidade Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI 5 de dezembro de

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Espaço Amostral, Eventos, Álgebra de eventos Aula de hoje Probabilidade Análise Combinatória Independência Probabilidade Experimentos

Leia mais

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES 1) Determine a probabilidade de cada evento: a) Um nº par aparece no lançamento de um dado; b) Uma figura

Leia mais

Definição de Probabilidade

Definição de Probabilidade INTRODUÇÃO A TEORIA DAS PROBABILIDADES A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

Noções sobre probabilidade

Noções sobre probabilidade Capítulo 3 Noções sobre probabilidade Um casal tem dois filhos. Qual é a probabilidade de: o primogênito ser homem? os dois filhos serem homens? pelo menos um dos filhos ser homem? A teoria das probabilidades

Leia mais

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas?

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas? TERCEIRA LISTA DE EXERCÍCIOS DE PROBABILIDADE CURSO: MATEMÁTICA PROF. LUIZ CELONI 1) Dê um espaço amostral para cada experimento abaixo. a) Uma urna contém bolas vermelhas (V), bolas brancas (B) e bolas

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova 1 de Probabilidade I Prof.: Fabiano F. T. dos Santos Goiânia, 15 de setembro de 2014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

ESTATÍSTICA EXPLORATÓRIA

ESTATÍSTICA EXPLORATÓRIA ESTATÍSTICA EXPLORATÓRIA Prof Paulo Renato A. Firmino praf62@gmail.com Aulas 07-08 Probabilidade Apanhado Geral Seguimos nossas discussões sobre a Incerteza Decidir usualmente envolve incerteza Uma presa

Leia mais

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos:

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos: Eisencraft e Loiola 2.1 Probabilidade 37 Modelo matemático de experimentos Para resolver problemas de probabilidades são necessários 3 passos: a Estabelecimento do espaço das amostras b Definição dos eventos

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Exercícios de exames e testes intermédios 1. Seja Ω, conjunto finito, o espaço de resultados associado a uma certa experiência

Leia mais

Capítulo 2 Probabilidades

Capítulo 2 Probabilidades Capítulo 2 Probabilidades Slide 1 Definições Slide 2 Acontecimento Qualquer colecção de resultados de uma experiência. Acontecimento elementar Um resultado que não pode ser simplificado ou reduzido. Espaço

Leia mais

1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com 25 círculos dos quais 5 são premiados.

1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com 25 círculos dos quais 5 são premiados. COLÉGIO SANTA MARIA Matemática I / II - Professor: Flávio Verdugo Ferreira Lista de exercícios: Probabilidades 1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Probabilidade Básica. Capítulo 1 EXPERIMENTOS ALEATÓRIOS ESPAÇOS AMOSTRAIS

Probabilidade Básica. Capítulo 1 EXPERIMENTOS ALEATÓRIOS ESPAÇOS AMOSTRAIS Capítulo 1 Probabilidade Básica EXPERIMENTOS ALEATÓRIOS Todos estão familiarizados com a importância dos experimentos na ciência e na engenharia. A experimentação é útil porque podemos presumir que, se

Leia mais

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17)

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17) Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 016/17) 1- Modelos de probabilidade(136) 1.1) Introdução.(36) (Vídeo: 33) 1.) Fenómenos aleatórios(138) Experiência determinística-produz

Leia mais

Experiências aleatórias e probabilidade

Experiências aleatórias e probabilidade Experiências aleatórias e probabilidade L.J. Amoreira UBI Novembro 2010 Experiências aleatórias Experiências aleatórias são aquelas cujos resultados não são conhecidos de antemão. Espaço de resultados

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

Abertura Ver ângulo. Abreviar Significa valer-se de métodos que facilitem as operações. Exemplos: 1) = ( ) + 25 = = 125

Abertura Ver ângulo. Abreviar Significa valer-se de métodos que facilitem as operações. Exemplos: 1) = ( ) + 25 = = 125 A Abertura Ver ângulo. Abreviar Significa valer-se de métodos que facilitem as operações. Exemplos: 1) 24 + 25 + 76 = (24 + 76) + 25 = 100 + 25 = 125 2) 192 + 65 = (200 8) + 65 = 200 + 65 8 = 200 + 57

Leia mais

REVISÃO DO CONTEÚDO ATÉ HOJE. Conhecendo o cálculo da probabilidade

REVISÃO DO CONTEÚDO ATÉ HOJE. Conhecendo o cálculo da probabilidade REVISÃO DO CONTEÚDO ATÉ HOJE Conhecendo o cálculo da probabilidade BERTOLO OBJETIVOS Definir probabilidade; Identificar situações práticas às quais se aplica a probabilidade; Definir experimento, espaço

Leia mais

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Perguntas 1. Um novo aparelho para detectar um certo tipo de

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Aula 3 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3

Leia mais

Experiência Aleatória

Experiência Aleatória Probabilidades Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados possíveis. Exemplo

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

Professor Mauricio Lutz PROBABILIDADE

Professor Mauricio Lutz PROBABILIDADE PROBABILIDADE Todas as vezes que se estudam fenômenos de observação, cumpre-se distinguir o próprio fenômeno e o modelo matemático (determinístico ou probabilístico) que melhor o explique. Os fenômenos

Leia mais

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos Processos Estocásticos Luiz ffonso Guedes Sumário Probabilidade Variáveis leatórias Funções de Uma Variável leatória Funções de Várias Variáveis leatórias Momentos e Estatística Condicional Teorema do

Leia mais

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M. Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis

Leia mais

1.4.2 Probabilidade condicional

1.4.2 Probabilidade condicional M. Eisencraft 1.4 Probabilidades condicionais e conjuntas 9 Portanto, P(A B) = P(A)+P(B) P(A B) (1.2) Para eventos mutuamente exclusivos, P(A B) = e P(A)+P(B) = P(A B). 1.4.2 Probabilidade condicional

Leia mais

DRUIDAS DO SABER CENTRO DE EXPLICAÇÕES. Matemática - 9º Ano

DRUIDAS DO SABER CENTRO DE EXPLICAÇÕES. Matemática - 9º Ano DRUIDAS DO SABER CENTRO DE EXLICAÇÕES Matemática - 9º Ano Em todas as questões apresenta o teu raciocínio de forma clara, indicando todos os cálculos que tiveres de efectuar e todas as justificações que

Leia mais

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da

Leia mais

CAPÍTULO 4 PROBABILIDADE PROBABILIDADE PPGEP Espaço Amostral e Eventos Espaço Amostral e Eventos UFRGS. Probabilidade.

CAPÍTULO 4 PROBABILIDADE PROBABILIDADE PPGEP Espaço Amostral e Eventos Espaço Amostral e Eventos UFRGS. Probabilidade. PROBABILIDADE CAPÍTULO 4 PROBABILIDADE UFRGS A Teoria das s estuda os fenômenos aleatórios. Fenômeno Aleatório: são os fenômenos cujo resultado não pode ser previsto exatamente. Se o fenômeno se repetir,

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE 01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP

Leia mais

Raciocínio Lógico 1 Probabilidade

Raciocínio Lógico 1 Probabilidade PROBABILIDADE 1. CONCEITOS INICIAIS A Teoria da Probabilidade faz uso de uma nomenclatura própria, de modo que há três conceitos fundamentais que temos que passar imediatamente a conhecer: Experimento

Leia mais

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Nome: Data: / / 1. Das seguintes experiências diz, justificando, quais são as aleatórias: 1.1. Deitar um berlinde num copo de água

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano Escola Secundária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 0/ Distribuição de probabilidades.º Ano Nome: N.º: Turma:. Numa turma do.º ano, a distribuição dos alunos por idade e sexo

Leia mais

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr.

PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. PROBABILIDADE Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - O intelecto faz pouco na estrada que leva à descoberta, acontece um salto na consciência, chameo de

Leia mais

DNIT RACIOCÍNIO LÓGICO. 5ª parte: Probabilidade

DNIT RACIOCÍNIO LÓGICO. 5ª parte: Probabilidade DNIT RACIOCÍNIO LÓGICO 5ª parte: Probabilidade (webercampos@gmail.com) PROBABILIDADE 1. CONCEITOS INICIAIS Ocorre que a Teoria da Probabilidade faz uso de uma nomenclatura própria, de modo que há três

Leia mais

Lista de Exercícios 4

Lista de Exercícios 4 Introdução à Teoria de Probabilidade. Informática Biomédica. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 30 de maio de 2007. Lista de Exercícios 4 são difíceis, são bem mais difíceis.

Leia mais

8 - PROBABILIDADE. 8.1 - Introdução

8 - PROBABILIDADE. 8.1 - Introdução INE 7002 - Probabilidade 1 8 - PROBABILIDADE 8.1 - Introdução No capítulo anterior foi utilizado um raciocínio predominantemente indutivo: os dados eram coletados, e através da sua organização em distribuições

Leia mais

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas.

1. Cinco cartas são extraídas de um baralho comum (52 cartas, 13 de cada naipe) sem reposição. Defina a v.a. X = número de cartas vermelhas sorteadas. GET007 Métodos Estatísticos Aplicados à Economia I Lista de Exercícios - variáveis Aleatórias Discretas Profa. Ana Maria Farias. Cinco cartas são extraídas de um baralho comum ( cartas, de cada naipe sem

Leia mais

PROBABILIDADE E ESTATÍSTICA

PROBABILIDADE E ESTATÍSTICA PROBABILIDADE E ESTATÍSTICA Curso de Matemática Probabilidades Bertolo OBJETIVOS Definir probabilidade; Identificar situações práticas às quais se aplica a probabilidade; Definir experimento, espaço amostral

Leia mais

PROBABILIDADES Disciplina de Pós-Graduação Departamento de Matemática

PROBABILIDADES Disciplina de Pós-Graduação Departamento de Matemática PROBABILIDADES Disciplina de Pós-Graduação Departamento de Matemática (Apostila #1) INTRODUÇÃO À PROBABILIDADE A Teoria de Probabilidades nada mais é que senso comum transformado em cálculo Laplace Exemplos

Leia mais

PROBABILIDADE 1. INTRODUÇÃO

PROBABILIDADE 1. INTRODUÇÃO proporção de caras Revisões PROBABILIDADE 1. INTRODUÇÃO As experiências aleatórias apresentam as seguintes características:.o resultado individual é imprevisível.são conhecidos todos os possíveis resultados.a

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Resolução dos exercícios de probabilidade Cap. 6 - Pág. 54

Resolução dos exercícios de probabilidade Cap. 6 - Pág. 54 Resolução dos exercícios de probabilidade Cap. 6 - Pág. 54 Para estas notas, consideraremos as siglas CP = casos possíveis CF = casos favoráveis CP = quantidade de casos possíveis CF = quantidade de casos

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

CAIXA ECONOMICA FEDERAL. Prof. Sérgio Altenfelder

CAIXA ECONOMICA FEDERAL. Prof. Sérgio Altenfelder 14.) (ICMS-MG/05) Um empréstimo contraído no início de abril, no valor de R$ 15.000,00 deve ser pago em dezoito prestações mensais iguais, a uma taxa de juros compostos de 2% ao mês, vencendo a primeira

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

Exercícios resolvidos sobre Teoremas de Probabilidade

Exercícios resolvidos sobre Teoremas de Probabilidade Exercícios resolvidos sobre Teoremas de Probabilidade Aqui você tem mais uma oportunidade de estudar os teoremas da probabilidade, por meio de um conjunto de exercícios resolvidos. Observe como as propriedades

Leia mais

Caique Tavares. Probabilidade Parte 1

Caique Tavares. Probabilidade Parte 1 Caique Tavares Probabilidade Parte 1 Probabilidade: A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais

Leia mais

Probabilidade. Definições e Conceitos

Probabilidade. Definições e Conceitos Probabilidade Definições e Conceitos Definições Probabilidade Medida das incertezas relacionadas a um evento chances de ocorrência de um evento Exemplos: Probabilidade de jogar um dado e cair o número

Leia mais

QUESTÕES n = 100 Fonte: Toledo (1985) Determinar: a) Desvio quartil. b) Desvio médio. c) Desvio padrão.

QUESTÕES n = 100 Fonte: Toledo (1985) Determinar: a) Desvio quartil. b) Desvio médio. c) Desvio padrão. 1 MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PIAUÍ CENTRO DE EDUCAÇÃO ABERTA E A DISTÂNCIA CEAD/UFPI-UAB/CAPES CURSO DE LICENCIATURA EM COMPUTAÇÃO 2ª Atividade Probabilidade e Estatística QUESTÕES

Leia mais

Aula 8 Probabilidade condicional e independência de eventos

Aula 8 Probabilidade condicional e independência de eventos Aula 8 Probabilidade condicional e independência de eventos Nesta aula você aprenderá os conceitos de probabilidade condicional e independência de eventos. Você verá também que esses são conceitos importantes

Leia mais

As três definições de probabilidades

As três definições de probabilidades As três definições de probabilidades Prof. Ilydio Pereira de Sá UERJ -USS INTRODUÇÃO ÀS PROBABILIDADES Para iniciar, vamos considerar algumas hipóteses: Rita espera ansiosamente o nascimento de seu filho,

Leia mais

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

ESTATÍSTICA I PROBABILIDADE. Aulas 3 e 4 Professor Regina Meyer Branski

ESTATÍSTICA I PROBABILIDADE. Aulas 3 e 4 Professor Regina Meyer Branski ESTATÍSTICA I PROBABILIDADE Aulas 3 e 4 Professor Regina Meyer Branski Probabilidade 1. Conceitos básicos de probabilidade 2. Probabilidade Condicional 3. Eventos Dependentes e Independentes 4. Regra da

Leia mais

Ficha de Avaliação. Matemática A. Duração do Teste: 90 minutos. 12.º Ano de Escolaridade. Teste de Matemática A 12.º Ano Página 1

Ficha de Avaliação. Matemática A. Duração do Teste: 90 minutos. 12.º Ano de Escolaridade. Teste de Matemática A 12.º Ano Página 1 Ficha de Avaliação Matemática A Duração do Teste: 90 minutos 12.º Ano de Escolaridade Teste de Matemática A 12.º Ano Página 1 1. Colocaram-se numa urna 12 bolas, indistinguíveis pelo tato, numeradas de

Leia mais