Teoria da Probabilidade

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Teoria da Probabilidade"

Transcrição

1 Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1

2 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos eventos 4 Noção e Axiomas da Probabilidade 5 Eventos Equiprováveis 6 Probabilidade condicional 7 Probabilidade Total e o Teorema de Bayes 8 Independência Estatística Luis Henrique Assumpção Lolis Teoria da Probabilidade 2

3 Sumário 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos eventos 4 Noção e Axiomas da Probabilidade 5 Eventos Equiprováveis 6 Probabilidade condicional 7 Probabilidade Total e o Teorema de Bayes 8 Independência Estatística Luis Henrique Assumpção Lolis Teoria da Probabilidade 3

4 Definição Em um Exp. Aleatório a saída varia de maneira imprevisível mesmo quando o teste é controlado e se encontra nas mesmas condições. Exs: Uma urna contendo bolas enumeradas de 1 a 50. Retirar a bola e anotar o número. Jogar uma moeda três vezes a anotar a sequência de caras e coroas. Determinar os valores de um sinal de áudio no instante t 1 e t 2. Luis Henrique Assumpção Lolis Teoria da Probabilidade 4

5 Sumário 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos eventos 4 Noção e Axiomas da Probabilidade 5 Eventos Equiprováveis 6 Probabilidade condicional 7 Probabilidade Total e o Teorema de Bayes 8 Independência Estatística Luis Henrique Assumpção Lolis Teoria da Probabilidade 5

6 Experiência / fenômeno de exame Condições idênticas ω - Ponto-amostra - resultado de um experimento Ω - Espaço de amostras - todos os possíveis resultados do experimento Fenômeno físico: Jogar um dado de seis lados: Experimento: Numero de saída Espaço de amostras jogando um dado uma vez Ω = {1, 2, 3, 4, 5, 6} Em um determinado momento t, ω t = 1 Experimento: Paridade do numero de saída Espaço de amostras jogando um dado uma vez Ω = {P AR, IMP AR} Em um determinado momento t, ω t = P AR Luis Henrique Assumpção Lolis Teoria da Probabilidade 6

7 Eventos Quando ω é um elemento de Ω, então ω pertence à Ω. A notação é a seguinte: ω Ω Quando não pertence: ω / Ω Quando A é um subconjunto de B: A B todo elemento de A está contido em B Ω B A Qualquer subconjunto do espaço Ω é um Evento. O evento A números pares pertencente ao conjunto dos números do dado de seis lados: A = {2, 4, 6} Luis Henrique Assumpção Lolis Teoria da Probabilidade 7

8 Espaço discreto e espaço contínuo de amostras Espaço discreto Quando o numero possível de elementos é finito. Ex: Lados da moeda, dado de N lados, números inteiros entre 0 e 10. Espaço contínuo Quando o numero possível de elementos é infinito e nós estamos mais interessados na probabilidade de um intervalo que de um valor determinado. Ex: Altura de uma pessoa em determinada população, um numero real entre 0 e 1. Notação: o espaço contendo todos os pontos entre 0 e 1: S = {x : 0 x 1} = [0, 1] Luis Henrique Assumpção Lolis Teoria da Probabilidade 8

9 Exemplos de espaços amostrais Dado de seis lados: S = {1, 2, 3, 4, 5, 6} Qualquer número entre 0 e 1: S = [0, 1] Amplitude do sinal de áudio em t 1 e t 2 : S = {(v 1, v 2 ) : < v 1 < e < v 2 < } Jogar uma moeda três vezes e anotas a sequência de caras (K) e coroas (C): S = {CCC, CCK, CKC, CKK, KCC, KCK, KKC, KKK} Luis Henrique Assumpção Lolis Teoria da Probabilidade 9

10 Sumário 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos eventos 4 Noção e Axiomas da Probabilidade 5 Eventos Equiprováveis 6 Probabilidade condicional 7 Probabilidade Total e o Teorema de Bayes 8 Independência Estatística Luis Henrique Assumpção Lolis Teoria da Probabilidade 10

11 Operações algébricas dos eventos Igualdade Se A e B são iguais: A = B Inclusão Se A está incluso em B são iguais: A B Do mesmo modo que B contém A: B A União Se os elementos fazem parte do conjunto A, B ou ambos: A B {ω Ω : ω A ou ω B ou ambos} Interseção Se os elementos fazem parte simultaneamente de A e B: A B {ω Ω : ω A e ω B} Luis Henrique Assumpção Lolis Teoria da Probabilidade 11

12 Operações algébricas dos eventos Complemento Conjunto dos elementos de Ω não pertencente a A é o complemento de A, representado por A: A A c {ω Ω : ω / A} Diferença Elementos pertencentes a um conjunto B e não pertencem a A: B A {ω Ω : ω B e ω / A} Luis Henrique Assumpção Lolis Teoria da Probabilidade 12

13 Diagrama de Venn União Interseção Ω B A Ω B A A B Complemento A B Diferença Ω A Ω A B A B A Luis Henrique Assumpção Lolis Teoria da Probabilidade 13

14 Conjuntos Vazio e Disjuntos Conjunto Vazio Conjunto que não contém elemento: / Ω Conjuntos Disjuntos Quando A e B não têm elementos em comum Luis Henrique Assumpção Lolis Teoria da Probabilidade 14

15 Resumo das Operações Notação Descrição Matemática Descrição Verbal A B União de A e B A ou B (ou ambos) ocorre A B Interseção de A e B Ambos A e B ocorrem A A c Complemento de A A não ocorre B A Diferença entre B e A B ocorre mas A não ocorre Conjunto Vazio Evento Impossível Luis Henrique Assumpção Lolis Teoria da Probabilidade 15

16 Propriedades Associativa (A B) C = (A C) (B C) (A B) C = (A C) (B C) Distributiva A (B C) = (A B) (A C) Lei de De Morgan A B = A B A B = A B Luis Henrique Assumpção Lolis Teoria da Probabilidade 16

17 Mais diagramas de Venn Luis Henrique Assumpção Lolis Teoria da Probabilidade 17

18 Sumário 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos eventos 4 Noção e Axiomas da Probabilidade 5 Eventos Equiprováveis 6 Probabilidade condicional 7 Probabilidade Total e o Teorema de Bayes 8 Independência Estatística Luis Henrique Assumpção Lolis Teoria da Probabilidade 18

19 Definição Axiomática A probabilidade P (A) de um evento A satisfaz os seguinte axiomas: Axioma 1: P (A) 0 Axioma 2: P (Ω) = 1 Axioma 3: P (A B) = P (A) + P (B) se A B = Luis Henrique Assumpção Lolis Teoria da Probabilidade 19

20 Propriedades Elementares 1 P (A) = 1 P (A) 2 P ( ) = 0 3 P (A) P (B) se A B 4 P (a) 1 5 P (A B) = P (A) + P (B) P (A B) (fazer a prova) Luis Henrique Assumpção Lolis Teoria da Probabilidade 20

21 Frequência Relativa Definição: n(a) P (A) = lim n n Eventos mutuamente exclusivos: n(a B) = n(a) + n(b) n(a B) = n(a) n n + n(b) n Luis Henrique Assumpção Lolis Teoria da Probabilidade 21

22 Sumário 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos eventos 4 Noção e Axiomas da Probabilidade 5 Eventos Equiprováveis 6 Probabilidade condicional 7 Probabilidade Total e o Teorema de Bayes 8 Independência Estatística Luis Henrique Assumpção Lolis Teoria da Probabilidade 22

23 Eventos Equiprováveis 1 Hipótese assumida em casos onde se precisa definir uma probabilidade sem ter passado por uma experiência. 2 Ex: a probabilidade de que um dado caia com a face ω para cima. Pode se assumir para um dado de 6 lados que P (ω) = 1 6 com a hipótese de que o dado não é viciado. 3 Quando todos eventos elementares ω i (i = 1, 2,..., n) são equiprováveis, então: p i = 1 n i = 1, 2,..., n Luis Henrique Assumpção Lolis Teoria da Probabilidade 23

24 Sumário 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos eventos 4 Noção e Axiomas da Probabilidade 5 Eventos Equiprováveis 6 Probabilidade condicional 7 Probabilidade Total e o Teorema de Bayes 8 Independência Estatística Luis Henrique Assumpção Lolis Teoria da Probabilidade 24

25 Conceito e Definição A probabilidade pode se alterar se temos informação adicional. Ex: A chance de se ter câncer de pulmão aumenta se a pessoa é fumante. A probabilidade de um evento A dado que um evento B tenha ocorrido. Definida pela seguinte razão: P (A B) = P (AB) P (B) Rearranjando os termos: = P (A B) P (B) P (AB) = P (B)P (A B) Significa que a chance de A e B ocorrerem é igual a chance de B e a chance de A dado que B ocorreu. Luis Henrique Assumpção Lolis Teoria da Probabilidade 25

26 Interpretação Frequencial O numero de ocorrências de do evento A é dado por n(a), do evento B por n(b) e da combinação dos eventos AB, como sendo n(ab). P (A) n(a) P (B) n(b) P (AB) n(ab) n n n Então: P (A B) = P (AB) P (B) n(ab) n n(b) n = n(ab) n(b) Se nós descartarmos as tentativas onde o evento B não ocorreu, então n(ab) é igual a frequência relativa de ocorrência n(ab) n(b) Luis Henrique Assumpção Lolis Teoria da Probabilidade 26

27 Exemplo Em uma caixa, temos 4 bolas, duas pretas, enumeradas 1 e 2, e duas brancas, enumeradas 3 e 4. O espaço de amostras é S = {(1, p), (2, p), (3, b), (4, b)}. Cada saída tem igual probabilidade. Vamos definir os eventos A, B e C. A={(1, p), (2, p)} - Bola preta selecionada B={(2, p), (4, b)} - Bola par selecionada A={(3, b), (4, b)} - Bola maior que 2 selecionada Calcule p[a B] e P [A C] Luis Henrique Assumpção Lolis Teoria da Probabilidade 27

28 Exemplo 2 Em uma caixa, temos 5 bolas, duas pretas, e três brancas. As bolas são retiradas e não são devolvidas para a caixa. Qual a probabilidade das duas bolas serem pretas. Alteração do espaço amostral de um evento ao outro. P [P 1 P 2 ] = P [P 2 P 1 ]P [P 1 ] Luis Henrique Assumpção Lolis Teoria da Probabilidade 28

29 Sumário 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos eventos 4 Noção e Axiomas da Probabilidade 5 Eventos Equiprováveis 6 Probabilidade condicional 7 Probabilidade Total e o Teorema de Bayes 8 Independência Estatística Luis Henrique Assumpção Lolis Teoria da Probabilidade 29

30 Probabilidade Total Sendo A = A 1,..., A n um conjunto de Ω e B um evento arbitrário: P (B) = P (B A 1 )P (A 1 ) P (B A n )P (A n ) Para se obter a interseção dos eventos BA i : P (BA i ) = P (B A i )P (A i ) Teorema da Probabilidade Total Luis Henrique Assumpção Lolis Teoria da Probabilidade 30

31 Teorema da probabilidade total Sendo B 1, B 2,..., B n mutuamente exclusivos e sendo sub conjuntos de S = {B 1 B 2 B n }. E A é um evento que pode ser representado da seguinte maneira: A = A S = A (B 1 B 2 B n ) P [A] = P [A B 1 ] + P [A B 2 ] + + [A B n ] P [A] = P [A B 1 ]P [B 1 ] + P [A B 2 ]P [B 2 ] + + P [A B n ]P [B n ] Luis Henrique Assumpção Lolis Teoria da Probabilidade 31

32 Teorema de Bayes De maneira análoga a P (BA i ) = P (B A i )P (A i ), temos: P (BA i ) = P (A i B)P (B) Combinando as duas equações: P (A i B) = P (B A i ) P (A i) P (B) P (A i ) P (A i B) = P (B A i ) n i=1 P (B A i)p (A i ) Teorema de Bayes P [B j A] = P [A B j] P [A] = P [A B j ]P [B j ] n k=1 P [A B k]p [B k ] Luis Henrique Assumpção Lolis Teoria da Probabilidade 32

33 Exemplo do livro: O Andar do Bêbado Em um programa de TV, o candidato tem de escolher aleatoriamente entre 3 portas. Atrás de uma tem um carro e atrás das outras duas tem um bode. Uma vez escolhida uma das três portas, o apresentador descarta outra porta que com certeza contém um bode. Ele então pergunta se o candidato pretende mudar sua escolha. A probabilidade de ganhar aumenta ou não fazendo a troca da porta? Luis Henrique Assumpção Lolis Teoria da Probabilidade 33

34 Exemplo 2 Temos 4 caixas. Caixa 1 contêm 2000 componentes com 5% deles defeituosos. Caixa 2 contêm 500 componentes e 40% são defeituosos. Caixas 3 e 4 têm 1000 componentes cada com 10% defeituosos. Selecionamos aleatoriamente uma das caixas e removemos aleatoriamente um componente. (a) Qual a probabilidade do componente ser defeituoso? (b) Retiramos um componente e sabemos que ele tem defeito. Qual a chance de ele ter vindo da caixa 2? Luis Henrique Assumpção Lolis Teoria da Probabilidade 34

35 Sumário 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos eventos 4 Noção e Axiomas da Probabilidade 5 Eventos Equiprováveis 6 Probabilidade condicional 7 Probabilidade Total e o Teorema de Bayes 8 Independência Estatística Luis Henrique Assumpção Lolis Teoria da Probabilidade 35

36 Independência Estatística Se o conhecimento do evento B não altera a probabilidade do evento A, o evento A é independente do evento B. Para elementos independentes: Portanto: P (B A) = P (B) P (A B) = P (A) P (AB) = P (A)P (B) Luis Henrique Assumpção Lolis Teoria da Probabilidade 36

37 Independência Estatística Ex: Para um dado de seis lados Ω = {1, 2, 3, 4, 5, 6} o evento A Ω são os números pares A = {2, 4, 6} e o evento B Ω é para a condição B i 4, então B = {1, 2, 3, 4} Para calcular a probabilidade de ao jogar o dado, temos a condição A B, ou seja, que o numero é par e inferior a 4, temos duas etapas: 1 Identificar o numero de possíveis valores. n = 6 2 Identificar A B, sendo A B = {2, 4} Logo: P (A B) = 1/3 Luis Henrique Assumpção Lolis Teoria da Probabilidade 37

38 Independência Estatística Como o dado é jogado uma única vez, assumimos a independência do sistema, e calculando P (A) e P (B), obtemos: P (A) = 1/2, e P (B) = 2/3, sendo P (A)P (B) = 1/3 = P (A B) Apesar de A e B, serem independentes, eles não são disjuntos, pois A B = {2, 4} Luis Henrique Assumpção Lolis Teoria da Probabilidade 38

39 Ex: Confiabilidade Considere um sistema com um equipamento de controle e três periféricos. O sistema é funcional se o controle e pelo menos dois dos três periféricos estiverem em funcionamento. Considere que a probabilidade de falha de cada unidade (controle ou periférico) é independente das outras. Assuma a probabilidade de falha de cada periférico como a e a probabilidade do equipamento de controle de p. Determine a expressão de probabilidade de falha do sistema? Considere a = 10% e p = 20%. Qual a probabilidade de falha? R = 22.2%. E se adicionarmos mais um controle? R = 6.7% Luis Henrique Assumpção Lolis Teoria da Probabilidade 39

40 Dois Extremos: Mutuamente Exclusivos e Totalmente Dependentes Quando totalmente dependente: P (B A) = 1, quando B A P (A B) = 1, quando A B Ou mutuamente exclusivos: P (B A) = P (A B) = 0, quando A B = 0 Luis Henrique Assumpção Lolis Teoria da Probabilidade 40

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Espaço Amostral, Eventos, Álgebra de eventos Aula de hoje Probabilidade Análise Combinatória Independência Probabilidade Experimentos

Leia mais

Resumo. Parte 2 Introdução à Teoria da Probabilidade. Ramiro Brito Willmersdorf Introdução.

Resumo. Parte 2 Introdução à Teoria da Probabilidade. Ramiro Brito Willmersdorf Introdução. Parte 2 Introdução à Teoria da Probabilidade Ramiro Brito Willmersdorf ramiro@willmersdorf.net Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2011.2 Resumo 1 Introdução 2 Espaço

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

Aula - Introdução a Teoria da Probabilidade

Aula - Introdução a Teoria da Probabilidade Introdução a Teoria da Probabilidade Prof. Magnos Martinello Aula - Introdução a Teoria da Probabilidade Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI 5 de dezembro de

Leia mais

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL.

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL. Estatística Aplicada Administração p(a) = n(a) / n(u) PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL Prof. Carlos Alberto Stechhahn 2014 1. Noções de Probabilidade Chama-se experimento

Leia mais

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

Noções de Probabilidade

Noções de Probabilidade Noções de Probabilidade Joel M. Corrêa da Rosa 2011 A estatística descritiva é ferramenta indispensável para extrair informação em um conjunto de dados. Entretanto, a tomada de decisões está fortemente

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES 0 1 INTRODUÇÃO A teoria das probabilidades é utilizada para determinar as chances de um experimento aleatório acontecer. 1.1

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Capítulo 2 Probabilidades

Capítulo 2 Probabilidades Capítulo 2 Probabilidades Slide 1 Definições Slide 2 Acontecimento Qualquer colecção de resultados de uma experiência. Acontecimento elementar Um resultado que não pode ser simplificado ou reduzido. Espaço

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos Mutuamente

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos:

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos: Eisencraft e Loiola 2.1 Probabilidade 37 Modelo matemático de experimentos Para resolver problemas de probabilidades são necessários 3 passos: a Estabelecimento do espaço das amostras b Definição dos eventos

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 Probabilidade As definições de probabilidade apresentadas anteriormente podem

Leia mais

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Perguntas 1. Um novo aparelho para detectar um certo tipo de

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer

Leia mais

2 Conceitos Básicos de Probabilidade

2 Conceitos Básicos de Probabilidade CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 6 - Introdução à probabilidade Departamento de Economia Universidade Federal de Pelotas (UFPel) Maio de 2014 Experimento Experimento aleatório (E ): é um experimento que pode ser repetido indenidamente

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

Aula 5 Probabilidade conceitos básicos

Aula 5 Probabilidade conceitos básicos AULA 5 Aula 5 Probabilidade conceitos básicos Nesta aula, você aprenderá os conceitos de: experimento aleatório; espaço amostral; evento aleatório e também as operações que podem ser feitas com os eventos

Leia mais

Experiência Aleatória

Experiência Aleatória Probabilidades Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados possíveis. Exemplo

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 2 03/14 1 / 31 Prof. Tarciana Liberal (UFPB) Aula 2 03/14

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico.

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico. Tipos de Modelo Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM 1 M 2 /r 2 Causas Efeito

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA

UNIVERSIDADE FEDERAL DA PARAÍBA UNIVERSIDADE FEDERAL DA PARAÍBA Probabilidade Departamento de Estatística UFPB Luiz Medeiros Introdução Encontramos na natureza dois tipos de fenômenos Determinísticos: Os resultados são sempre os mesmos

Leia mais

1.4.2 Probabilidade condicional

1.4.2 Probabilidade condicional M. Eisencraft 1.4 Probabilidades condicionais e conjuntas 9 Portanto, P(A B) = P(A)+P(B) P(A B) (1.2) Para eventos mutuamente exclusivos, P(A B) = e P(A)+P(B) = P(A B). 1.4.2 Probabilidade condicional

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Aula 3 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3

Leia mais

O Ensino de Probabilidade. Paulo Cezar Pinto Carvalho IMPA

O Ensino de Probabilidade. Paulo Cezar Pinto Carvalho IMPA O Ensino de Probabilidade Paulo Cezar Pinto Carvalho IMPA Probabilidade na Escola Básica Tópico de grande importância em carreiras profissionais de todas as áreas (Engenharia, Medicina, Administração,...)

Leia mais

Sequências Generalizando um pouco, podemos então dizer que sequências de elementos são grupos com elementos obedecendo a determinada ordem. Obteremos uma sequência diferente quando se altera a ordem. No

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

Cursos de Licenciatura em Ensino de Matemática e de EGI Teoria de Probabilidade

Cursos de Licenciatura em Ensino de Matemática e de EGI Teoria de Probabilidade FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km, Tel: +5 4007, Fax: +5 400, Maputo Cursos de Licenciatura em Ensino de Matemática e de

Leia mais

Sumário. 1 CAPÍTULO 1 Revisão de álgebra

Sumário. 1 CAPÍTULO 1 Revisão de álgebra Sumário 1 CAPÍTULO 1 Revisão de álgebra 2 Conjuntos numéricos 2 Conjuntos 3 Igualdade de conjuntos 4 Subconjunto de um conjunto 4 Complemento de um conjunto 4 Conjunto vazio 4 Conjunto universo 5 Interseção

Leia mais

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 4: Distribuições Teóricas de Probabilidades de Variáveis Aleatórias Discretas Professor Fernando Porto Capítulo 4 Baseado no Capítulo 4 do livro texto, Distribuições Teóricas de Probabilidades

Leia mais

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três. 1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica

Leia mais

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos Processos Estocásticos Luiz ffonso Guedes Sumário Probabilidade Variáveis leatórias Funções de Uma Variável leatória Funções de Várias Variáveis leatórias Momentos e Estatística Condicional Teorema do

Leia mais

Introdução aos Proc. Estocásticos - ENG 430

Introdução aos Proc. Estocásticos - ENG 430 Introdução aos Proc. Estocásticos - ENG 430 Fabrício Simões IFBA 16 de novembro de 2015 Fabrício Simões (IFBA) Introdução aos Proc. Estocásticos - ENG 430 16 de novembro de 2015 1 / 34 1 Motivação 2 Conceitos

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova 1 de Probabilidade I Prof.: Fabiano F. T. dos Santos Goiânia, 15 de setembro de 2014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

Teoria dos Conjuntos. Prof. Jorge

Teoria dos Conjuntos. Prof. Jorge Teoria dos Conjuntos Conjuntos Conceitos iniciais Na teoria dos conjuntos, consideramos como primitivos os conceitos de elemento, pertinência e conjunto. Exemplos - Conjunto I. O conjunto dos alunos do

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

CAPÍTULO 4 PROBABILIDADE PROBABILIDADE PPGEP Espaço Amostral e Eventos Espaço Amostral e Eventos UFRGS. Probabilidade.

CAPÍTULO 4 PROBABILIDADE PROBABILIDADE PPGEP Espaço Amostral e Eventos Espaço Amostral e Eventos UFRGS. Probabilidade. PROBABILIDADE CAPÍTULO 4 PROBABILIDADE UFRGS A Teoria das s estuda os fenômenos aleatórios. Fenômeno Aleatório: são os fenômenos cujo resultado não pode ser previsto exatamente. Se o fenômeno se repetir,

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Objetivos. Frequência Relativa X Probabilidade. Probabilidade. 1. Definições: Experimento Espaço Amostral Evento Probabilidade

Objetivos. Frequência Relativa X Probabilidade. Probabilidade. 1. Definições: Experimento Espaço Amostral Evento Probabilidade Magnos Martinello Universidade Federal do Espírito Santo - UFES Departamento de Informática DI Laboratório de Pesquisas em Redes Multimidia LPRM Objetivos 1. Definições: Experimento Espaço Amostral Evento

Leia mais

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

PROBABILIDADE E ESTATÍSTICA. Aula 2 Professor Regina Meyer Branski

PROBABILIDADE E ESTATÍSTICA. Aula 2 Professor Regina Meyer Branski PROBABILIDADE E ESTATÍSTICA Aula 2 Professor Regina Meyer Branski Probabilidade 1. Conceitos básicos de probabilidade 2. Probabilidade condicional 3. Eventos Dependentes e Independentes 4. Regra da Multiplicação

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.

Leia mais

Estatística Aplicada. Árvore de Decisão. Prof. Carlos Alberto Stechhahn PARTE II. Administração. p(a/b) = n(a B)/ n(b)

Estatística Aplicada. Árvore de Decisão. Prof. Carlos Alberto Stechhahn PARTE II. Administração. p(a/b) = n(a B)/ n(b) Estatística Aplicada Administração p(a/b) = n(a B)/ n(b) PARTE II Árvore de Decisão Prof. Carlos Alberto Stechhahn 2014 1. Probabilidade Condicional - Aplicações Considere que desejamos calcular a probabilidade

Leia mais

Definição: É uma coleção bem definida de

Definição: É uma coleção bem definida de EST029 Cálculo de Probabilidade I Cap. 1: Introdução à Probabilidade Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Conjuntos: Definição e notação Definição: É uma coleção bem definida de objetos,

Leia mais

Carlos Pedreira.

Carlos Pedreira. Bio-Estatística Carlos Pedreira pedreira@ufrj.br CAPÍTULO 1 Conceitos Básicos de Probabilidade Em qual resultado você apostaria em 1 jogada de uma moeda justa? porque? Agora vamos jogar a moeda 2 vezes,

Leia mais

Estatística Básica. Probabilidade. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais

Estatística Básica. Probabilidade. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais Estatística Básica Probabilidade Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Probabilidade Condicional Dados dois eventos A e B, a probabilidade condicional

Leia mais

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições Motivação: MOQ-2: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS VA s e Distribuições Definimos anteriormente Espaço de Probabilidades como sendo a tripla (W,, P(.)), em que, dado um eperimento, W representa

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

Conceitos Básicos, Básicos,Básicos de Probabilidade

Conceitos Básicos, Básicos,Básicos de Probabilidade Conceitos Básicos, Básicos,Básicos de Probabilidade Espaço Amostral Base da Teoria de Probabilidades Experimentos são realizados resultados NÃO conhecidos previamente Experimento aleatório Exemplos: Determinar

Leia mais

Teoria das Desições Financeiras II p.1/22

Teoria das Desições Financeiras II p.1/22 Teoria das Desições Financeiras II José Fajardo Barbachan IBMEC Business School Rio de Janeiro Teoria das Desições Financeiras II p.1/22 Objetivo Neste curso o aluno aprenderá diversas ferramentas probabílisticas,

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

Noções sobre probabilidade

Noções sobre probabilidade Capítulo 3 Noções sobre probabilidade Um casal tem dois filhos. Qual é a probabilidade de: o primogênito ser homem? os dois filhos serem homens? pelo menos um dos filhos ser homem? A teoria das probabilidades

Leia mais

Probabilidade Condicional e Independência

Probabilidade Condicional e Independência Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica-Aeronáutica MOQ-13 Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 17/08/2011 Probabilidade

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO 1. (Magalhães e Lima, pg 40) Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos: (a) Uma moeda é lançada duas vezes

Leia mais

Probabilidade. Definições e Conceitos

Probabilidade. Definições e Conceitos Probabilidade Definições e Conceitos Definições Probabilidade Medida das incertezas relacionadas a um evento chances de ocorrência de um evento Exemplos: Probabilidade de jogar um dado e cair o número

Leia mais

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da

Leia mais

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos Primeira Lista de Exercícios Introdução à probabilidade e à estatística Prof Patrícia Lusié Assunto: Probabilidade. 1. (Apostila 1 - ex.1.1) Lançam-se três moedas. Enumerar o espaço amostral e os eventos

Leia mais

ESTATÍSTICA EXPLORATÓRIA

ESTATÍSTICA EXPLORATÓRIA ESTATÍSTICA EXPLORATÓRIA Prof Paulo Renato A. Firmino praf62@gmail.com Aulas 07-08 Probabilidade Apanhado Geral Seguimos nossas discussões sobre a Incerteza Decidir usualmente envolve incerteza Uma presa

Leia mais

Probabilidades. O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados.

Probabilidades. O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados. Probabilidades O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados. Quando lançamos um dado, os resultados possíveis são sempre um dos elementos

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

Experiências aleatórias e probabilidade

Experiências aleatórias e probabilidade Experiências aleatórias e probabilidade L.J. Amoreira UBI Novembro 2010 Experiências aleatórias Experiências aleatórias são aquelas cujos resultados não são conhecidos de antemão. Espaço de resultados

Leia mais

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

Probabilidade. Prof. Paulo Cesar F. de Oliveira, BSc, PhD

Probabilidade. Prof. Paulo Cesar F. de Oliveira, BSc, PhD Prof. Paulo Cesar F. de Oliveira, BSc, PhD 1 Seção 3.1 Conceitos básicos de probabilidade 2 ² Experimento de ² Uma ação, ou tentativa, por meio do qual resultados específicos (i.e. contagens, medições

Leia mais

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20

SUMÁRIO. Prefácio, Espaço amostrai, Definição de probabilidade, Probabilidades finitas dos espaços amostrais fin itos, 20 SUMÁRIO Prefácio, 1 3 1 CÁLCULO DAS PROBABILIDADES, 15 1.1 Introdução, 15 1.2 Caracterização de um experimento aleatório, 15 1.3 Espaço amostrai, 16 1.4 Evento, 17 1.5 Eventos mutuamente exclusivos, 17

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Costa, S.C. 1. Universidade Estadual de Londrina Departamento de Estatística. Probabilidades. Silvano Cesar da Costa.

Costa, S.C. 1. Universidade Estadual de Londrina Departamento de Estatística. Probabilidades. Silvano Cesar da Costa. Costa, S.C. 1 Universidade Estadual de Londrina Departamento de Estatística Probabilidades Silvano Cesar da Costa Londrina - Paraná Costa, S.C. 2 Noções sobre a teoria das probabilidades Conceitos probabilísticos

Leia mais

Definição de Probabilidade

Definição de Probabilidade INTRODUÇÃO A TEORIA DAS PROBABILIDADES A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número

Leia mais

Será que vai chover amanhã? Quantificando a incerteza. Probabilidades Aula 1

Será que vai chover amanhã? Quantificando a incerteza. Probabilidades Aula 1 Será que vai chover amanhã? Quantificando a incerteza Probabilidades Aula 1 Nosso dia-a-dia está cheio de incertezas Vai chover amanhã? Quanto tempo levarei de casa até a universidade? Em quanto tempo

Leia mais

RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS

RACIOCÍNIO LÓGICO. Curso Superior de Tecnologia. Aula 02 TEORIA DOS CONJUNTOS Aula 02 TEORIA DOS CONJUNTOS 1. Definição de Conjuntos 2. Como se representa um Conjunto 3. Subconjunto, Pertinência e Continência 4. Conjunto das Partes 5. Operação com Conjuntos 1. União ou Reunião (Conjunção)

Leia mais

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Conceitos Básicos de Probabilidade

Estatística: Aplicação ao Sensoriamento Remoto SER ANO Conceitos Básicos de Probabilidade Estatística: Aplicação ao Sensoriamento Remoto SER 202 - ANO 2016 Conceitos ásicos de Probabilidade Camilo Daleles Rennó camilo@dpi.inpe.br http://www.dpi.inpe.br/~camilo/estatistica/ Frequência Absoluta

Leia mais

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S. PROBABILIDADE A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade.

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

PROBABILIDADE 1. INTRODUÇÃO

PROBABILIDADE 1. INTRODUÇÃO proporção de caras Revisões PROBABILIDADE 1. INTRODUÇÃO As experiências aleatórias apresentam as seguintes características:.o resultado individual é imprevisível.são conhecidos todos os possíveis resultados.a

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais