Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução"

Transcrição

1 Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma moeda perfeita, o resultado é imprevisível; não se pode determiná-lo antes de ser realizado. Aos fenômenos (ou experimentos) desse tipo damos o nome de fenômenos aleatórios (ou casuais). Pelo fato de não sabermos o resultado exato de um fenômeno aleatório é que buscamos os resultados prováveis, as chances, as probabilidades de um determinado resultado ocorrer. A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Espaço amostral Em um experimento (ou fenômeno) aleatório, o conjunto formado por todos os resultados possíveis é chamado espaço amostral, que vamos indicar por U. Exemplos: ) No lançamento de uma moeda: U cara, coroa ) No lançamento de um dado: U,,,,, 6 Evento Chama-se evento todo subconjunto de um espaço amostral. Exemplos: ) No lançamento de um dado, por exemplo, em relação à face voltada para cima, podemos ter os eventos: O número é par: O número é menor que : U,,, O número é 8: ) Uma urna contém 0 bolas numeradas de a 0. Retira-se uma bola ao acaso e observa-se o número indicado. Descrever de forma explícita os seguintes conjuntos e dar o número de elementos cada um: O espaço amostral U O evento ímpar O vento : o número da bola é múltiplo de B,, A : o número da bola é Solução: O conjunto de todos os resultados possíveis é representado pelo seguinte espaço amostral: U,,,,, 6,, 8,, 0. O número de elementos desse conjunto é n U 0 Se o número da bola é ímpar, temos o evento: A,,,,. O número de elementos desse conjunto é n A Se o número da bola é múltiplo de, temos o evento: B, 6,. O número de elementos desse conjunto é n B Eventos mutuamente exclusivos 6

2 Dizemos que dois eventos A e B são mutuamente exclusivos quando a realização de um exclui a possibilidade de realização do outro. Exemplo Uma urna contém 0 bolas numeradas de a 0. Retira-se uma bola ao acaso e observa-se o número indicado. Descrever de forma explícita os seguintes eventos: O evento múltiplo de O evento : o número da bola é múltiplo de A : o número da bola é B Temos que seu espaço amostral é U,,,,, 6,, 8,, 0. Observe que os eventos A, 6, e B, 0 são mutuamente exclusivos, pois, ao acontecer o evento exclui-se a possibilidade de acontecer o evento B e, ao acontecer o evento exclui-se a possibilidade de acontecer o evento A. Probabilidade de um evento em um espaço amostral finito. Dado um experimento aleatório, sendo U o seu espaço amostral, vamos admitir que todos os elementos de tenham a mesma chance de acontecer, ou seja, que U é um conjunto equiprovável. Chamamos de probabilidade de um evento A A U o número real P A, n tal que: A P A, onde: n A é o n U número de elementos do conjunto A; e B A U é o número de elementos do conjunto U. Em outras palavras, n U P( A) número de número total casos favoáveis de casos possíveis. Exemplo No lançamento de dois dados, qual a probabilidade de a soma nos dois dados ser maior que 8? Observe o espaço amostral desse evento: Como é um espaço equiprovável e n U 6, a probabilidade U. de cada evento simples é 6 Vamos chamar de o evento a soma nos dois dados é maior que 8. n E 0. A probabilidade do evento E é n dada por: E 0 P E n U 6 PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO. E EXERCÍCIOS U

3 0- Entre os voluntários que trabalharão na Olimpíada do Rio 06, considere que 60% residem no Rio de Janeiro, que o restante reside fora do Rio de Janeiro, que o número de homens é igual ao número de mulheres e que 0% dos homens residem no Rio de Janeiro. Tomando ao acaso um desses voluntários, assinale a alternativa que apresenta, corretamente, a probabilidade de ser uma mulher e de ela morar fora do Rio de Janeiro Em uma central de atendimento, cem pessoas receberam senhas numeradas de até 00. Uma das senhas é sorteada ao acaso. Qual é a probabilidade de a senha sorteada ser um número de a 0? O gráfico de barras abaixo exibe a distribuição da idade de um grupo de pessoas. Mostre que, nesse grupo, a média de idade dos homens é igual à média de idade das mulheres. Escolhendo ao acaso um homem e uma mulher desse grupo, determine a probabilidade de que a soma de suas idades seja igual a anos. 0- Uma caixa contém luminárias coloridas, sendo que cada uma delas possui duas cores diferentes, uma cor na cúpula e outra na base. A tabela mostra as cores das luminárias e suas respectivas quantidades. Retirando-se aleatoriamente uma luminária dessa caixa, a probabilidade de que ela tenha a cor amarela ou a cor verde em uma de suas partes é

4 0- Em uma urna vazia foram colocadas fichas iguais, em cada uma das quais foi escrito apenas um dos anagramas da palavra HOSPITAL. A probabilidade de que, ao sortear-se uma única ficha dessa urna, no anagrama nela marcado as letras inicial e final sejam ambas consoantes é 06- Em uma urna são depositadas x bolas pretas e 0 bolas brancas. Em uma segunda urna são colocadas 0 bolas a mais que na primeira, das quais x são pretas. Retira-se, ao acaso, uma única bola de cada urna. Se a probabilidade P da bola retirada ser preta for a mesma para cada urna, o valor de P é: 0% % 0% % 0% 0- Seis médicos M, M, M, M, M e M 6 participam de um sorteio para compor a equipe de três médicos de um plantão de sábado em uma clínica. A probabilidade de que M seja sorteado e M não seja sorteado é de: Em um curso de computação, uma das atividades consiste em criar um jogo da memória com as seis cartas mostradas a seguir. Inicialmente, o programa embaralha as cartas e apresenta-as viradas para baixo. Em seguida, o primeiro jogador vira duas cartas e tenta formar um par. A probabilidade de que o primeiro jogador forme um par em sua primeira tentativa é 6 0- Um dado convencional e uma moeda, ambos não viciados, serão lançados simultaneamente. Uma das faces da moeda está marcada com o número, e a outra com o número 6. A probabilidade de que a média aritmética entre o número obtido da face do dado e o da face da moeda esteja entre e é igual a (A) (B)

5 (C) (D) (E) 0- Foi feita uma pesquisa sobre o estado onde nasceu cada professor de uma escola. Os resultados estão representados no gráfico abaixo. Analisando o gráfico, marque V para verdadeiro ou F para falso e, em seguida, assinale a alternativa que apresenta a sequência correta. ( ) A escola tem um total de 0 professores. ( ) Escolhendo ao acaso um desses professores, a probabilidade de ter nascido no Paraná é 0,. ( ) 0 professores não nasceram na Bahia. ( ) A probabilidade de escolher ao acaso um desses professores e ele ser da região Sul do Brasil é 0,. ( ) A porcentagem dos professores que nasceram em São Paulo é de 0%. V/ F/ V/ V/ F V/ V/ F/ F/ F F/ F/ V/ F/ V V/ V/ V/ F/ F V/ F/ F/ V/ V - Um dado é lançado ao acaso. Qual é a probabilidade de que o número da face superior seja um divisor de 6? 6 - Um caixa eletrônico de certo banco dispõe apenas de cédulas de 0 e 0 reais. No caso de um saque de 00 reais, a probabilidade do número de cédulas entregues ser ímpar é igual a / / / / - As esferas metálicas M, N, P e Q ilustradas a seguir são idênticas, mas possuem temperaturas diferentes. Duas dessas esferas serão escolhidas ao acaso e colocadas em contato até que o equilíbrio térmico seja atingido. A probabilidade de que a temperatura no equilíbrio não seja negativa é

6 6 6 - Estão, em uma repartição, pessoas, entre elas, Ricardo e José. Escolhendo-se ao acaso um grupo de pessoas, a probabilidade de que Ricardo ou José, apenas um deles, pertença ao grupo é de: - O gamão é um jogo de tabuleiro muito antigo, para dois oponentes, que combina a sorte, em lances de dados, com estratégia, no movimento das peças. Pelas regras adotadas, atualmente, no Brasil, o número total de casas que as peças de um jogador podem avançar, numa dada jogada, é determinado pelo resultado do lançamento de dois dados. Esse número é igual à soma dos valores obtidos nos dois dados, se esses valores forem diferentes entre si; e é igual ao dobro da soma, se os valores obtidos nos dois dados forem iguais. Supondo que os dados não sejam viciados, a probabilidade de um jogador poder fazer suas peças andarem pelo menos oito casas em uma jogada é 6 6- Sandra comprou uma caixa de balas sortidas. Na caixa, havia 8 balas de sabor menta, 6 balas de sabor morango, 6 balas de sabor caramelo e balas de sabor tangerina. A probabilidade de Sandra escolher na caixa, ao acaso, uma bala de tangerina é 6 - Dois dados são jogados simultaneamente. A probabilidade de se obter soma igual a 0 nas faces de cima é Pretende-se colocar, sobre um tabuleiro como o da figura acima, nove peças de mesma forma e tamanho, das quais quatro são brancas e cinco são pretas. 6

7 Cada casa do tabuleiro será ocupada por uma só peça. Supondo que as peças são colocadas ao acaso, a probabilidade de os quatro cantos do tabuleiro serem ocupados por quatro peças pretas é: Paula ganhou de Felipe doze colares, cinco deles de pena e sete deles de contas. Paula ganhou de Samir dezoito colares, dez deles de pena e oito deles de contas. Paula guarda todos esses colares e somente esses em sua caixa de jóias. Paula resolveu retirar, ao acaso, um colar de sua caixa de jóias. A probabilidade de que seja um colar de pena dado por Felipe é de: / /6 / / 0- Dois dados cúbicos, não viciados, com faces numeradas de a 6, serão lançados simultaneamente. A probabilidade de que sejam sorteados dois números consecutivos, cuja soma seja um número primo, é de - Uma caixa contém bolas azuis, brancas e amarelas, indistinguíveis a não ser pela cor. Na caixa existem 0 bolas brancas e 8 bolas azuis. Retirando se ao acaso uma bola da caixa, a probabilidade de ela ser amarela é amarelas é A 0- C 0-. Então, o número de bolas GABARITO Para que a soma das idades seja igual a anos, as escolhas são: um homem de anos e uma mulher de anos, com possibilidade, ou um homem de anos e uma mulher de anos, com 6 possibilidades. Temos então 6 possibilidades e, como o total de pares possíveis é igual a 6, a probabilidade requerida é dada por. 6

8 0- C 0- A 06- A 0- E 08- D 0- A 0- E - C - B - E - C - C 6- B - B 8- B - B 0- A - B PROBABILIDADE COMPLEMENTAR DO EVENTO EXERCÍCIO 0- No lançamento simultâneo de dois dados honestos, a probabilidade de não sair soma, é igual a: A GABARITO 8

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE 01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP

Leia mais

MATEMÁTICA MÓDULO 4 PROBABILIDADE

MATEMÁTICA MÓDULO 4 PROBABILIDADE PROBABILIDADE Consideremos um experimento com resultados imprevisíveis e mutuamente exclusivos, ou seja, cada repetição desse experimento é impossível prever com certeza qual o resultado que será obtido,

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.

Leia mais

Prof.: Joni Fusinato

Prof.: Joni Fusinato Introdução a Teoria da Probabilidade Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

1 Definição Clássica de Probabilidade

1 Definição Clássica de Probabilidade Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica

Leia mais

Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan

Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan Matemática Probabilidade Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover num dia de

Leia mais

Módulo de Introdução à Probabilidade. O que é Probabilidade? 2 a série E.M.

Módulo de Introdução à Probabilidade. O que é Probabilidade? 2 a série E.M. Módulo de Introdução à Probabilidade O que é Probabilidade? a série E.M. Probabilidade O que é Probabilidade? 1 Exercícios Introdutórios Exercício 1. Qual a probabilidade de, aleatoriamente, escolhermos

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

01 - (UEM PR) um resultado "cara sobre casa preta" é (MACK SP)

01 - (UEM PR) um resultado cara sobre casa preta é (MACK SP) ALUNO(A): Nº TURMA: 2º ANO PROF: Claudio Saldan CONTATO: saldan.mat@gmail.com LISTA DE EXERCÍCIOS PROBABILIDADE 0 - (UEM PR) Considere a situação ideal na qual uma moeda não-viciada, ao ser lançada sobre

Leia mais

Aula 16 - Erivaldo. Probabilidade

Aula 16 - Erivaldo. Probabilidade Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar

Leia mais

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M. Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com

Leia mais

Q05. Ainda sobre os eventos A, B, C e D do exercício 03, quais são mutuamente exclusivos?

Q05. Ainda sobre os eventos A, B, C e D do exercício 03, quais são mutuamente exclusivos? LISTA BÁSICA POIA PROBABILIDADES A história da teoria das probabilidades teve início com os jogos de cartas, de dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística. Probabilidades

Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística. Probabilidades Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística Probabilidades Aluna(o): Aluna(o): Turma: Responsável: Prof. Silvano Cesar da Costa L O N D R I N A Estado do Paraná

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr.

Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. 1 Ciclo 3 Encontro 2 PROBABILIDADE Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Probabilidade 2 Texto: Módulo Introdução à Probabilidade O que é probabilidade? parte 1 de Fabrício Siqueira

Leia mais

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M. Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com

Leia mais

Aula 10 - Erivaldo. Probabilidade

Aula 10 - Erivaldo. Probabilidade Aula 10 - Erivaldo Probabilidade Experimento determinístico Dizemos que um experimento é determinístico quando repetido em condições semelhantes conduz a resultados idênticos. Experimento aleatório Dizemos

Leia mais

AULA 08 Probabilidade

AULA 08 Probabilidade Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral

Leia mais

CAPÍTULO 3 PROBABILIDADE

CAPÍTULO 3 PROBABILIDADE CAPÍTULO 3 PROBABILIDADE 1. Conceitos 1.1 Experimento determinístico Um experimento se diz determinístico quando repetido em mesmas condições conduz a resultados idênticos. Exemplo 1: De uma urna que contém

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios ) (UFRGS/20) Observe a figura abaixo. Na figura, um triângulo equilátero está inscrito em um círculo, e um hexágono regular está circunscrito ao mesmo círculo. Quando se lança um

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Uma pessoa lança um dado cúbico, com as faces numeradas de 1 a 6, e regista o número da face que ficou

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO

Leia mais

Módulo de Fração como Porcentagem e Probabilidade. Fração como Probabilidade. 6 ano E.F.

Módulo de Fração como Porcentagem e Probabilidade. Fração como Probabilidade. 6 ano E.F. Módulo de Fração como Porcentagem e Probabilidade Fração como Probabilidade. 6 ano E.F. Fração como Porcentagem e Probabilidade Fração como Probabilidade. 1 Exercícios Introdutórios Exercício 1. Um dado

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Distribuições de probabilidades

MATEMÁTICA A - 12o Ano Probabilidades - Distribuições de probabilidades MATEMÁTICA A - o Ano Probabilidades - Distribuições de probabilidades Exercícios de exames e testes intermédios. A tabela de distribuição de probabilidades de uma variável aleatória X é a seguinte. x i

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

c) 17 b) 4 17 e) 17 21

c) 17 b) 4 17 e) 17 21 Probabilidade I Exercícios. Dois jogadores A e B vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, B é quem ganha. Os dados são lançados. Sabe-se

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA

Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA 01. Num saco estão 10 bolas indistinguíveis ao tato, das quais 6 são azuis e 4 são verdes. Retiram-se, sucessivamente e sem reposição duas bolas. Determine

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

RESUMO TEÓRICO AULA 03: NOÇÕES DE PROBABILIDADE 3.1. INTRODUÇÃO 3.2. ESPAÇO AMOSTRAL S DIAGRAMA DE ÁRVORE 3.3. EVENTO E. marcelorenato.

RESUMO TEÓRICO AULA 03: NOÇÕES DE PROBABILIDADE 3.1. INTRODUÇÃO 3.2. ESPAÇO AMOSTRAL S DIAGRAMA DE ÁRVORE 3.3. EVENTO E. marcelorenato. RESUMO TEÓRICO AULA 0: NOÇÕES DE ROBABILIDADE.. INTRODUÇÃO rofessor Marcelo Renato Há certos fenômenos ou experimentos que, emora sejam repetidos muitas vezes e so condições idênticas, não apresentam os

Leia mais

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL.

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL. Estatística Aplicada Administração p(a) = n(a) / n(u) PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL Prof. Carlos Alberto Stechhahn 2014 1. Noções de Probabilidade Chama-se experimento

Leia mais

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S. PROBABILIDADE A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade.

Leia mais

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 João queria sair de casa, mas não sabia qual era a previsão do tempo. Ao ligar a TV no canal do tempo, a jornalista anunciou que existia a possibilidade de chuva no fim da tarde

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência

Leia mais

Probabilidade Condicional (grupo 2)

Probabilidade Condicional (grupo 2) page 39 Capítulo 5 Probabilidade Condicional (grupo 2) Veremos a seguir exemplos de situações onde a probabilidade de um evento émodificadapelainformação de que um outro evento ocorreu, levando-nos a definir

Leia mais

REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO ALUNO(A): Nº: MATEMÁTICA

REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO ALUNO(A): Nº: MATEMÁTICA REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul MATEMÁTICA 0. (UFRGS - VESTIBULAR 205) Escolhe-se

Leia mais

* Acontecimento elementar: é formado por um só elemento do conjunto de. * Acontecimento composto: é formado por dois ou mais elementos do conjunto

* Acontecimento elementar: é formado por um só elemento do conjunto de. * Acontecimento composto: é formado por dois ou mais elementos do conjunto PROBABILIDADE A linguagem das probabilidades Quando lidamos com probabilidade, as experiências podem ser consideradas: Aleatórias ou casuais: quando é impossível calcular o resultado à partida. Como exemplo

Leia mais

AULA 13 Probabilidades

AULA 13 Probabilidades AULA Probabilidades Espaço amostral e evento: Em um experimento (ou fenômeno) aleatório, o conjunto formado por todos os resultados possíveis é chamado espaço amostral (Ω) Qualquer subconjunto do espaço

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Exercícios de exames e testes intermédios 1. Seja Ω, conjunto finito, o espaço de resultados associado a uma certa experiência

Leia mais

TEORIA DA PROBABILIDADE

TEORIA DA PROBABILIDADE TEORIA DA PROBABILIDADE Lucas Santana da Cunha lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 22 de maio de 2017 Introdução Conceitos probabiĺısticos são necessários

Leia mais

TEMA 1 PROBABILIDADES E COMBINATÓRIA FICHA DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 PROBABILIDADES E COMBINATÓRIA

TEMA 1 PROBABILIDADES E COMBINATÓRIA FICHA DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 PROBABILIDADES E COMBINATÓRIA FICHA DE TRABALHO.º ANO COMPILAÇÃO TEMA 1 PROBABILIDADES E COMBINATÓRIA Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA 1 PROBABILIDADES E COMBINATÓRIA Matemática A.º

Leia mais

Combinatória e Probabilidade

Combinatória e Probabilidade Combinatória e Probabilidade 1. (Enem) Considere o seguinte jogo de apostas: Numa cartela com 60 números disponíveis, um apostador escolhe de 6 a 10 números. Dentre os números disponíveis, serão sorteados

Leia mais

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática

Colégio Nossa Senhora de Lourdes. Professor: Leonardo Maciel Matemática Colégio Nossa Senhora de Lourdes Professor: Leonardo Maciel Matemática APOSTILA 9 - ANALISE COMBINATÓRIA 1. (Pucrj 016) Uma escola quer fazer um sorteio com as crianças. Então, distribui cartelas que têm

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Superintensivo 2014 Matemática Kmara. PA e PG.

Superintensivo 2014 Matemática Kmara. PA e PG. Superintensivo 2014 Matemática Kmara PA e PG. Questões de estibulares: USC/98 Possuo 6 camisas (uma é vermelha) e 5 calças (uma é preta). O número de grupos de 4 camisas e 3 calças que poderei formar,

Leia mais

PROBABILIDADE CONTEÚDOS

PROBABILIDADE CONTEÚDOS PROBABILIDADE CONTEÚDOS Experimentos aleatórios Eventos Probabilidade Probabilidade de união de dois eventos Probabilidade de eventos independentes Probabilidade condicional AMPLIANDO SEUS CONHECIMENTOS

Leia mais

Ficha de Avaliação. Matemática A. Duração do Teste: 90 minutos. 12.º Ano de Escolaridade. Teste de Matemática A 12.º Ano Página 1

Ficha de Avaliação. Matemática A. Duração do Teste: 90 minutos. 12.º Ano de Escolaridade. Teste de Matemática A 12.º Ano Página 1 Ficha de Avaliação Matemática A Duração do Teste: 90 minutos 12.º Ano de Escolaridade Teste de Matemática A 12.º Ano Página 1 1. Colocaram-se numa urna 12 bolas, indistinguíveis pelo tato, numeradas de

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova de Probabilidade Prof.: Fabiano F. T. dos Santos Goiânia, 31 de outubro de 014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

Lista 3 - Introdução à Probabilidade e Estatística

Lista 3 - Introdução à Probabilidade e Estatística Lista - Introdução à Probabilidade e Estatística Probabilidade em Espaços Equiprováveis 1 Num evento científico temos 1 físicos e 11 matemáticos. Três deles serão escolhidos aleatoriamente para participar

Leia mais

Raciocínio Lógico. 06- A quantidade de anagramas que podem ser formados com as letras da palavra MINISTÉRIO é inferior a

Raciocínio Lógico. 06- A quantidade de anagramas que podem ser formados com as letras da palavra MINISTÉRIO é inferior a Raciocínio Lógico 01- Se Carlos é surfista, então Julia não é tenista. Se Julia não é tenista, então Michelle anda de skate. Se Michelle anda de skate, então Lucas não é patinador. Ora, Lucas é patinador.

Leia mais

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três. 1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica

Leia mais

BIOESTATISTICA. Unidade IV - Probabilidades

BIOESTATISTICA. Unidade IV - Probabilidades BIOESTATISTICA Unidade IV - Probabilidades 0 PROBABILIDADE E DISTRIBUIÇÃO DE FREQUÊNCIAS COMO ESTIMATIVA DA PROBABILIDADE Noções de Probabilidade Após realizar a descrição dos eventos utilizando gráficos,

Leia mais

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.

Leia mais

Aulão - Estatística Ministério da Fazenda Professor: Ronilton Loyola 1. Conceito de Estatística É uma técnica científica, uma metodologia adotada para se trabalhar com dados, com elementos de pesquisa.

Leia mais

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci Termo-Estatística (2013) 2ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova 1 de Probabilidade I Prof.: Fabiano F. T. dos Santos Goiânia, 15 de setembro de 2014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

Prof. Herivelto Tiago Marcondes dos Santos

Prof. Herivelto Tiago Marcondes dos Santos PROBABILIDADES Algumas ocorrências de nosso cotidiano de certos fenômenos naturais não podem ser previstos antecipadamente. Há nessas ocorrências o interesse em estudar a intensidade de chuvas em uma determinada

Leia mais

Nome: n o : Recuperação de Matemática 3ª. E.M. 2017

Nome: n o : Recuperação de Matemática 3ª. E.M. 2017 Nome: n o : Ensino: Médio Série: 3ª. Turma: Data: Professor: Márcio Recuperação de Matemática 3ª. E.M. 017 Números Complexos 1. Sejam os números complexos z 1 = x 5 + ( + y)i e z = 4 3i. Determine x e

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,

Leia mais

Exercícios. 1. (Uerj 2017) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes:

Exercícios. 1. (Uerj 2017) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes: Probabilidade - Questões Extras Exercícios 1. (Uerj 01) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes: A {0, 1,, 3, 4, 5, 6,, 8, 9} 1. Cada número primo de A foi multiplicado

Leia mais

Teoria da Probabilidade

Teoria da Probabilidade Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para

Leia mais

Matemática. Alex Amaral (Allan Pinho) Probabilidade

Matemática. Alex Amaral (Allan Pinho) Probabilidade Probabilidade Probabilidade 1. Observe a figura que mostra um desses baralhos, no qual as cartas representadas pelas letras A, J, Q e K são denominadas, respectivamente, ás, valete, dama e rei. Uma criança

Leia mais

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Nome: Data: / / 1. Das seguintes experiências diz, justificando, quais são as aleatórias: 1.1. Deitar um berlinde num copo de água

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES15

INTRODUÇÃO ÀS PROBABILIDADES15 INTRODUÇÃO ÀS PROBABILIDADES15 Vanderlei S. Bagnato 15.1 Introdução 15.2 Definição de Probabilidade 15.3 Adição de probabilidade 15.4 Multiplicação de probabilidades Referências Licenciatura em Ciências

Leia mais

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES 1) Determine a probabilidade de cada evento: a) Um nº par aparece no lançamento de um dado; b) Uma figura

Leia mais

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Revisando - Análise combinatória

Leia mais

Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico

Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle

Leia mais

Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico

Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle

Leia mais

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Revisando - Análise combinatória

Leia mais

TESTE DE PROBABILIDADES E COMBINATÓRIA 12.º ANO

TESTE DE PROBABILIDADES E COMBINATÓRIA 12.º ANO TESTE DE PROBABILIDADES E COMBINATÓRIA 2.º ANO NOME: N.º: TURMA: ANO LETIVO: / AVALIAÇÃO: PROFESSOR: ENC. EDUCAÇÃO: DURAÇÃO DO TESTE: 90 MINUTOS O teste é constituído por dois grupos. O Grupo I é constituído

Leia mais

Roteiro D. Nome do aluno: Número: Revisão. Combinações;

Roteiro D. Nome do aluno: Número: Revisão. Combinações; Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Roteiro D Nome do aluno: Número: Periodo: Grupo: Revisão Tópicos Tarefa Pesquisar história do Fatorial e outros tipos

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística Probabilidade Disciplina: Cálculo das Probabilidades e Estatística I Prof. Tarciana Liberal Existem muitas situações que envolvem incertezas:

Leia mais

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos Primeira Lista de Exercícios Introdução à probabilidade e à estatística Prof Patrícia Lusié Assunto: Probabilidade. 1. (Apostila 1 - ex.1.1) Lançam-se três moedas. Enumerar o espaço amostral e os eventos

Leia mais

Probabilidade e Estatística Probabilidade Condicional

Probabilidade e Estatística Probabilidade Condicional Introdução Probabilidade e Estatística Probabilidade Condicional Em algumas situações, a probabilidade de ocorrência de um certo evento pode ser afetada se tivermos alguma informação sobre a ocorrência

Leia mais

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 Um teste de múltipla escolha e composto de 12 questões, com 5 alternativas de resposta, sendo que somente uma, é correta. Qual a probabilidade de uma pessoa, marcando aleatoriamente

Leia mais

Exercícios de Aprofundamento Mat. Combinação e Probabilidade

Exercícios de Aprofundamento Mat. Combinação e Probabilidade 1. (Unifesp 2015) Um tabuleiro de xadrez possui 64 casas quadradas. Duas dessas casas formam uma dupla de casas contíguas se estão lado a lado, compartilhando exatamente um de seus lados. Veja dois exemplos

Leia mais

Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema.

Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema. PROBABILIDADE CONDICIONAL E DISTRIBUIÇÃO BINOMINAL 1. PROBABILIDADE CONDICIONAL Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema. Suponha que um redator

Leia mais

TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES

TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO.º ANO COMPILAÇÃO TEMA COMBINATÓRIA E PROBABILIDADES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA COMBINATÓRIA E PROBABILIDADES Matemática A.º Ano

Leia mais

ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO

ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO Teste 1 Matemática 9.º C Nome: n.º Data: 14/10/2016 Classificação: Professor: Instruções gerais Não é permitido o uso de corretor. É permitido a utilização

Leia mais

Módulo de Probabilidade Condicional. Lei Binomial da Probabilidade. 2 a série E.M.

Módulo de Probabilidade Condicional. Lei Binomial da Probabilidade. 2 a série E.M. Módulo de Probabilidade Condicional Lei Binomial da Probabilidade. a série E.M. Probabilidade Condicional Lei Binomial da Probabilidade Exercícios Introdutórios Exercício. Uma moeda tem probabilidade p

Leia mais

Probabilidades- Teoria Elementar

Probabilidades- Teoria Elementar Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

ESPAÇO AMOSTRAL E EVENTO. 2) Jogando um dado ideal e anotando a face voltada para cima, teremos o espaço amostral E= {1,2,3,4,5,6}

ESPAÇO AMOSTRAL E EVENTO. 2) Jogando um dado ideal e anotando a face voltada para cima, teremos o espaço amostral E= {1,2,3,4,5,6} NOÇÕES DE PROBABILIDADE O estudo da probabilidade vem da necessidade de em certas situações, prevermos a possibilidade de ocorrência de determinados fatos. EXPERIMENTOS ALEATÓRIOS Experimentos aleatórios

Leia mais

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da

Leia mais

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Matemática Atividades para Estudos Autônomos Data: 5 / 6 / 2017 Aluno(a): N o : Turma: 1) (Ufes)

Leia mais

Experimento Aleatório

Experimento Aleatório Probabilidades 1 Experimento Aleatório Experimento aleatório (E) é o processo pelo qual uma observação é ob;da. Exemplos: ü E 1 : Jogar uma moeda 3 vezes e observar o número de caras ob;das; ü E 2 : Lançar

Leia mais

O Ensino de Probabilidade. Paulo Cezar Pinto Carvalho IMPA

O Ensino de Probabilidade. Paulo Cezar Pinto Carvalho IMPA O Ensino de Probabilidade Paulo Cezar Pinto Carvalho IMPA Probabilidade na Escola Básica Tópico de grande importância em carreiras profissionais de todas as áreas (Engenharia, Medicina, Administração,...)

Leia mais