Prof.Letícia Garcia Polac. 26 de setembro de 2017

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Prof.Letícia Garcia Polac. 26 de setembro de 2017"

Transcrição

1 Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017

2 Sumário 1 2 Probabilidade Condicional e Independência

3 Introdução Neste capítulo serão abordados os conceitos de probabilidade que dão suporte para o estudo de estatística e experimentação. Quando fala-se de probabilidade, pretende-se identificar a chance de ocorrência de um determinado resultado de interesse, em situações nas quais não é possível calcular com exatidão o valor real do evento. Desta forma, trabalha-se com chances ou probabilidades.

4 Definições Experimento aleatório: consiste em um experimento que pode ser efetuado repetidas vezes, sob as mesmas condições de realização, mas cujos resultados não são essencialmente os mesmos em todas as repetições. Exemplos: 1. Lançamento de uma moeda ou dado; 2. Tempo de vida útil de um componente eletrônico; 3. Número de chamadas telefônicas que chegam a uma central em um intervalo de tempo

5 Definições Espaço amostral (Ω) : conjunto formado por todos os resultados possíveis de um experimento. Evento: é um subconjunto do espaço amostral. Exemplo: Considere um experimento cujo objetivo é verificar a face superior de um dado. Então o espaço amostral associado a esse experimento é Ω = {1, 2, 3, 4, 5, 6} O evento verificar número par na face superior do dado é: A = {2, 4, 6}

6 Exercício 1. Uma fábrica produz determinado artigo. Da linha de produção são retirados três artigos, e cada um é classificado como bom (B) ou defeituoso (D). Qual o espaço amostral associado a esse experimento? Se A é definido como sendo dois artigos bons, quais são os elementos pertencentes a esse evento? Exercício 2. Qual o espaço amostral associado a um experimento que consiste em determinar a altura de crianças com distúrbios de crescimento?

7 Operações com Conjuntos As operações com conjuntos podem ser aplicadas aos eventos. Então define-se: Evento interseção (A B): é o conjunto formado pelos resultados que pertencem aos eventos A e B simultaneamente. Evento união (A B): é o evento formado pelos resultados de A ou B, ou seja, os resultados que pertencem a pelo menos um dos eventos. Evento complementar (A C ou A): é o evento formado pelos resultados que não pertencem ao evento considerado. Eventos mutuamente exclusivo: Dois eventos são mutuamente exclusivos se e somente se A B =.

8 Operações com Conjuntos Exercício 3: Considere o lançamento de dois dados. Considere os eventos: A = soma dos números obtidos igual a 9, e B = número no primeiro dado maior ou igual a 4. Enumere os elementos de A e B. Obtenha A B, A B e A c.

9 Definição e Propriedades de Probabilidade Definição clássica de Probabilidade: a definição clássica de probabilidade nos diz que a probabilidade de ocorrer o evento A é definida como: P(A) = números de casos favoráveis números de casos possíveis = A Ω = n N Exemplo: Numa sala existem 40 homens e 60 mulheres. Escolhendo-se uma pessoa ao acaso, a probabilidade de ser mulher é de P(mulher) = 60 = 0, 6 ou P(mulher) = 60% 100

10 Definição e Propriedades de Probabilidade Definição de Propabilidade Axiomática: Sejam Ω um espaço amostral associado a um experimento. A cada evento A associaremos um número real representado por P(A) e denominado probabilidade de A que satisfaz as seguintes propriedades: 0 P(A) 1 P(Ω) = 1 Se A 1, A 2,..., A n forem, dois a dois eventos mutuamentes exclusivos, então P(A 1 A 2... A n ) = P(A 1 ) + P(A 2 ) + + P(A n )

11 Exercício 4: Um pesquisador verifica que, dentre 1000 casos de cirrose hepática, 40 evoluíram para câncer. Com base nessa experiência, qual a probabilidade da cirrose se tornar cancerosa? Solução: Seja A o evento cirrose hepática que evoluí para câncer, assim: P(A) = 40 = 0, 04 ou P(A) = 4% 1000 Portanto, a probabilidade da cirrose se tornar cancerosa é de 4%.

12 Exercício 4: Um pesquisador verifica que, dentre 1000 casos de cirrose hepática, 40 evoluíram para câncer. Com base nessa experiência, qual a probabilidade da cirrose se tornar cancerosa? Solução: Seja A o evento cirrose hepática que evoluí para câncer, assim: P(A) = 40 = 0, 04 ou P(A) = 4% 1000 Portanto, a probabilidade da cirrose se tornar cancerosa é de 4%.

13 Definição e Propriedades de Probabilidade Propriedades de Probabilidade: Sejam Ω um espaço amostral e A, B e C eventos de Ω, então: P( ) = 0 P(A C ) = 1 P(A) P(A B) = P(A) + P(B) P(A B)

14 As operações de reunião, interseção e complementação entre eventos possuem propriedades análogas àquelas válidas para operações entre conjuntos; (A B) c = A c B c (A B) c = A c B c A A c = Ω A A c = A (B C) = (A B) (A C) A (B C) = (A B) (A C)

15 Exercício 5: Suponha que o seguinte quadro represente uma possível divisão de alunos matriculados na UFU em um determinado semestre: Calcular: a) A probabilidade de uma pessoa selecionada aleatoriamente estar matriculada em engenharia; b) P(M)? c) P(MT M)? d) P(E C)? e) P(Q C )?

16 Exercício 6: Considere um experimento e os eventos A e B associados a este experimento. Seja P(A) = 1 2 ; P(B) = 1 3 e P(A B) = 1 4. Calcule: a) P(A C ) b) P(A B) c) P(A c B c ) d) P(A c B c ) e) Qual a probabilidade que B ocorra e A não ocorra.

17 Análise Combinatória Nem sempre é possível enumerar o espaço amostral. Nestes casos, deve-se usar a análise combinatória como processo de contagem. Nas combinações estamos interessados somente em selecionar objetos sem nos preocuparmos com a ordem. Assim, o número total de combinações de p objetos selecionados dentre os n objetos distintos, denotado por C n,p é C n,p = n! n!(n p)!

18 Exemplos: 1. Dentre oito pessoas, quantas comissões de três membros podem ser escolhidas? 2. Um grupo de oito pessoas é formado de cinco homens e três mulheres. Quantas comissões de três pessoas podem ser constituídas, incluindo exatamente dois homens?

19 Probabilidade Condicional e Independência Probabilidade Condicional Probabilidade Condicional: Em muitas situações, o fato de ficarmos sabendo que um determinado evento ocorreu faz com que se modifique a probabilidade que atribuímos a um outro evento. Este tipo de probabilidade é chamada de probabilidade condicionada. Dado dois eventos A e B do espaço amostral Ω, denotamos por P(A/B) a probabilidade do evento A ocorrer dado que (sabendo que) o evento B ocorreu (Obs: na prática se diz A dado B).

20 Probabilidade Condicional e Independência Probabilidade Condicional A probabilidade condicional P(A/B) é definida como: Analogamente, P(A/B) = P(A B) ; P(B) 0. P(B) P(B/A) = P(A B) ; P(A) 0. P(A) Dessas expressões é possível definir a Regra do Produto de Probabilidade: P(A B) = P(A/B) P(B) = P(B/A) P(A)

21 Probabilidade Condicional e Independência Probabilidade Condicional Exercício 7. Utilizando os dados dos alunos matriculados em uma universidade, determine: Sabendo que uma pessoa selecionada ao acaso está matriculada em matemática, qual a probabilidade que ela seja do sexo masculino?

22 Probabilidade Condicional e Independência Probabilidade Condicional Exercício 8. Uma urna contém duas bolas brancas (B) e três vermelhas (V ). Suponhaque são sorteadas duas bolas ao acaso, sem reposição. Isso significa que escolhemos aprimeira bola, verificamos sua cor e não à devolvemos a urna, misturamos as bolas restantes e retiramos a segunda. O diagrama em árvore da Figura ilustra as possibilidades. Em cada galho da árvore estão indicadas as probabilidades de ocorrência, sendo que para as segundas bolas as probabilidades são condicionais.

23 Probabilidade Condicional e Independência Probabilidade Condicional Se A indicar o evento bola branca na segunda extração, então P(A) = P(BB) + P(VB) = 2/20 + 6/20 = 2/5 Resultados do Experimento

24 Probabilidade Condicional e Independência Probabilidade Condicional Exercício 9: Num certo colégio, 4% dos homens e 1% das mulheres têm mais de 1,75 de altura. 60% dos estudantes são mulheres. Um estudante é escolhido ao acaso e tem mais de 1,75m. Qual é a probabilidade de que seja homem?

25 Probabilidade Condicional e Independência Eventos Independentes Eventos Independentes: Da regra do produto de probabilidades, surge a definição de eventos independentes. Dois eventos A e B são independentes se, e somente se, P(A/B) = P(A) ou P(B/A) = P(B). Assim, se A e B forem independentes, temos: P(A B) = P(A/B)P(B) = P(A)P(B) Generalizando, vários eventos são independentes entre si, se forem independentes dois a dois, ou ainda:p(a B... W ) = P(A).P(B)..P(W )

26 Probabilidade Condicional e Independência Eventos Independentes Exercício 10: A probabilidade de que um homem esteja vivo daqui a 30 anos é 2/5; a de sua mulher é de 2/3. Determinar a probabilidade de que daqui 30 anos: a) ambos estejam vivos; b) somente o homem esteja vivo; c) pelo menos um esteja vivo.

27 Probabilidade Condicional e Independência Exercício 11: Sejam A e B eventos tais que P(A) = 0, 2; P(B) = p; e P(A B) = 0, 6. Calcular p considerando A e B: a) mutuamente exclusivos b) independentes

28 Probabilidade Condicional e Independência Exercício 12: Considere 3 fábricas A, B e C, que produzem um determinado produto em lotes de 100, 200 e 300 peças, respectivamente. Um lote de cada fábrica é selecionado e as peças são misturadas. Suponha que a probabilidade de se encontrar peças defeituosas em cada uma das fábricas seja respectivamente de 10%; 5% e 1%. Selecionando-se uma peça ao acaso, calcule as seguintes probabilidades: a) ser da fábrica A; b) ser defeituosa, sabendo que a peça provém da fábrica A; c) ser defeituosa; d) ser da fábrica A, sabendo que a peça é defeituosa.

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

Coordenadoria de Matemática. Apostila de Probabilidade

Coordenadoria de Matemática. Apostila de Probabilidade Coordenadoria de Matemática Apostila de Probabilidade Vitória ES 1. INTRODUÇÃO CAPÍTULO 03 Quando investigamos algum fenômeno, verificamos a necessidade de descrevê-lo por um modelo matemático que permite

Leia mais

Probabilidade e Estatística 2008/2. Regras de adicão, probabilidade condicional, multiplicação e probabilidade total.

Probabilidade e Estatística 2008/2. Regras de adicão, probabilidade condicional, multiplicação e probabilidade total. Probabilidade e Estatística 2008/2 Prof. Fernando Deeke Sasse Problemas Resolvidos Regras de adicão, probabilidade condicional, multiplicação e probabilidade total. 1. Um fabricante de lâmpadas para faróis

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

Aula de Exercícios - Teorema de Bayes

Aula de Exercícios - Teorema de Bayes Aula de Exercícios - Teorema de Bayes Organização: Rafael Tovar Digitação: Guilherme Ludwig Primeiro Exemplo - Estagiários Três pessoas serão selecionadas aleatóriamente de um grupo de dez estagiários

Leia mais

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas?

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas? TERCEIRA LISTA DE EXERCÍCIOS DE PROBABILIDADE CURSO: MATEMÁTICA PROF. LUIZ CELONI 1) Dê um espaço amostral para cada experimento abaixo. a) Uma urna contém bolas vermelhas (V), bolas brancas (B) e bolas

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

Aula 02: Probabilidade

Aula 02: Probabilidade ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 02: Probabilidade população probabilidade (dedução) inferência estatística stica (indução) amostra Definições

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia Civil 1º Semestre 2º Folha Nº1 1. Ao dar ordem de compra de um computador é necessário especificar, em relação ao seu sistema, a memória (1, 2 ou 3Gb) e capacidade

Leia mais

Estatística e Probabilidade. Aula 5 Cap 03 Probabilidade

Estatística e Probabilidade. Aula 5 Cap 03 Probabilidade Estatística e Probabilidade Aula 5 Cap 03 Probabilidade Na aula anterior vimos... Conceito de Probabilidade Experimento Probabilístico Tipos de Probabilidade Espaço amostral Propriedades da Probabilidade

Leia mais

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO-

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- Matemática Discreta 2009.10 Exercícios CAP2 pg 1 PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- EXCLUSÃO 1. Quantas sequências com 5 letras podem ser escritas usando as letras A,B,C? 2. Quantos

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem Matemática Discreta - 2010/11 Cursos: Engenharia Informática, Informática de Gestão DEPARTAMENTO de MATEMÁTICA ESCOLA SUPERIOR de TECNOLOGIA e de GESTÃO - INSTITUTO POLITÉCNICO de BRAGANÇA Ficha Prática

Leia mais

COMENTÁRIO DA PROVA DO BANCO DO BRASIL

COMENTÁRIO DA PROVA DO BANCO DO BRASIL COMENTÁRIO DA PROVA DO BANCO DO BRASIL Prezados concurseiros, segue abaixo os comentários das questões de matemática propostas pela CESPE no último concurso para o cargo de escriturário do Banco do Brasil

Leia mais

Matemática Discreta - 08

Matemática Discreta - 08 Universidade Federal do Vale do São Francisco urso de Engenharia da omputação Matemática Discreta - 08 Prof. Jorge avalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

1- INTRODUÇÃO 2. CONCEITOS BÁSICOS

1- INTRODUÇÃO 2. CONCEITOS BÁSICOS 1 1- INTRODUÇÃO O termo probabilidade é usado de modo muito amplo na conversação diária para sugerir um certo grau de incerteza sobre o que ocorreu no passado, o que ocorrerá no futuro ou o que está ocorrendo

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

Introdução. Ou seja, de certo modo esperamos que haja uma certa

Introdução. Ou seja, de certo modo esperamos que haja uma certa UNIVERSIDADE FEDERAL DA PARAÍBA Teste de Independência Luiz Medeiros de Araujo Lima Filho Departamento de Estatística Introdução Um dos principais objetivos de se construir uma tabela de contingência,

Leia mais

Conceitos Básicos de Probabilidade

Conceitos Básicos de Probabilidade Conceitos Básicos de Probabilidade Como identificar o espaço amostral de um experimento. Como distinguir as probabilidades Como identificar e usar as propriedades da probabilidade Motivação Uma empresa

Leia mais

Caique Tavares. Probabilidade Parte 1

Caique Tavares. Probabilidade Parte 1 Caique Tavares Probabilidade Parte 1 Probabilidade: A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais

Leia mais

8 - PROBABILIDADE. 8.1 - Introdução

8 - PROBABILIDADE. 8.1 - Introdução INE 7002 - Probabilidade 1 8 - PROBABILIDADE 8.1 - Introdução No capítulo anterior foi utilizado um raciocínio predominantemente indutivo: os dados eram coletados, e através da sua organização em distribuições

Leia mais

Universidade Federal de Goiás Campus Catalão Departamento de Matemática

Universidade Federal de Goiás Campus Catalão Departamento de Matemática Universidade Federal de Goiás Campus Catalão Departamento de Matemática Disciplina: Álgebra Linear Professor: André Luiz Galdino Aluno(a): 4 a Lista de Exercícios 1. Podemos entender transformações lineares

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

Espaço Amostral ( ): conjunto de todos os

Espaço Amostral ( ): conjunto de todos os PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,

Leia mais

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa:

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa: Modelo Uniforme Exemplo: Uma rifa tem 100 bilhetes numerados de 1 a 100. Tenho 5 bilhetes consecutivos numerados de 21 a 25, e meu colega tem outros 5 bilhetes, com os números 1, 11, 29, 68 e 93. Quem

Leia mais

Resolução da Prova de Raciocínio Lógico do STJ de 2015, aplicada em 27/09/2015.

Resolução da Prova de Raciocínio Lógico do STJ de 2015, aplicada em 27/09/2015. de Raciocínio Lógico do STJ de 20, aplicada em 27/09/20. Raciocínio Lógico p/ STJ Mariana é uma estudante que tem grande apreço pela matemática, apesar de achar essa uma área muito difícil. Sempre que

Leia mais

Matemática Ficha de Apoio Modelos de Probabilidade - Introdução

Matemática Ficha de Apoio Modelos de Probabilidade - Introdução Matemática Ficha de Apoio Modelos de Probabilidade - Introdução 12ºano Introdução às probabilidades No final desta unidade, cada aluno deverá ser capaz de: - Identificar acontecimentos com conjuntos e

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados:

1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: 1. Uma pesquisa de mercado sobre o consumo de três marcas A, B e C de um determinado produto apresentou os seguintes resultados: A - 48% A e B - 18% B - 45% B e C - 25% C - 50% A e C - 15% nenhuma das

Leia mais

Introdução aos Processos Estocásticos - Independência

Introdução aos Processos Estocásticos - Independência Introdução aos Processos Estocásticos - Independência Eduardo M. A. M. Mendes DELT - UFMG Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal de Minas Gerais emmendes@cpdee.ufmg.br Eduardo

Leia mais

Modelo Entidade Relacionamento (MER) Professor : Esp. Hiarly Alves

Modelo Entidade Relacionamento (MER) Professor : Esp. Hiarly Alves Tópicos Apresentação Entidade, Atributo e Relacionamento Cardinalidade Representação simbólica Generalizações / Especializações Agregações Apresentação O Modelo Entidade-Relacionamento tem o objetivo de

Leia mais

Métodos Estatísticos Avançados em Epidemiologia

Métodos Estatísticos Avançados em Epidemiologia Métodos Estatísticos Avançados em Epidemiologia Análise de Variância - ANOVA Cap. 12 - Pagano e Gauvreau (2004) - p.254 Enrico A. Colosimo/UFMG Depto. Estatística - ICEx - UFMG 1 / 39 Introdução Existem

Leia mais

Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento

Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova de Agente / PF Neste artigo, farei a análise das questões

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE Fenômeno Aleatório: situação ou acontecimento cujos resultados não podem ser determinados com certeza. Exemplos: 1. Resultado do lançamento de um dado;. Hábito de fumar de um estudante

Leia mais

Estatística AMOSTRAGEM

Estatística AMOSTRAGEM Estatística AMOSTRAGEM Estatística: É a ciência que se preocupa com a coleta, a organização, descrição (apresentação), análise e interpretação de dados experimentais e tem como objetivo fundamental o estudo

Leia mais

PROBABILIDADE: DIAGRAMAS DE ÁRVORES

PROBABILIDADE: DIAGRAMAS DE ÁRVORES PROBABILIDADE: DIAGRAMAS DE ÁRVORES Enunciados dos problemas Ana Maria Lima de Farias Departamento de Estatística (GET/UFF) 1. Na gincana anual do Colégio Universitário, 60% dos alunos presentes são do

Leia mais

3º Ano do Ensino Médio. Aula nº06

3º Ano do Ensino Médio. Aula nº06 Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº06 Assunto: Noções de Estatística 1. Conceitos básicos Definição: A estatística é a ciência que recolhe, organiza, classifica, apresenta

Leia mais

EXAME DE MACS 2º FASE 2014/2015 = 193

EXAME DE MACS 2º FASE 2014/2015 = 193 EXAME DE MACS 2º FASE 2014/2015 1. Divisor Padrão: 00+560+80+240 200 = 190 = 19 200 20 Filiais A B C D Quota Padrão 1,088 58,01 86,010 24,870 L 1 58 86 24 L(L + 1) 1,496 58,498 86,499 24,495 Quota Padrão

Leia mais

Testes Qui-Quadrado - Teste de Aderência

Testes Qui-Quadrado - Teste de Aderência Testes Qui-Quadrado - Teste de Aderência Consideremos uma tabela de frequências com k frequências, k 2 k: total de categorias frequências observadas: O 1,, O k seja p 1 = p 01,, p k = p 0k as probabilidades

Leia mais

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS

GEOMETRIA. sólidos geométricos, regiões planas e contornos PRISMAS SÓLIDOS GEOMÉTRICOS REGIÕES PLANAS CONTORNOS PRISMAS Os prismas são sólidos geométricos muito utilizados na construção civil e indústria. PRISMAS base Os poliedros representados a seguir são denominados prismas. face lateral base Nesses prismas,

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

a) Quantos estudantes não estudam nenhum desses idiomas? b) Quantos estudantes estudam apenas um desses idiomas?

a) Quantos estudantes não estudam nenhum desses idiomas? b) Quantos estudantes estudam apenas um desses idiomas? Conjuntos 1- Conjuntos A, B e C são tais que A possui 10 elementos; A U B, 16 elementos; A U C, 15 elementos; A B, 5 elementos; A C, 2 elementos; B C, 6 elementos; e A B C, 2 elementos. Calcule o número

Leia mais

Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran

Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran Estudo sobre a dependência espacial da dengue em Salvador no ano de 2002: Uma aplicação do Índice de Moran Camila Gomes de Souza Andrade 1 Denise Nunes Viola 2 Alexandro Teles de Oliveira 2 Florisneide

Leia mais

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo:

Os eixo x e y dividem a circunferência em quatro partes congruentes chamadas quadrantes, numeradas de 1 a 4 conforme figura abaixo: Circunferência Trigonométrica É uma circunferência de raio unitário orientada de tal forma que o sentido positivo é o sentido anti-horário. Associamos a circunferência (ou ciclo) trigonométrico um sistema

Leia mais

ARRANJO E COMBINAÇÃO. n! n,p. =, com n p. (n - p)! 4! 4! 4,3 = = = 4! = 4.3.2.1 = 24 (4-3)! 1! Prof. Rivelino Matemática Básica TIPOS DE AGRUPAMENTOS

ARRANJO E COMBINAÇÃO. n! n,p. =, com n p. (n - p)! 4! 4! 4,3 = = = 4! = 4.3.2.1 = 24 (4-3)! 1! Prof. Rivelino Matemática Básica TIPOS DE AGRUPAMENTOS RRNJO E COMBINÇÃO TIPOS DE GRUPMENTOS Problema 01 n! n,p =, com n p. (n - p)! No problema 01, devemos contar quantas sequências de três seleções podemos formar com as quatro seleções semifinalistas. 4!

Leia mais

COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.

COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº. COLÉGIO SHALOM 9 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho de Recuperação E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que felicidade

Leia mais

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo:

Aula 5. Uma partícula evolui na reta. A trajetória é uma função que dá a sua posição em função do tempo: Aula 5 5. Funções O conceito de função será o principal assunto tratado neste curso. Neste capítulo daremos algumas definições elementares, e consideraremos algumas das funções mais usadas na prática,

Leia mais

EDITAL Nº 08/2015 PROCESSO SELETIVO ESPECIAL DA FACULDADE METROPOLITANA DE MARABÁ METROPOLITANA 2016/1

EDITAL Nº 08/2015 PROCESSO SELETIVO ESPECIAL DA FACULDADE METROPOLITANA DE MARABÁ METROPOLITANA 2016/1 EDITAL Nº 08/2015 PROCESSO SELETIVO ESPECIAL DA FACULDADE METROPOLITANA DE MARABÁ METROPOLITANA 2016/1 Abre o processo seletivo especial para ingresso nos cursos de Graduação da Faculdade Metropolitana

Leia mais

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística AMEI Escolar Matemática 9º Ano Probabilidades e Estatística A linguagem das probabilidades As experiências podem ser consideradas: - aleatórias ou casuais: quando é impossível calcular o resultado à partida;

Leia mais

MODELO SUGERIDO PARA PROJETO DE PESQUISA

MODELO SUGERIDO PARA PROJETO DE PESQUISA MODELO SUGERIDO PARA PROJETO DE PESQUISA MODELO PARA ELABORAÇÃO DE PROJETO DE PESQUISA (Hospital Regional do Mato Grosso do Sul- HRMS) Campo Grande MS MÊS /ANO TÍTULO/SUBTÍTULO DO PROJETO NOME DO (s) ALUNO

Leia mais

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo

Leia mais

Heredogramas. Capítulo 2 Item 4 Pág. 214 a 216. 2ª Série Ensino Médio Professora Priscila Binatto Fev/ 2013

Heredogramas. Capítulo 2 Item 4 Pág. 214 a 216. 2ª Série Ensino Médio Professora Priscila Binatto Fev/ 2013 Heredogramas Capítulo 2 Item 4 Pág. 214 a 216 2ª Série Ensino Médio Professora Priscila Binatto Fev/ 2013 O que é um heredograma? Também chamado do pedigree ou genealogia. Representa as relações de parentesco

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

Raciocínio Lógico 1 Probabilidade

Raciocínio Lógico 1 Probabilidade PROBABILIDADE 1. CONCEITOS INICIAIS A Teoria da Probabilidade faz uso de uma nomenclatura própria, de modo que há três conceitos fundamentais que temos que passar imediatamente a conhecer: Experimento

Leia mais

AULA 19 Análise de Variância

AULA 19 Análise de Variância 1 AULA 19 Análise de Variância Ernesto F. L. Amaral 18 de outubro de 2012 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro: LTC. Capítulo

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

ISS Eletrônico. Formato de Arquivos para Transmissão de Documentos Declarados através do aplicativo OFFLINE. Extensão do Arquivo JUNHO2006.

ISS Eletrônico. Formato de Arquivos para Transmissão de Documentos Declarados através do aplicativo OFFLINE. Extensão do Arquivo JUNHO2006. ISS Eletrônico Formato de Arquivos para Transmissão de Documentos Declarados através do aplicativo OFFLINE Caro contribuinte. A transmissão de arquivos é uma facilidade fornecida pelo sistema de ISS Eletrônico

Leia mais

Probabilidade. Distribuição Binomial

Probabilidade. Distribuição Binomial Probabilidade Distribuição Binomial Distribuição Binomial (Eperimentos de Bernoulli) Considere as seguintes eperimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na mosca

Leia mais

Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados. Prof. Hugo Souza

Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados. Prof. Hugo Souza Tópicos Avançados em Banco de Dados Dependências sobre regime e controle de objetos em Banco de Dados Prof. Hugo Souza Após vermos uma breve contextualização sobre esquemas para bases dados e aprendermos

Leia mais

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica

Unidade 11 - Probabilidade. Probabilidade Empírica Probabilidade Teórica Unidade 11 - Probabilidade Probabilidade Empírica Probabilidade Teórica Probabilidade Empírica Existem probabilidade que são baseadas apenas uma experiência de fatos, sem necessariamente apresentar uma

Leia mais

Análise Qualitativa no Gerenciamento de Riscos de Projetos

Análise Qualitativa no Gerenciamento de Riscos de Projetos Análise Qualitativa no Gerenciamento de Riscos de Projetos Olá Gerente de Projeto. Nos artigos anteriores descrevemos um breve histórico sobre a história e contextualização dos riscos, tanto na vida real

Leia mais

Ensino Médio Noturno

Ensino Médio Noturno Ensino Médio Noturno - Uma análise da disparidade entre o aprendizado dos alunos e a qualidade de ensino no período da noite em comparação com o turno matutino - Instituto Ayrton Senna São Paulo, 2015

Leia mais

SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA

SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA Leitura e Análise de Texto O π e a agulha de Buffon O estudo da probabilidade, aparentemente, não tem uma ligação direta com a Geometria. A probabilidade

Leia mais

Matemática - Módulo 1

Matemática - Módulo 1 1. Considerações iniciais Matemática - Módulo 1 TEORIA DOS CONJUNTOS O capítulo que se inicia trata de um assunto que, via-de-regra, é abordado em um plano secundário dentro dos temas que norteiam o ensino

Leia mais

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas.

Matrizes. matriz de 2 linhas e 2 colunas. matriz de 3 linhas e 3 colunas. matriz de 3 linhas e 1 coluna. matriz de 1 linha e 4 colunas. Definição Uma matriz do tipo m n (lê-se m por n), com m e n, sendo m e n números inteiros, é uma tabela formada por m n elementos dispostos em m linhas e n colunas. Estes elementos podem estar entre parênteses

Leia mais

Lista de Exercícios 5: Soluções Teoria dos Conjuntos

Lista de Exercícios 5: Soluções Teoria dos Conjuntos UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 5: Soluções Teoria dos Conjuntos Ciências Exatas & Engenharias 2 o Semestre de 206. Escreva uma negação para a seguinte afirmação: conjuntos A,

Leia mais

Resoluções A. Combinatória 1 3 os anos Blaidi/Walter Ago/09. Nome: Nº: Turma:

Resoluções A. Combinatória 1 3 os anos Blaidi/Walter Ago/09. Nome: Nº: Turma: Matemática Resoluções A. Combinatória 3 os anos Blaidi/Walter Ago/09 Nome: Nº: Turma: Prezadísssimos alunos e alunas, Neste bimestre, aprenderemos a resolver questões de análise combinatória com o auílio

Leia mais

M =C J, fórmula do montante

M =C J, fórmula do montante 1 Ciências Contábeis 8ª. Fase Profa. Dra. Cristiane Fernandes Matemática Financeira 1º Sem/2009 Unidade I Fundamentos A Matemática Financeira visa estudar o valor do dinheiro no tempo, nas aplicações e

Leia mais

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 3: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 19 de Agosto, 2013 Probabilidade: uma Introdução / Aula 3 1 Probabilidade Discreta: Exemplos

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA

ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA ESTATÍSTICA PARTE 1 OBJETIVO DA DISCIPLINA Apresentar a Estatística no contexto do dia-a-dia e fazendo uso da planilha Excel. Espera-se que o estudante ao término do curso esteja apto a usar a planilha

Leia mais

Objetivo do Portal da Gestão Escolar

Objetivo do Portal da Gestão Escolar Antes de Iniciar Ambiente de Produção: É o sistema que contem os dados reais e atuais, é nele que se trabalha no dia a dia. Neste ambiente deve-se evitar fazer testes e alterações de dados sem a certeza

Leia mais

Pressuposições à ANOVA

Pressuposições à ANOVA UNIVERSIDADE FEDERAL DE RONDÔNIA CAMPUS DE JI-PARANÁ DEPARTAMENTO DE ENGENHARIA AMBIENTAL Estatística II Aula do dia 09.11.010 A análise de variância de um experimento inteiramente ao acaso exige que sejam

Leia mais

Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.)

Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.) Gerenciamento do Escopo do Projeto (PMBoK 5ª ed.) De acordo com o PMBok 5ª ed., o escopo é a soma dos produtos, serviços e resultados a serem fornecidos na forma de projeto. Sendo ele referindo-se a: Escopo

Leia mais

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B)

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B) ISEG - ESTATÍSTICA I - EN, Economia/Finanças - de Junho de 00 Tópicos de correcção ª Parte. Sejam os acontecimentos A, B, C tais que P ( A B) > 0. Justifique a igualdade: ( A B) C) = B A). A). C ( A B)).

Leia mais

Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios

Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios O Método Intuitivo de elaboração de circuitos: As técnicas de elaboração de circuitos eletropneumáticos fazem parte

Leia mais

Testes de Hipóteses Estatísticas

Testes de Hipóteses Estatísticas Capítulo 5 Slide 1 Testes de Hipóteses Estatísticas Resenha Hipótese nula e hipótese alternativa Erros de 1ª e 2ª espécie; potência do teste Teste a uma proporção; testes ao valor médio de uma v.a.: σ

Leia mais

A 'BC' e, com uma régua, obteve estas medidas:

A 'BC' e, com uma régua, obteve estas medidas: 1 Um estudante tinha de calcular a área do triângulo ABC, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento A 'C' paralelo a AC, a altura C' H do triângulo A 'BC' e, com uma régua,

Leia mais

Seqüências. George Darmiton da Cunha Cavalcanti CIn - UFPE

Seqüências. George Darmiton da Cunha Cavalcanti CIn - UFPE Seqüências George Darmiton da Cunha Cavalcanti CIn - UFPE Introdução Uma seqüência é uma estrutura discreta usada para representar listas ordenadas. Definição 1 Uma seqüência é uma função de um subconjunto

Leia mais

Unidade 1: O Computador

Unidade 1: O Computador Unidade : O Computador.3 Arquitetura básica de um computador O computador é uma máquina que processa informações. É formado por um conjunto de componentes físicos (dispositivos mecânicos, magnéticos, elétricos

Leia mais

Avaliação de Empresas Profa. Patricia Maria Bortolon

Avaliação de Empresas Profa. Patricia Maria Bortolon Avaliação de Empresas RISCO E RETORNO Aula 2 Retorno Total É a variação total da riqueza proporcionada por um ativo ao seu detentor. Fonte: Notas de Aula do Prof. Claudio Cunha Retorno Total Exemplo 1

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

Resolução da Lista de Exercício 6

Resolução da Lista de Exercício 6 Teoria da Organização e Contratos - TOC / MFEE Professor: Jefferson Bertolai Fundação Getulio Vargas / EPGE Monitor: William Michon Jr 10 de novembro de 01 Exercícios referentes à aula 7 e 8. Resolução

Leia mais

Matemática. Resolução das atividades complementares. M3 Conjuntos

Matemática. Resolução das atividades complementares. M3 Conjuntos Resolução das atividades complementares Matemática M Conjuntos p. (UEMG) Numa escola infantil foram entrevistadas 8 crianças, com faia etária entre e anos, sobre dois filmes, e. Verificou-se que 4 delas

Leia mais

I. Conjunto Elemento Pertinência

I. Conjunto Elemento Pertinência TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que

Leia mais

Processos Estocásticos Parte 1 Probabilidades. Professora Ariane Ferreira

Processos Estocásticos Parte 1 Probabilidades. Professora Ariane Ferreira rocessos Estocásticos arte 1 robabilidades rofessora Conteúdos Conteúdos 2 arte 1.1 : Conceitos de robabilidade arte 1.2 : Variáveis Aleatórias Bibliografia indicada aos alunos [1] aul Meyer. robabilidade

Leia mais

Obtenção Experimental de Modelos Matemáticos Através da Reposta ao Degrau

Obtenção Experimental de Modelos Matemáticos Através da Reposta ao Degrau Alunos: Nota: 1-2 - Data: Obtenção Experimental de Modelos Matemáticos Através da Reposta ao Degrau 1.1 Objetivo O objetivo deste experimento é mostrar como se obtém o modelo matemático de um sistema através

Leia mais

Métodos Formais. Agenda. Relações Binárias Relações e Banco de Dados Operações nas Relações Resumo Relações Funções. Relações e Funções

Métodos Formais. Agenda. Relações Binárias Relações e Banco de Dados Operações nas Relações Resumo Relações Funções. Relações e Funções Métodos Formais Relações e Funções por Mauro Silva Agenda Relações Binárias Relações e Banco de Dados Operações nas Relações Resumo Relações Funções MF - Relações e Funções 2 1 Relações Binárias Definição

Leia mais

tipo e tamanho e com os "mesmos" elementos do vetor A, ou seja, B[i] = A[i].

tipo e tamanho e com os mesmos elementos do vetor A, ou seja, B[i] = A[i]. INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA SUL-RIO- GRANDENSE CAMPUS SAPUCAIA DO SUL PROFESSOR: RICARDO LUIS DOS SANTOS EXERCÍCIO DE REVISÃO E FIXAÇÃO DE CONTEÚDO - ARRAYS 1. Criar um vetor A

Leia mais

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou

Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou Sejam P1(x1,y1) e P2(x2,y2) pontos pertencentes ao plano. A equação da reta pode ser expressa como: ou y = ax + b ax y = b Desta forma, para encontrarmos a equação da reta que passa por entre esses dois

Leia mais

REGULAMENTO INTERNO ÚNICA CURSOS AVANÇADOS EM ODONTOLOGIA

REGULAMENTO INTERNO ÚNICA CURSOS AVANÇADOS EM ODONTOLOGIA REGULAMENTO INTERNO ÚNICA CURSOS AVANÇADOS EM ODONTOLOGIA 1. OBJETO 1.1. A ÚNICA Cursos Avançados em Odontologia oferece cursos de treinamento em formação continuada na área de Odontologia para estudantes

Leia mais