Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa

Tamanho: px
Começar a partir da página:

Download "Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa"

Transcrição

1 Estatística Disciplina de Estatística 20/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa

2 Estatística Inferencial Estudos das Probabilidades (noção básica) Amostragens e Distribuição Binomial e Normal 2

3 Noção Básica de Probabilidade Introdução Incluir probabilidade nesta disciplina se justifica pelo fato de a maioria dos fenômenos de que trata a Estatística ser de natureza aleatória ou probabilística. Assim, o conhecimento dos aspectos fundamentais do cálculo de probabilidades é uma necessidade essencial para o estudo da Estatística Indutiva ou Inferencial. 3

4 Experimento aleatório Em quase tudo, em maior ou menor grau, vislumbramos o acaso. Assim, da afirmação é provável que meu time ganhe a partida de hoje pode resultar: que, apesar do favoritismo, ele perca; que, como pensamos, ele ganhe; que empate. Como vimos o resultado final depende do acaso. Fenômenos como esses são chamados fenômenos aleatórios ou experimentos aleatórios. Experimentos ou fenômenos aleatórios são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. 4

5 Espaço Amostral A cada experimento correspondem, em geral, vários resultados possíveis. Assim, ao lançarmos uma moeda, há dois resultados possíveis: ocorrer cara ou ocorrer coroa. Já ao lançarmos um dado há seis resultados possíveis:, 2, 3, 4, 5 e. Ao conjunto desses resultados possíveis damos o nome de espaço amostral ou conjunto universo, representado por S. Os dois experimentos citados anteriormente têm os seguintes espaços amostrais: lançamento de uma moeda: S = {Ca, Co}, ou seja, 2 possibilidades lançamento de um dado: S = {, 2, 3, 4, 5, }, ou seja, possibilidades cartas de um baralho: {todas as cartas} 5

6 Do mesmo modo, como em dois lançamentos sucessivos de uma moeda podemos obter cara nos dois lançamentos, ou cara no primeiro e coroa no segundo, ou coroa no primeiro e cara no segundo, ou coroa nos dois lançamentos, o espaço amostral é: S = {(Ca,Ca), (Ca,Co), (Co,Ca), (Co,Co)}, ou seja, n(s) = 4 possibilidades No lançamento de três moedas teremos: S = {(Ca,Ca,Ca), (Ca,Ca,Co), (Ca,Co,Co), (Co,Co,Co), (Co,Co,Ca), (Co,Ca,Ca), (Co,Ca,Co), (Ca,Co,Ca)}, ou seja, n(s)= 8 possibilidades

7 Assim, moeda 2 possibilidades 2 moedas 2 2 possibilidades 3 moedas 2 3 possibilidades n moedas 2 n possibilidades E, dado possibilidades 2 dados 2 possibilidades 3 dados 3 possibilidades n dados n possibilidades 7

8 Eventos Chamamos de evento qualquer subconjunto do espaço amostral S de um experimento aleatório. Um evento é sempre definido por uma sentença. Exemplos: a) Obter um número par na face superior de um dado. b) Obter um número menor ou igual a na face superior de um dado. c) Obter um número 4 na face superior de um dado. d) Obter um número maior que na face superior de um dado. e) Obter cara no lançamento de uma moeda. 8

9 Probabilidade Probabilidade é a chance que um evento tem de ocorrer no experimento aleatório. Para isso precisamos saber o número de resultados possíveis (espaço amostral) e o número de resultados favoráveis (evento) Chamamos de probabilidade de um evento A o número real P(A), tal que: A Onde: n(a) é o número de elementos do evento A. na ns n(s) é o número de elementos do espaço amostral S. P 9

10 Exemplo : Considerando o lançamento de uma moeda calcular a probabilidade de obter cara. S = { Ca, Co} n(s) = 2 A = {Ca} n (A) = P A n A n S 2 0,5 ou 50% 0

11 Exemplo 2: Considerando o lançamento de um dado, calcular a probabilidade de obter um número par na face superior. S = {, 2, 3, 4, 5, } n(s) = A = {2, 4, } n (A) = 3 P A n A n S 3 0,5 ou 50%

12 Exemplo 3: Considerando o lançamento de um dado, calcular a probabilidade de obter um número menor ou igual a na face superior. S = {, 2, 3, 4, 5, } n(s) = A = {, 2, 3, 4, 5, } n (A) = P A n A n S ou 00% Evento Certo 2

13 Exemplo 4: Considerando o lançamento de um dado, calcular a probabilidade de obter o número 4 na face superior. S = {, 2, 3, 4, 5, } n(s) = A = {4} n (A) = P A n A n S 0, ou,% 3

14 Exemplo 5: Considerando o lançamento de um dado, calcular a probabilidade de obter um número divisível por 3 na face superior. S = {, 2, 3, 4, 5, } n(s) = A = {3,} n (A) = 2 P A n A n S 2 0,33 ou 33,3% 4

15 Eventos Complementares Exemplo: Sabemos que a probabilidade de tirar o 4 no lançamento de um dado é / ou,%. Logo, a probabilidade de não tirar o 4 será 5/ ou 83,33% Sabemos que um evento pode ou não ocorrer. Sendo p a probabilidade de que ocorra (sucesso) e q a probabilidade de que ele não ocorra (insucesso), para o mesmo evento existe sempre a relação: p + q = q = p / + 5/ = / = 5/ = / 5

16 Eventos Independentes Dizemos que dois eventos são independentes quando a realização de um dos eventos não afeta a probabilidade da realização do outro e vice-versa. Por exemplo quando lançamos dois dados, o resultado obtido em um deles independe do resultado obtido no outro. Assim, sendo P(A) a probabilidade de realização do primeiro evento e P(B) a probabilidade de realização do segundo evento, a probabilidade de que tais eventos se realizem simultaneamente é: P A B P(A) PB

17 Exemplo : Calcular a probabilidade de, ao lançarmos dois dados, obtermos no primeiro e 5 no segundo. S = {, 2, 3, 4, 5, } n(s) = A = {} n (A) = B = {5} n (B) = P 3 PB 2,78% P A 7

18 Eventos Mutuamente Exclusivos Dizemos que dois ou mais eventos são mutuamente exclusivos quando a realização de um exclui a realização do(s) outro(s). Também podemos dizer que não há elementos comuns na realização dos dois eventos, ou seja, Se dois eventos são mutuamente exclusivos, a probabilidade de que um ou outro se realize é igual à soma das probabilidades de que cada um deles se realize: União P(A B) A B 0 P(A) PB 8

19 Exemplo 7: Calcular a probabilidade de se tirar o 3 ou o 5 no lançamento de um dado. S = {, 2, 3, 4, 5, } n(s) = A = {3} n (A) = B = {5} n (B) = P P(A) P B 2 3 0,33 33,3% 9

20 Exemplo 8: Qual a probabilidade de sair o Ás de ouros quando retiramos uma carta de um baralho de 52 cartas? S = { todas as cartas} n(s) = 52 A = {Ás de ouro} n (A) = P(A) 52,92% Exemplo 9: Qual a probabilidade de sair um Rei quando retiramos uma carta de um baralho de 52 cartas? S = { todas as cartas} n(s) = 52 B = {K ouro, K paus, K espada, K copas} n (A) = 4 P(A) ,7% Exemplo 0: Em lote de 2 peças, 4 são defeituosas. Sendo retirada uma peça, calcule: a) a probabilidade de essa peça ser defeituosa. P(A) b) a probabilidade de essa peça não ser defeituosa ,3% P(A) 8 2,7% 20

21 Exemplo : De dois baralhos de 52 cartas retiram-se, simultaneamente, uma carta do primeiro baralho e uma carta do segundo. Qual a probabilidade de a carta do primeiro baralho ser um rei e a do segundo ser o 5 de paus? P ,5% Exemplo 2: Uma urna A contém: 3 bolas brancas, 4 pretas, 2 verdes; uma urna B contém: 5 bolas brancas, 2 pretas, verde; uma urna C contém: 2 bolas brancas, 3 pretas, 4 verdes. Uma bola é retirada de cada urna. Qual é a probabilidade de as três bolas retiradas da primeira, segunda e terceira urnas serem, respectivamente, branca, preta e verde? P P(A) P(B) P(C) ,7% 2

22 Exemplo 3: Se de um baralho de 52 cartas retiram-se, ao acaso, duas cartas sem reposição. Qual é probabilidade de a primeira carta ser o Ás de paus e a segunda ser o Rei de paus? S = { todas as cartas} n(s) = 52 A = {Ás de paus} n (A) = B = {Rei de paus} n(b) = P P(A) P(B) ,038% 22

23 Probabilidade com União e Intersecção de Eventos Exemplo 4: Entre os números de a 5, qual a probabilidade de escolher um número que seja divisível por 2 ou 8? S: Espaço amostral; S: {,2,3,4,5,,7,8,9,0,,2,3,4,5} A: Escolher um número que seja divisível por 2; A:{,2,3,4,,2} n(a) = B: Escolher um número que seja divisível por 8; B:{,2,3,,9,8} n(b) = Ao mesmo tempo Neste caso, iremos fazer P(AUB) = P(A) + P(B), porém é preciso Todos considerar os divisores, que os eventos A e B tem elementos comuns. sem repetí-los 23

24 A B: Escolher um número que seja divisível por 2 e 8; A B:{,2,3,} n(a B) = 4 A U B: Escolher um número que seja divisível por 2 ou 8. A U B:{,2,3,4,,9,2,8} n(a U B) = 8 Calculando as probabilidades, temos: P(A) P(B) n(a) n(s) n(b) n(s) P(A B) P(A B) 5 5 n(a B) n(s) n(a B) n(s) P(A Ou seja, soma-se as duas probabilidades A e B e subtrai-se a intersecção entre elas. Podemos resumir com a fórmula: B) P(A) P(B) P(A B) 24

25 Exemplo 5: Jogando-se um dado, qual é a probabilidade de se obter o número 4 ou um número par? S:{,2,3,4,5,} n(s) = A:{4} n(a) = B:{2,4,} n(b) = 3 A B: {4} n = P(A B) P(A) P(B) P(A 3 3 B) 25

26 - Lista de Exercícios - 2

Estatística: Probabilidade e Distribuições

Estatística: Probabilidade e Distribuições Estatística: Probabilidade e Distribuições Disciplina de Estatística 2012/2 Curso: Tecnólogo em Gestão Ambiental Profª. Ms. Valéria Espíndola Lessa 1 Aula de Hoje 23/11/2012 Estudo da Probabilidade Distribuição

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

Probabilidade em espaços discretos. Prof.: Joni Fusinato

Probabilidade em espaços discretos. Prof.: Joni Fusinato Probabilidade em espaços discretos Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade

Leia mais

Prof.: Joni Fusinato

Prof.: Joni Fusinato Introdução a Teoria da Probabilidade Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso

Leia mais

Estatística. Aula : Probabilidade. Prof. Ademar

Estatística. Aula : Probabilidade. Prof. Ademar Estatística Aula : Probabilidade Prof. Ademar TEORIA DAS PROBABILIDADES A teoria das probabilidades busca estimar as chances de ocorrer um determinado acontecimento. É um ramo da matemática que cria, elabora

Leia mais

PARTE 5 PROBABILIDADE VERSÃO: ABRIL DE 2017

PARTE 5 PROBABILIDADE VERSÃO: ABRIL DE 2017 COMUNICAÇÃO SOCIAL E MARKETING CENTRO DE CIÊNCIAS SOCIAIS APLICADAS UNIVERSIDADE CATÓLICA DE PETRÓPOLIS ESTATÍSTICA APLICADA PARA PESQUISA EM MARKETING E COMUNICAÇÃO PARTE 5 PROBABILIDADE VERSÃO: 0.1 -

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

Matemática & Raciocínio Lógico

Matemática & Raciocínio Lógico Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur PROBABILIDADE No estudo das probabilidades estamos interessados em estudar o experimento

Leia mais

PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO

PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO PROBABILIDADES Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza, permitindo que ela seja aferida, analisada e usada para a realização de previsões ou para a

Leia mais

TECNOLOGIA EM REDE DE COMPUTADORES ESTATÍSTICA

TECNOLOGIA EM REDE DE COMPUTADORES ESTATÍSTICA 1 TECNOLOGIA EM REDE DE COMPUTADORES ESTATÍSTICA 2 6. ANÁLISE COMBINATÓRIA INTRODUÇÃO É uma parte da matemática que estuda os agrupamentos de elementos sem precisar enumerá-los. Atualmente, a estimativa

Leia mais

CAPÍTULO 3 PROBABILIDADE

CAPÍTULO 3 PROBABILIDADE CAPÍTULO 3 PROBABILIDADE 1. Conceitos 1.1 Experimento determinístico Um experimento se diz determinístico quando repetido em mesmas condições conduz a resultados idênticos. Exemplo 1: De uma urna que contém

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

MATEMÁTICA MÓDULO 4 PROBABILIDADE

MATEMÁTICA MÓDULO 4 PROBABILIDADE PROBABILIDADE Consideremos um experimento com resultados imprevisíveis e mutuamente exclusivos, ou seja, cada repetição desse experimento é impossível prever com certeza qual o resultado que será obtido,

Leia mais

Probabilidade material teórico

Probabilidade material teórico 1 A probabilidade serve para calcular a chance de algo acontecer. Seu estudo, assim como o da Análise Combinatória, teve origem nos jogos de azar, onde as pessoas queriam saber qual o melhor modo de jogar,

Leia mais

MA12 - Unidade 17 Probabilidade

MA12 - Unidade 17 Probabilidade MA12 - Unidade 17 Probabilidade Paulo Cezar Pinto Carvalho PROFMAT - SBM 17 de Maio de 2013 Teoria da Probabilidade Teoria da Probabilidade: modelo matemático para incerteza. Objeto de estudo: experimentos

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

ESTATÍSTICA Parte II

ESTATÍSTICA Parte II ESTATÍSTICA Parte II PARA OS CURSOS TÉCNICOS Material Didático Elaborado por: Alessandro da Silva Saadi MESTRE EM MATEMÁTICA 1 Capítulo 1 Escola Técnica Estadual Getúlio Vargas ESTATÍSTICA II Prof. Me.

Leia mais

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES 1) Determine a probabilidade de cada evento: a) Um nº par aparece no lançamento de um dado; b) Uma figura

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades 08/06/07 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto

Leia mais

PROBABILIDADE - INTRODUÇÃO

PROBABILIDADE - INTRODUÇÃO E.E. Dona Antônia Valadares MATEMÁTICA 1º ANO ANÁLISE COMBINATÓRIA PROBABILIDADE - INTRODUÇÃO PROFESSOR: ALEXSANDRO DE SOUSA http://donaantoniavaladares.comunidades.net TEORIA DAS PROBABILIDADES A teoria

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica 08:8 ESTATÍSTICA APLICADA I - Teoria das

Leia mais

Probabilidade. Capítulo 8

Probabilidade. Capítulo 8 Capítulo 8 Probabilidade Desenvolvimento: 8.1 Introdução. 8.2 Experimento aleatório. 8.3 Espaço Amostral 8.4 Eventos 8.5 Probabilidade 8.6 Exercícios 8.7 Eventos Complementares 8.8 Eventos Independentes

Leia mais

Estatística Planejamento das Aulas

Estatística Planejamento das Aulas 7 de outubro de 2018 Fatorial Para n inteiro não negativo. O fatorial de n é definido por: Convenciona-se: Para n = 0, 0! = 1 Para n = 1, 1! = 1 Exemplos: 1. 6! = 6.5.4.3.2.1 = 720 2. 4! = 4.3.2.1 = 24

Leia mais

Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais.

Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais. p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br. No lançamento de dois dados, D e D 2, tem-se o seguinte espaço amostral, dado em forma de tabela de dupla entrada. Lista de exercícios

Leia mais

Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Probabilidade Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Experimento aleatório Definição. Qualquer experimento cujo resultado não pode

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES 0 1 INTRODUÇÃO A teoria das probabilidades é utilizada para determinar as chances de um experimento aleatório acontecer. 1.1

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

Portal da OBMEP. Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE. Fração como Probabilidade. Sexto Ano do Ensino Fundamental

Portal da OBMEP. Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE. Fração como Probabilidade. Sexto Ano do Ensino Fundamental Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE Fração como Probabilidade Sexto Ano do Ensino Fundamental Prof. Francisco Bruno Holanda Prof. Antonio Caminha Muniz Neto 1 Introdução

Leia mais

Probabilidades. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Probabilidades. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Probabilidades Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 41 Noções Básicas Os métodos estatísticos para análise de dados estão associados

Leia mais

Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Probabilidade Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução Experimento aleatório Definição Qualquer experimento cujo resultado

Leia mais

Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise

Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Você reconhece algum desses experimentos? Alguns

Leia mais

Aulas particulares. Conteúdo

Aulas particulares. Conteúdo Conteúdo Capítulo 6...2 Probabilidade...2 Exercícios...4 Restpostas...9 Capítulo 7... 12 Análise combinatória... 12 Fatorial... 12 Arranjo... 13 Combinação... 16 Exercícios... 17 Respostas... 22 1 Capítulo

Leia mais

No lançamento de uma moeda, a probabilidade de ocorrer cara ou coroa é a mesma. Como se calcula a probabilidade de determinado evento?

No lançamento de uma moeda, a probabilidade de ocorrer cara ou coroa é a mesma. Como se calcula a probabilidade de determinado evento? Probabilidade Introdução Dentro de certas condições, é possível prever a que temperatura o leite ferve. Esse tipo de experimento, cujo resultado é previsível, recebe o nome de determinístico. No entanto,

Leia mais

Introdução à Bioestatística

Introdução à Bioestatística Instituto Nacional de Cardiologia March 11, 2015 1 2 3 Os primeiros estudos surgiram no século XVII Teve origem nos jogos de azar Grandes nomes da matemática desenvolveram teorias de probabilidades: Pascal

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

Probabilidade e Estatística Preparação para P1

Probabilidade e Estatística Preparação para P1 robabilidade e Estatística reparação para rof.: Duarte ) Uma TV que valia R$ 00,00, entrou em promoção e sofreu uma redução de 0% em seu preço. Qual é o novo preço da TV? ) Um produto foi vendido por R$

Leia mais

1 Definição Clássica de Probabilidade

1 Definição Clássica de Probabilidade Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica

Leia mais

Coordenadoria de Matemática. Apostila de Probabilidade

Coordenadoria de Matemática. Apostila de Probabilidade Coordenadoria de Matemática Apostila de Probabilidade Vitória ES 1. INTRODUÇÃO CAPÍTULO 03 Quando investigamos algum fenômeno, verificamos a necessidade de descrevê-lo por um modelo matemático que permite

Leia mais

PROBABILIDADE. Luciana Santos da Silva Martino. PROFMAT - Colégio Pedro II. 01 de julho de 2017

PROBABILIDADE. Luciana Santos da Silva Martino. PROFMAT - Colégio Pedro II. 01 de julho de 2017 Sumário PROBABILIDADE Luciana Santos da Silva Martino PROFMAT - Colégio Pedro II 01 de julho de 2017 Sumário 1 Conceitos Básicos 2 Probabildade Condicional 3 Espaço Amostral Infinito Outline 1 Conceitos

Leia mais

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S. PROBABILIDADE A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade.

Leia mais

Introdução à Estatística

Introdução à Estatística Introdução à Estatística Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos de experimentos:

Leia mais

Princípios básicos de probabilidade e aplicação à genética

Princípios básicos de probabilidade e aplicação à genética Princípios básicos de probabilidade e aplicação à genética 1ª Parte: Princípios básicos de probabilidade Probabilidade é a chance que um evento tem de ocorrer, entre dois ou mais eventos possíveis. Por

Leia mais

ESPAÇO AMOSTRAL E EVENTO. 2) Jogando um dado ideal e anotando a face voltada para cima, teremos o espaço amostral E= {1,2,3,4,5,6}

ESPAÇO AMOSTRAL E EVENTO. 2) Jogando um dado ideal e anotando a face voltada para cima, teremos o espaço amostral E= {1,2,3,4,5,6} NOÇÕES DE PROBABILIDADE O estudo da probabilidade vem da necessidade de em certas situações, prevermos a possibilidade de ocorrência de determinados fatos. EXPERIMENTOS ALEATÓRIOS Experimentos aleatórios

Leia mais

Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Probabilidades. Cristian Villegas

Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Exatas. Probabilidades. Cristian Villegas Probabilidades Cristian Villegas clobos@usp.br Setembro de 2013 Apostila de Estatística (Cristian Villegas) 1 Introdução Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas

Leia mais

REVISÃO DO CONTEÚDO ATÉ HOJE. Conhecendo o cálculo da probabilidade

REVISÃO DO CONTEÚDO ATÉ HOJE. Conhecendo o cálculo da probabilidade REVISÃO DO CONTEÚDO ATÉ HOJE Conhecendo o cálculo da probabilidade BERTOLO OBJETIVOS Definir probabilidade; Identificar situações práticas às quais se aplica a probabilidade; Definir experimento, espaço

Leia mais

REGRAS PARA CÁLCULO DE PROBABILIDADES

REGRAS PARA CÁLCULO DE PROBABILIDADES REGRAS PARA CÁLCULO DE PROBABILIDADES Prof. Dr. Lucas Santana da Cunha http://www.uel.br/pessoal/lscunha/ 15 de abril de 2019 Londrina 1 / 17 As probabilidades sempre se referem a ocorrência de eventos

Leia mais

Probabilidade e Estatística Probabilidade Condicional

Probabilidade e Estatística Probabilidade Condicional Introdução Probabilidade e Estatística Probabilidade Condicional Em algumas situações, a probabilidade de ocorrência de um certo evento pode ser afetada se tivermos alguma informação sobre a ocorrência

Leia mais

Teoria das probabilidades

Teoria das probabilidades Teoria das probabilidades Prof. Dr. Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ 25 de abril de 2018 Londrina 1 / 22 Conceitos probabiĺısticos são necessários para se

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

Probabilidade Condicional (grupo 2)

Probabilidade Condicional (grupo 2) page 39 Capítulo 5 Probabilidade Condicional (grupo 2) Veremos a seguir exemplos de situações onde a probabilidade de um evento émodificadapelainformação de que um outro evento ocorreu, levando-nos a definir

Leia mais

Física do Calor - 23ª Aula. Prof. Alvaro Vannucci

Física do Calor - 23ª Aula. Prof. Alvaro Vannucci Física do Calor - 23ª Aula Prof. Alvaro Vannucci Na última aula vimos exemplos de como efetuar a Permutação de um conjunto de n elementos envolvendo p situações (p estados) possíveis. Por exemplo, como

Leia mais

PEDRO A. BARBETTA Estatística Aplicada às Ciências Sociais 6ed. Editora da UFSC, 2006.

PEDRO A. BARBETTA Estatística Aplicada às Ciências Sociais 6ed. Editora da UFSC, 2006. Como usar modelos de probabilidade para entender melhor os fenômenos aleatórios Capítulos 7 e 8. Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC,

Leia mais

Probabilidade. Definição de Probabilidade Principais Teoremas Probabilidades dos Espaços Amostrais Espaços Amostrais Equiprováveis.

Probabilidade. Definição de Probabilidade Principais Teoremas Probabilidades dos Espaços Amostrais Espaços Amostrais Equiprováveis. Probabilidade Definição de Probabilidade Principais Teoremas Probabilidades dos Espaços Amostrais Espaços Amostrais Equiprováveis Renata Souza Probabilidade É um conceito matemático que permite a quantificação

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Teoria das Prof. Eduardo Bezerra (CEFET/RJ) 23 de fevereiro de 2018 Eduardo Bezerra (CEFET/RJ) Teoria das 2018.1 1 / 54 Roteiro Experimento aleatório, espaço amostral, evento 1 Experimento aleatório, espaço

Leia mais

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL.

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL. Estatística Aplicada Administração p(a) = n(a) / n(u) PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL Prof. Carlos Alberto Stechhahn 2014 1. Noções de Probabilidade Chama-se experimento

Leia mais

Probabilidades. O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados.

Probabilidades. O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados. Probabilidades O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados. Quando lançamos um dado, os resultados possíveis são sempre um dos elementos

Leia mais

AULA 08 Probabilidade

AULA 08 Probabilidade Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 1ª Parte: Conceitos básicos, variáveis aleatórias, modelos probabilísticos para variáveis aleatórias discretas, modelo binomial, modelo de Poisson 1 Probabilidade

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

MA12 - Unidade 18 Probabilidade Condicional

MA12 - Unidade 18 Probabilidade Condicional MA12 - Unidade 18 Probabilidade Condicional Paulo Cezar Pinto Carvalho PROFMAT - SBM 4 de Abril de 2014 Um dado honesto é lançado duas vezes. a) Qual é a probabilidade de sair 1 no 1 o lançamento? b) Qual

Leia mais

SULIMAR GOMES SILVA INTRODUÇÃO À PROBABILIDADE

SULIMAR GOMES SILVA INTRODUÇÃO À PROBABILIDADE SULIMAR GOMES SILVA INTRODUÇÃO À PROBABILIDADE Trabalho apresentado ao curso de Formação Continuada da Fundação CECIERJ - Consórcio CEDERJ. Orientadora: Danubia de Araujo Machado (Tutora) Grupo 2 Série:

Leia mais

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.

Leia mais

Exercícios de Probabilidade - Lista 1. Profa. Ana Maria Farias

Exercícios de Probabilidade - Lista 1. Profa. Ana Maria Farias Exercícios de Probabilidade - Lista 1 Profa. Ana Maria Farias 1. Lançam-se três moedas. Enumere o espaço amostral e os eventos A = faces iguais ; B = cara na primeira moeda ; C = coroa na segunda e terceira

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Gravitação F = GM 1 M 2 /r 2. Aceleração clássica. v = at. Aceleração relativística

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Gravitação F = GM 1 M 2 /r 2. Aceleração clássica. v = at. Aceleração relativística Determinístico Sistema Real Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Gravitação F GM 1 M 2 /r 2 Causas Efeito Aceleração clássica v at Aceleração relativística

Leia mais

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Perguntas 1. Um novo aparelho para detectar um certo tipo de

Leia mais

Introdução a Probabilidade

Introdução a Probabilidade Introdução a Probabilidade Universidade Estadual de Santa Cruz Ivan Bezerra Allaman Cronograma 1. Origem e história 2. Introdução 3. Definições básicas 4. Conceituação de probabilidade 5. Probabilidade

Leia mais

BIOESTATISTICA. Unidade IV - Probabilidades

BIOESTATISTICA. Unidade IV - Probabilidades BIOESTATISTICA Unidade IV - Probabilidades 0 PROBABILIDADE E DISTRIBUIÇÃO DE FREQUÊNCIAS COMO ESTIMATIVA DA PROBABILIDADE Noções de Probabilidade Após realizar a descrição dos eventos utilizando gráficos,

Leia mais

Universidade Federal de Mato Grosso Aula 1 - Disciplina: Probabilidade III Prof a Eveliny Curso: Estatística

Universidade Federal de Mato Grosso Aula 1 - Disciplina: Probabilidade III Prof a Eveliny Curso: Estatística 1 Probabilidade Universidade Federal de Mato Grosso Encontramos na natureza dois tipos de fenômenos: determinísticos e aleatórios. Os fenômenos determinísticos são aqueles em que os resultados são sempre

Leia mais

TEORIA DA PROBABILIDADE

TEORIA DA PROBABILIDADE TEORIA DA PROBABILIDADE Lucas Santana da Cunha lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 22 de maio de 2017 Introdução Conceitos probabiĺısticos são necessários

Leia mais

Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução

Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma

Leia mais

Teoria da Probabilidade

Teoria da Probabilidade Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos

Leia mais

EST012 - Estatística Econômica I Turma A - 1 o Semestre de 2019 Lista de Exercícios 3 - Variável aleatória

EST012 - Estatística Econômica I Turma A - 1 o Semestre de 2019 Lista de Exercícios 3 - Variável aleatória Exercício 1. Considere uma urna em que temos 4 bolas brancas e 6 bolas pretas. Vamos retirar, ao acaso, 3 bolas, uma após a outra e sem reposição. Sejam X: o número de bolas brancas e Y : o número de bolas

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três. 1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Espaço Amostral Álgebra de Eventos Axiomas de Probabilidade Análise Aula de hoje Probabilidade Condicional Independência de Eventos Teorema

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova 1 de Probabilidade I Prof.: Fabiano F. T. dos Santos Goiânia, 15 de setembro de 2014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico.

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico. Tipos de Modelo Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM 1 M 2 /r 2 Causas Efeito

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

Prof.Letícia Garcia Polac. 26 de setembro de 2017

Prof.Letícia Garcia Polac. 26 de setembro de 2017 Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES15

INTRODUÇÃO ÀS PROBABILIDADES15 INTRODUÇÃO ÀS PROBABILIDADES15 Vanderlei S. Bagnato 15.1 Introdução 15.2 Definição de Probabilidade 15.3 Adição de probabilidade 15.4 Multiplicação de probabilidades Referências Licenciatura em Ciências

Leia mais

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.

Leia mais

Probabilidades- Teoria Elementar

Probabilidades- Teoria Elementar Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados

Leia mais

Probabilidade Parte 1. Camyla Moreno

Probabilidade Parte 1. Camyla Moreno Probabilidade Parte 1 Camyla Moreno Probabilidade A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística Probabilidade Disciplina: Cálculo das Probabilidades e Estatística I Prof. Tarciana Liberal Existem muitas situações que envolvem incertezas:

Leia mais

Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística. Probabilidades

Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística. Probabilidades Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística Probabilidades Aluna(o): Aluna(o): Turma: Responsável: Prof. Silvano Cesar da Costa L O N D R I N A Estado do Paraná

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DARLAN MOUTINHO VOL. 0 RESOLUÇÕES Me ta PÁGINA 8 0 0 Havendo apenas bolas verdes e azuis na urna, segue que a resposta é dada por Basta dividirmos o número de ocorrências, pelo número total de

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 1 04/14 1 / 35

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 1 04/14 1 / 35 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 1 04/14 1 / 35 Prof. Tarciana Liberal (UFPB) Aula 1 04/14 2 / 35 Prof. Tarciana Liberal (UFPB)

Leia mais

PROBABILIDADE E ESTATÍSTICA

PROBABILIDADE E ESTATÍSTICA PROBABILIDADE E ESTATÍSTICA Curso de Matemática Probabilidades Bertolo OBJETIVOS Definir probabilidade; Identificar situações práticas às quais se aplica a probabilidade; Definir experimento, espaço amostral

Leia mais

Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a

Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a probabilidade se sair bola: a. azul; b. vermelha; c. amarela. 2.

Leia mais