AULA 13 Probabilidades

Tamanho: px
Começar a partir da página:

Download "AULA 13 Probabilidades"

Transcrição

1 AULA Probabilidades Espaço amostral e evento: Em um experimento (ou fenômeno) aleatório, o conjunto formado por todos os resultados possíveis é chamado espaço amostral (Ω) Qualquer subconjunto do espaço amostral é chamado de evento Vamos analisar a seguir alguns exemplos de fenômenos aleatórios Ex: Lançamento de um dado e registro do resultado Conjunto de todos os resultados possíveis: Ω={,,,,,} Um subconjunto dele é {,, }, que pode ser identificado por ocorrer número ímpar no lançamento de um dado A = {,, } No lançamento de um dado, defina o espaço amostral e os eventos: Ω = { } A: ocorrência de número par; A = { } B: ocorrência de um número menor que ; B = { } C: ocorrência de múltiplo de ; C = { } D: ocorrência de um número menor que ; D = { } E: ocorrência de um número maior que zero e menor que E = { } No lançamento simultâneo de duas moedas distinguíveis, defina o espaço amostral e os eventos: Ω = { } A: ocorrência de exatamente uma cara; A = { } B: ocorrência de coroa em ambas; B = { } C: ocorrência de pelo menos uma cara C = { } Eventos certo, impossível e mutuamente exclusivos No experimento aleatório lançar um dado e registrar o resultado, temos: Espaço amostral Ω = {,,,,, } Evento A: ocorrência de um número menor que A = {,,,,, } Portanto, A = Ω Evento B: ocorrência de número maior que não existe número maior que Portanto, B = Dizemos que: Quando um evento coincide com o espaço amostral, ele é chamado de evento certo, como o evento A Quando um evento é vazio, ele é chamado evento impossível, como o evento B União de Eventos, Intersecção de eventos e Complementar de um Evento Consideremos, no exemplo do lançamento de um dado, os eventos: C: ocorrência de número par C = {,, } D: ocorrência de múltiplo de D = {, } E: ocorrência de número par ou número múltiplo de E = C D = {,, } {, } = {,,, } (união de eventos) F: ocorrência de número par e múltiplo de F = C D = {,, } {, } = {} (intersecção de eventos) H: ocorrência de número ímpar, dado por C H = C (complementar de C em relação a Ω) [ou seja, o que falta em C para completar Ω] Portanto, H = (,, ) Os eventos C e H são chamados eventos complementares, pois observe que C H = Quando a intersecção de dois eventos é o conjunto vazio, eles são chamados eventos mutuamente exclusivos Cálculo de probabilidades Quando num dado fenômeno (ou experimento) aleatório, com espaço amostral finito, consideramos que todo evento elementar tem a mesma chance de ocorrer (o espaço é equiprovável), a probabilidade de ocorrer um evento A, indicada por P(A), é um número que mede essa chance e é dado por: ou P ( A) P ( A) número de elementos de A número de elementos de n( A) n( ) número de resultados favoráveis número total de resultados possíveis (FEI-SP-G:D) No lançamento de três moedas normais, a probabilidade de se obter caras e coroa é: b) c) e) (CESGRANRIO-G:B) Dois dados perfeitos são lançados ao acaso A probabilidade de que a soma dos resultados obtidos seja é: b) c) e) 0 0 (FUVEST-SP-G:C) Escolhido ao acaso um elemento do conjunto dos divisores positivos de 0, a probabilidade de que ele seja primo é: b) c) e) (UPE-G:A) Numa sala há 0 homens e 0 mulheres, metade dos homens e metade das mulheres tem olhos azuis Uma pessoa entre eles é escolhida aleatoriamente Podemos afirmar que a probabilidade de essa pessoa escolhida ser homem ou ter olhos azuis é: b) c) e) 0, Não existe triunfo sem perda, não há vitória sem sofrimento, não há liberdade sem sacrifício Filme O Senhor dos Anéis Página

2 (UFPE-G:E) Um saco contém bolas verdes e oito bolas amarelas Quantas bolas azuis devem ser colocadas no saco, de modo que a probabilidade de retirarmos do mesmo, aleatoriamente, uma bola azul, seja /? b) 0 c) 0 0 e) 0 (UPE-SSA G:C) Em um jogo, dois apostadores decidiram jogar uma moeda honesta vezes seguidas Se houver maior número de caras nesses lançamentos, vencerá o primeiro jogador e, caso contrário, vencerá o segundo jogador Sabendo que, em um dos lançamentos, houve cara, as chances do segundo jogador ter vencido são de: b) c) e) 9 (G:C) A prefeitura de Rio Claro, município de São Paulo, com o intuito de analisar a realidade da renda dos jovens de a anos, resolve lançar uma pesquisa, onde um dos itens girava em torno da faixa salarial O gráfico abaixo nos apresenta os resultados obtidos nessa pesquisa A loja sorteará um brinde entre os compradores do produto A e outro brinde entre os compradores do produto B Qual a probabilidade de que os dois sorteados tenham feito suas compras em fevereiro de 0? b) c) e) 0 0 (ENEM-G:A) Numa escola com 00 alunos foi realizada uma pesquisa sobre o conhecimento desses em duas línguas estrangeiras, inglês e espanhol Nessa pesquisa constatou-se que 00 alunos falam inglês, 00 falam espanhol e 00 não falam qualquer um desses idiomas Escolhendo-se um aluno dessa escola ao acaso e sabendo-se que ele não fala inglês qual a probabilidade de que esse aluno fale espanhol? b) c) e) Escolhendo um jovem, ao acaso, dentre os que têm renda, qual a probabilidade de ser um jovem cuja faixa salarial gire em torno de salários mínimos? 0, b) 0,0 c) 0,9 0, e) 0, 0 (ENEM-G:A) Uma loja acompanhou o número de compradores de dois produtos, A e B, durante os meses de janeiro, fevereiro e março de 0 Com isso, obteve este gráfico: (ENEM) O diretor de um colégio leu numa revista que os pés das mulheres estavam aumentando Há alguns anos, a média do tamanho dos calçados das mulheres era de, e, hoje, é de,0 Embora não fosse uma informação científica, ele ficou curioso e fez uma pesquisa com as funcionárias do seu colégio, obtendo o quadro a seguir: Escolhendo uma funcionária ao acaso e sabendo que ela tem calçado maior que,0 a probabilidade de ela calçar,0 é: b) e) c) Não existe triunfo sem perda, não há vitória sem sofrimento, não há liberdade sem sacrifício Filme O Senhor dos Anéis Página

3 (ENEM) A figura I abaixo mostra um esquema das principais vias que interligam a cidade A com a cidade B Cada número indicado na figura II representa a probabilidade de pegar um engarrafamento quando se passa na via indicada Assim, há uma probabilidade de 0% de se pegar engarrafamento no deslocamento do ponto C ao ponto B, passando pela estrada E, e de 0%, quando se passa por E Essas probabilidades são independentes umas das outras (ENEM) Rafael mora no Centro de uma cidade e decidiu se mudar, por recomendações médicas, para uma das regiões: Rural, Comercial, Residencial Urbano ou Residencial Suburbano A principal recomendação médica foi com as temperaturas das ilhas de calor da região, que deveriam ser inferiores a ºC Tais temperaturas são apresentadas no gráfico: Paula deseja se deslocar da cidade A para a cidade B usando exatamente duas das vias indicadas, percorrendo um trajeto com a menor probabilidade de engarrafamento possível O melhor trajeto para Paula é EE b) EE c) EE EE e) EE Escolhendo, aleatoriamente, uma das outras regiões para morar, a probabilidade de ele escolher uma região que seja adequada às recomendações médicas é: b) c) (ENEM) Em um concurso de televisão apresentam-se ao participante, três fichas voltadas para baixo, estando representada em cada uma delas as letras T, V e E As fichas encontram-se alinhadas em uma ordem qualquer O participante deve ordenar as fichas ao seu gosto, mantendo as letras voltadas para baixo, tentando obter a sigla TVE Ao desvirá-las, para cada letra que esteja na posição correta ganhará um prêmio de R$ 00,00 A probabilidade de o participante não ganhar qualquer prêmio é igual a: 0 b) e) Uma unidade de saúde, que funciona em três turnos, apresenta em sua equipe a seguinte distribuição dos médicos por turno: c) e) Para os plantões no final de semana, são formadas, aleatoriamente, equipes com dois desses médicos A probabilidade de que a equipe do plantão de final de semana seja formada por dois médicos do turno da manhã será de aproximadamente,0% b),% c),0% % e) % Não existe triunfo sem perda, não há vitória sem sofrimento, não há liberdade sem sacrifício Filme O Senhor dos Anéis Página

4 (ENEM) O gráfico mostra a velocidade de conexão à internet utilizada em domicílios no Brasil Esses dados são resultado da mais recente pesquisa, de 009, realizada pelo Comitê Gestor da Internet (CGI) (ENEM) Os estilos musicais preferidos pelos jovens brasileiros são o samba, o rock e a MPB O quadro a seguir registra o resultado de uma pesquisa relativa à preferência musical de um grupo de 000 alunos de uma escola Escolhendo-se, aleatoriamente, um domicílio pesquisado, qual a chance de haver banda larga de conexão de pelo menos Mbps neste domicílio? 0, b) 0, c) 0,0 0, e) 0, Alguns alunos disseram não ter preferência por nenhum desses três estilos Se for selecionado ao acaso um estudante no grupo pesquisado, qual é a probabilidade de ele preferir somente MPB? % b) % c) % % e) 0% (ENEM) Todo o país passa pela primeira fase de campanha de vacinação contra a gripe suma (HIN) Segundo um médico infectologista do Instituto Emilio Ribas, de São Paulo, a imunização deve mudar, no país, a história da epidemia Com a vacina, de acordo com ele, o Brasil tem a chance de barrar uma tendência do crescimento da doença, que já matou mil no mundo A tabela apresenta dados específicos de um único posto de vacinação Incluídas todas as mulheres vacinadas, considerando ao acaso uma delas, a probabilidade de ela estar infectada é de 0,9 b) 0,0 c) 0, 0,0 e) 0,0 Escolhendo-se aleatoriamente uma pessoa atendida nesse posto de vacinação, a probabilidade de ela ser portadora de doença crônica é: % b) 9% c) % % e) % (UFPE-CTG) Em um grupo de cinco torcedores, três torcem pelo time A, e dois torcem pelo time B Escolhendo aleatoriamente três torcedores do grupo, qual a probabilidade percentual de serem selecionados os dois torcedores do time B? Não existe triunfo sem perda, não há vitória sem sofrimento, não há liberdade sem sacrifício Filme O Senhor dos Anéis Página

5 A senha do cartão de crédito de Paulo é composta por quatro algarismos Quando foi utilizá-lo em uma compra não conseguia lembrar dela, mas sabia que nela havia os números,, e 9, não necessariamente nessa ordem Ele então escreveu todas as possibilidades de senha em um papel para escolher aleatoriamente (e não repetir a já escolhida anteriormente) qual seria a correta e sabia que poderia errar apenas duas vezes, pois, na terceira tentativa errada, o seu cartão ficaria bloqueado Dessa maneira, a probabilidade de o cartão de crédito de Paulo não ser bloqueado na efetivação dessa compra é: b) c) 9 e) Não existe triunfo sem perda, não há vitória sem sofrimento, não há liberdade sem sacrifício Filme O Senhor dos Anéis Página

6 0% % b) 0% e) % c) % b) c) 0 0 e) 0 Os alunos de uma classe de um colégio foram interrogados sobre qual sua área de conhecimento preferido A classe possui alunos alunos responderam que preferem a área de biológicas e responderam que preferem a área de humanas Sorteado, ao acaso, um dos alunos da classe, a probabilidade de ele ter preferido a área de exatas ou a de biológicas é de: 0% % b) % e) 0% c) % Uma pessoa lança três dados não viciados Veja alguns dos resultados obtidos (,, ) (,, ) (,, ) (,, ) A probabilidade de os três números obtidos formarem uma progressão aritmética de razão é igual a: b) 9 c) e) Um casal estima que suas chances de sair de casa em determinado sábado são 0% se chover no dia e 0% se não chover O Instituto Nacional de Meteorologia (INMET) prevê que a probabilidade de chover no sábado em questão é de 0% Considerando essas condições, a probabilidade de esse casal sair de casa nesse sábado é: GABARITO - D - D - B - E - D - D - C - D 9 - D D - E - E - C - E - D - B - C 9 - C 0 - E Não existe triunfo sem perda, não há vitória sem sofrimento, não há liberdade sem sacrifício Filme O Senhor dos Anéis Página

1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo.

1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. 1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. A B C Homens 42 36 26 Mulheres 28 24 32 Escolhendo-se uma aluna desse curso, a probabilidade de ela ser da turma A é:

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

Aula 16 - Erivaldo. Probabilidade

Aula 16 - Erivaldo. Probabilidade Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

Combinatória e Probabilidade

Combinatória e Probabilidade Combinatória e Probabilidade 1. (Enem) Considere o seguinte jogo de apostas: Numa cartela com 60 números disponíveis, um apostador escolhe de 6 a 10 números. Dentre os números disponíveis, serão sorteados

Leia mais

Procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes.

Procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes. 1 Procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes. 2 EXEMPLOS Resultado no lançamento de um dado; Taxa de inflação do próximo mês; Resultados de loteria;

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES

LEIA ATENTAMENTE AS INSTRUÇÕES Matemática e suas Tecnologias CÓDIGO DA PROVA / SIMULADO Aluno(a): POMA - Matemática Questões Professores: Neydiwan PC 0-0 - 4 ª Série º Bimestre - N 0 / 06 / 06 LEIA ATENTAMENTE AS INSTRUÇÕES Este caderno

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

PROBABILIDADE MÓDULO 7 PROBABILIDADE

PROBABILIDADE MÓDULO 7 PROBABILIDADE PROBABILIDADE MÓDULO 7 PROBABILIDADE PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo,

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

Mat1- Lista Probabilidade-2 série- 2013

Mat1- Lista Probabilidade-2 série- 2013 Mat1- Lista Probabilidade-2 série- 2013 1. (Unicamp simulado 2011) Uma empresa tem 5000 funcionários. Desses, 48% têm mais de 30 anos e 36% são especializados. Entre os especializados, 1400 têm mais de

Leia mais

De quantas formas distintas a estratégia desse cliente poderá ser posta em prática?

De quantas formas distintas a estratégia desse cliente poderá ser posta em prática? 1. (Enem 014) Um cliente de uma videolocadora tem o hábito de alugar dois filmes por vez. Quando os devolve, sempre pega outros dois filmes e assim sucessivamente. Ele soube que a videolocadora recebeu

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE 01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP

Leia mais

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S. PROBABILIDADE A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade.

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Probabilidade Matemática Ensino médio 4min32seg. Habilidades: H10. Utilizar os princípios probabilísticos

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Nome: Data: / / 1. Das seguintes experiências diz, justificando, quais são as aleatórias: 1.1. Deitar um berlinde num copo de água

Leia mais

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL.

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL. Estatística Aplicada Administração p(a) = n(a) / n(u) PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL Prof. Carlos Alberto Stechhahn 2014 1. Noções de Probabilidade Chama-se experimento

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

CAPÍTULO 3 PROBABILIDADE

CAPÍTULO 3 PROBABILIDADE CAPÍTULO 3 PROBABILIDADE 1. Conceitos 1.1 Experimento determinístico Um experimento se diz determinístico quando repetido em mesmas condições conduz a resultados idênticos. Exemplo 1: De uma urna que contém

Leia mais

Probabilidade (ENEM)

Probabilidade (ENEM) 1 Probabilidade (ENEM) 1 (ENEM 2015 2ª aplicação). Um bairro residencial tem cinco mil moradores, dos quais mil são classificados como vegetarianos. Entre os vegetarianos, 40% são esportistas, enquanto

Leia mais

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos Primeira Lista de Exercícios Introdução à probabilidade e à estatística Prof Patrícia Lusié Assunto: Probabilidade. 1. (Apostila 1 - ex.1.1) Lançam-se três moedas. Enumerar o espaço amostral e os eventos

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais Prof. Hemílio Fernandes Depto. de Estatística - UFPB Um pouco de Probabilidade Experimento Aleatório: procedimento que, ao ser repetido

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.

Leia mais

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três. 1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica

Leia mais

Matemática E Extensivo V. 5

Matemática E Extensivo V. 5 Extensivo V Exercícios 0) a) / b) / c) / a) N(E) N(A), logo P(A) b) N(E) N(A), logo P(A) c) N(E) N(A), logo P(A) 0) a) 0 b) / % c) 9/0 90% d) /0 % 0) E a) N(E) 0 + + + 0 b) N(E) 0 N(A), logo P(A) 0, %

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,

Leia mais

Lista de Exercícios de Recuperação de MATEMÁTICA 2

Lista de Exercícios de Recuperação de MATEMÁTICA 2 Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM ) Uma prova tem 4 testes com 5 alternativas cada um. Respondendo aleatoriamente

Leia mais

d) c) b) e) 1. Lista Especial Matemática - Probabilidade Prof. Adriano Sales

d) c) b) e) 1. Lista Especial Matemática - Probabilidade Prof. Adriano Sales Lista Especial Matemática - Probabilidade Prof. Adriano Sales TEXTO PARA AS PRÓXIMAS 2 QUESTÕES: Em um concurso de televisão, apresentam-se ao participante três fichas voltadas para baixo, estando representadas

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Roberta Teixeira) Este conteúdo pertence ao Descomplica.

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter. (Roberta Teixeira) Este conteúdo pertence ao Descomplica. 16 PC Sampaio Alex Amaral Rafael Jesus Gabriel Ritter Semana (Roberta Teixeira) Este conteúdo pertence ao Descomplica. Está vedada a cópia Probabilidade 01 jun Definição,união de eventos,evento complementar

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 17 PROBABILIDADE

MATEMÁTICA - 3 o ANO MÓDULO 17 PROBABILIDADE MATEMÁTICA - 3 o ANO MÓDULO 7 PROBABILIDADE Como pode cair no enem (ENEM) Em um blog de variedades, músicas, mantras e informações diversas, foram postados Contos de Halloween. Após a leitura, os visitantes

Leia mais

Professor: Adriano Sales Matéria: Probabilidade

Professor: Adriano Sales Matéria: Probabilidade Professor: Adriano Sales Matéria: Probabilidade. (Enem 202) Em um blog de variedades, músicas, mantras e informações diversas, foram postados Contos de Halloween. Após a leitura, os visitantes poderiam

Leia mais

Módulo de Fração como Porcentagem e Probabilidade. Fração como Probabilidade. 6 ano E.F.

Módulo de Fração como Porcentagem e Probabilidade. Fração como Probabilidade. 6 ano E.F. Módulo de Fração como Porcentagem e Probabilidade Fração como Probabilidade. 6 ano E.F. Fração como Porcentagem e Probabilidade Fração como Probabilidade. 1 Exercícios Introdutórios Exercício 1. Um dado

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

01 - (UEM PR) um resultado "cara sobre casa preta" é (MACK SP)

01 - (UEM PR) um resultado cara sobre casa preta é (MACK SP) ALUNO(A): Nº TURMA: 2º ANO PROF: Claudio Saldan CONTATO: saldan.mat@gmail.com LISTA DE EXERCÍCIOS PROBABILIDADE 0 - (UEM PR) Considere a situação ideal na qual uma moeda não-viciada, ao ser lançada sobre

Leia mais

Probabilidades- Teoria Elementar

Probabilidades- Teoria Elementar Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Distribuições de probabilidades

MATEMÁTICA A - 12o Ano Probabilidades - Distribuições de probabilidades MATEMÁTICA A - o Ano Probabilidades - Distribuições de probabilidades Exercícios de exames e testes intermédios. A tabela de distribuição de probabilidades de uma variável aleatória X é a seguinte. x i

Leia mais

2 Conceitos Básicos de Probabilidade

2 Conceitos Básicos de Probabilidade CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas

Leia mais

Lista Extra:Probabilidade +10-Mat1-2 anos

Lista Extra:Probabilidade +10-Mat1-2 anos Lista Extra:Probabilidade +10-Mat1-2 anos 1. (Upe 2014) Dois atiradores, André e Bruno, disparam simultaneamente sobre um alvo. - A probabilidade de André acertar no alvo é de 80%. - A probabilidade de

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios ) (UFRGS/20) Observe a figura abaixo. Na figura, um triângulo equilátero está inscrito em um círculo, e um hexágono regular está circunscrito ao mesmo círculo. Quando se lança um

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES 0 1 INTRODUÇÃO A teoria das probabilidades é utilizada para determinar as chances de um experimento aleatório acontecer. 1.1

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis

Leia mais

Conjuntos. Parte I. Página 1. mdc x,y = 33;

Conjuntos. Parte I.  Página 1. mdc x,y = 33; Parte I Conjuntos 1. (Ufsj 2013) O diagrama que representa o conjunto ( A B) C ( C B) A é a) b) c) d) 2. (Cefet MG 2013) Em uma enquete realizada com pessoas de idade superior a 30 anos, pesquisou-se as

Leia mais

3 d) 3 e) 9. NUCE Concursos Públicos A sequência a seguir é uma progressão aritmética:

3 d) 3 e) 9. NUCE Concursos Públicos A sequência a seguir é uma progressão aritmética: 1. A sequência a seguir é uma progressão aritmética: 00 15 0 45... 2010 Acima, aparecem apenas os quatro primeiros termos e o último. O número total de elementos dessa sequência é a) 11 b) 107 c) 109 d)

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Aula 3 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como

Leia mais

Probabilidade e Estatística Preparação para P1

Probabilidade e Estatística Preparação para P1 robabilidade e Estatística reparação para rof.: Duarte ) Uma TV que valia R$ 00,00, entrou em promoção e sofreu uma redução de 0% em seu preço. Qual é o novo preço da TV? ) Um produto foi vendido por R$

Leia mais

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1

RESUMO TEÓRICO. n(a) P(A) = n(u) 0 P(A) 1 RESUMO TEÓRICO Experimentos aleatórios: são aqueles que, mesmo repetidos várias vezes sob condições semelhantes, apresentam resultados imprevisíveis. Exemplo: Lançar um dado e verificar qual é a face voltada

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática

UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática 1 a Lista de Exercícios de Probabilidade e Estatística 1.

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Resolução de Problemas

Resolução de Problemas Resolução de Problemas 16/10/014 1. (Enem) Estima-se que haja, no Acre, 09 espécies de mamíferos, distribuídas conforme a tabela a seguir. grupos taxonômicos número de espécies Artiodáctilos 4 Carnívoros

Leia mais

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES 1) Determine a probabilidade de cada evento: a) Um nº par aparece no lançamento de um dado; b) Uma figura

Leia mais

Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal

Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Probabilidade Tópicos Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Conjuntos Conjunto: Na matemática, um conjunto é uma coleção de elementos com características

Leia mais

Fração como Probabilidade - União e Interseção de Eventos. Sexto Ano do Ensino Fundamental

Fração como Probabilidade - União e Interseção de Eventos. Sexto Ano do Ensino Fundamental Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE Fração como Probabilidade - União e Interseção de Eventos Sexto Ano do Ensino Fundamental Prof. Francisco Bruno Holanda Prof. Antonio

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para

Leia mais

PROBABILIDADE E ESTATÍSTICA. Aula 2 Professor Regina Meyer Branski

PROBABILIDADE E ESTATÍSTICA. Aula 2 Professor Regina Meyer Branski PROBABILIDADE E ESTATÍSTICA Aula 2 Professor Regina Meyer Branski Probabilidade 1. Conceitos básicos de probabilidade 2. Probabilidade condicional 3. Eventos Dependentes e Independentes 4. Regra da Multiplicação

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano Escola Secundária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 0/ Distribuição de probabilidades.º Ano Nome: N.º: Turma:. Numa turma do.º ano, a distribuição dos alunos por idade e sexo

Leia mais

Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA

Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA 01. Num saco estão 10 bolas indistinguíveis ao tato, das quais 6 são azuis e 4 são verdes. Retiram-se, sucessivamente e sem reposição duas bolas. Determine

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será

Leia mais

RESUMO TEÓRICO AULA 03: NOÇÕES DE PROBABILIDADE 3.1. INTRODUÇÃO 3.2. ESPAÇO AMOSTRAL S DIAGRAMA DE ÁRVORE 3.3. EVENTO E. marcelorenato.

RESUMO TEÓRICO AULA 03: NOÇÕES DE PROBABILIDADE 3.1. INTRODUÇÃO 3.2. ESPAÇO AMOSTRAL S DIAGRAMA DE ÁRVORE 3.3. EVENTO E. marcelorenato. RESUMO TEÓRICO AULA 0: NOÇÕES DE ROBABILIDADE.. INTRODUÇÃO rofessor Marcelo Renato Há certos fenômenos ou experimentos que, emora sejam repetidos muitas vezes e so condições idênticas, não apresentam os

Leia mais

Probabilidades. O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados.

Probabilidades. O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados. Probabilidades O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados. Quando lançamos um dado, os resultados possíveis são sempre um dos elementos

Leia mais

Análise Combinatória e Probabilidade. Exercícios Objetivos. (c) (d) 1 5

Análise Combinatória e Probabilidade. Exercícios Objetivos. (c) (d) 1 5 Exercícios Objetivos 1. (2009) O controle de qualidade de uma empresa fabricante de telefones celulares aponta que a probabilidade de um aparelho de determinado modelo apresentar defeito de fabricação

Leia mais

Questão 01 - (FGV /2015)

Questão 01 - (FGV /2015) SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: ª Série

Leia mais

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci Termo-Estatística (2013) 2ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair

Leia mais

Exercícios resolvidos sobre Teoremas de Probabilidade

Exercícios resolvidos sobre Teoremas de Probabilidade Exercícios resolvidos sobre Teoremas de Probabilidade Aqui você tem mais uma oportunidade de estudar os teoremas da probabilidade, por meio de um conjunto de exercícios resolvidos. Observe como as propriedades

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Matemática Atividades para Estudos Autônomos Data: 5 / 6 / 2017 Aluno(a): N o : Turma: 1) (Ufes)

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

Exercícios. 1. (Uerj 2017) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes:

Exercícios. 1. (Uerj 2017) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes: Probabilidade - Questões Extras Exercícios 1. (Uerj 01) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes: A {0, 1,, 3, 4, 5, 6,, 8, 9} 1. Cada número primo de A foi multiplicado

Leia mais

Aula 3: Estudando Arranjos

Aula 3: Estudando Arranjos Aula 3: Estudando Arranjos No campeonato mundial de Fórmula 1 de 2012, participaram 25 pilotos, entre quais se destacaram o alemão Sebastian Vettel, que foi o campeão, o espanhol Fernando Alonso, que foi

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA

UNIVERSIDADE FEDERAL DA PARAÍBA UNIVERSIDADE FEDERAL DA PARAÍBA Probabilidade Departamento de Estatística UFPB Luiz Medeiros Introdução Encontramos na natureza dois tipos de fenômenos Determinísticos: Os resultados são sempre os mesmos

Leia mais

Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ).

Também podemos representar um conjunto por meio de uma figura chamada diagrama de Venn (John Venn, lógico inglês, ). O que é conjunto Frequentemente usamos a noção de conjunto. Assim, ao organizar a lista de amigos para uma festa, ao preparar o material escolar ou, então, ao formar um time, estamos constituindo conjuntos.

Leia mais

Projeto Jovem Nota 10 Conjuntos Lista 1 Professor Marco Costa

Projeto Jovem Nota 10 Conjuntos Lista 1 Professor Marco Costa 1 1. (Universidade Federal do Paraná - 97) Projeto Jovem Nota 10 Foi realizada uma pesquisa para avaliar o consumo de três produtos designados por A, B, C. Todas as pessoas consultadas responderam à pesquisa

Leia mais

ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO

ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO Teste 1 Matemática 9.º C Nome: n.º Data: 14/10/2016 Classificação: Professor: Instruções gerais Não é permitido o uso de corretor. É permitido a utilização

Leia mais

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da

Leia mais

2. Lança-se ao acaso uma moeda 4 vezes e conta-se o número de faces obtidas. Escreva o espaço amostral da experiência.

2. Lança-se ao acaso uma moeda 4 vezes e conta-se o número de faces obtidas. Escreva o espaço amostral da experiência. Escola Superior de Tecnologia de Viseu Fundamentos de Estatística 2010/2011 Ficha nº 2 1. Lançam-se ao acaso 2 moedas. a) Escreva o espaço de resultados da experiência. b) Descreva os acontecimentos elementares.

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web MATEMÁTICA XXVII ENEM. (Enem 202) Certo vendedor tem seu salário mensal calculado da seguinte maneira: ele ganha um valor fixo de R$750,00, mais uma comissão de R$3,00 para cada produto vendido. Caso ele

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa

Leia mais

1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo.

1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. 1) A distribuição dos alunos nas 3 turmas de um curso é mostrada na tabela abaixo. A B C Homens 42 36 26 Mulheres 28 24 32 Escolhendo-se uma aluna desse curso, a probabilidade de ela ser da turma A é:

Leia mais

Experiências aleatórias e probabilidade

Experiências aleatórias e probabilidade Experiências aleatórias e probabilidade L.J. Amoreira UBI Novembro 2010 Experiências aleatórias Experiências aleatórias são aquelas cujos resultados não são conhecidos de antemão. Espaço de resultados

Leia mais

ESTATÍSTICA EXPLORATÓRIA

ESTATÍSTICA EXPLORATÓRIA ESTATÍSTICA EXPLORATÓRIA Prof Paulo Renato A. Firmino praf62@gmail.com Aulas 07-08 Probabilidade Apanhado Geral Seguimos nossas discussões sobre a Incerteza Decidir usualmente envolve incerteza Uma presa

Leia mais

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 João queria sair de casa, mas não sabia qual era a previsão do tempo. Ao ligar a TV no canal do tempo, a jornalista anunciou que existia a possibilidade de chuva no fim da tarde

Leia mais

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO 1. (Magalhães e Lima, pg 40) Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos: (a) Uma moeda é lançada duas vezes

Leia mais

Módulo de Introdução à Probabilidade. O que é Probabilidade? 2 a série E.M.

Módulo de Introdução à Probabilidade. O que é Probabilidade? 2 a série E.M. Módulo de Introdução à Probabilidade O que é Probabilidade? a série E.M. Probabilidade O que é Probabilidade? 1 Exercícios Introdutórios Exercício 1. Qual a probabilidade de, aleatoriamente, escolhermos

Leia mais

Superintensivo 2014 Matemática Kmara. PA e PG.

Superintensivo 2014 Matemática Kmara. PA e PG. Superintensivo 2014 Matemática Kmara PA e PG. Questões de estibulares: USC/98 Possuo 6 camisas (uma é vermelha) e 5 calças (uma é preta). O número de grupos de 4 camisas e 3 calças que poderei formar,

Leia mais