01 - (UEM PR) um resultado "cara sobre casa preta" é (MACK SP)

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "01 - (UEM PR) um resultado "cara sobre casa preta" é (MACK SP)"

Transcrição

1 ALUNO(A): Nº TURMA: 2º ANO PROF: Claudio Saldan CONTATO: LISTA DE EXERCÍCIOS PROBABILIDADE 0 - (UEM PR) Considere a situação ideal na qual uma moeda não-viciada, ao ser lançada sobre um tabuleiro composto de 9 casas quadradas de mesma área, pintadas nas cores preto e branco conforme o desenho a seguir, fica contida inteiramente dentro de alguma das casas do tabuleiro. Nessas condições, assinale a(s) alternativa(s) correta(s). 0. A probabilidade de se obter, em dois lances consecutivos, o resultado "cara sobre casa preta" é maior que a probabilidade de se obter, em dois lances consecutivos, "coroa sobre casa branca". 02. Se, em 3 lances consecutivos, obtém-se "cara sobre casa branca", então a probabilidade de se obter novamente "cara sobre casa branca" é Admita que, ao se lançarem duas moedas distintas. Então, em um lançamento duplo desse tipo, a probabilidade de se obter "cara sobre casa preta", para as duas moedas, é Admita que, ao se lançarem duas moedas distintas. Então, em um lançamento duplo desse tipo, a probabilidade de se obter "cara sobre casa branca" e "cara sobre casa preta" é igual à probabilidade de se obter "cara sobre casa branca" e "coroa sobre casa branca". 6. Admita que, ao se lançarem três moedas distintas. Então, em um lançamento triplo desse tipo, a probabilidade de se obterem dois resultados "coroa sobre casa branca" e um resultado "cara sobre casa preta" é (MACK SP) No lançamento de um dado viciado, os resultados e 6 têm, cada um, probabilidade 4 de ocorrer. Se cada um dos demais resultados é igualmente provável, a probabilidade de se obter soma 7, em dois lançamentos consecutivos desse dado, é : (UNIRIO RJ) As probabilidades de três jogadores marcarem um gol cobrando um pênalti são, respectivamente, /2, 2/ e /6. se cada um bater um único pênalti, a probabilidade de todos errarem é igual a: 3% % % 20% 2%

2 04 - (UERJ) Um instituto de pesquisa colheu informações para saber as intenções de voto no segundo turno das eleições para governador de um determinado estado. Os dados estão indicados no quadro abaixo: INTENÇÃO DE VOTO PERCENTUAL candidato A 26% candidato B 40% votos nulos 4% votos brancos 20% Escolhendo aleatoriamente um dos entrevistados, verificou-se que ele não vota no candidato B. A probabilidade de que esse eleitor vota em branco é: / (UEPG PR) Uma urna contém 20 fichas, numeradas de a 20. Assim, assinale o que for correto. 0. Retirando-se uma ficha ao acaso, a probabilidade de ela ser de um número par ou múltiplo de é de 60%. 02. Retirando-se duas fichas ao acaso, sem reposição, a probabilidade de que o produto dos números sorteados seja ímpar 9 é Retirando-se uma ficha ao acaso, a probabilidade de que seja um número múltiplo de 3 é de 30%. 08. Retirando-se duas fichas ao acaso, sem reposição, a probabilidade de que ambos os 9 números sejam pares é de. 38 / /4 /3 2/ 07 - (PUC RJ) A probabilidade de um casal com quatro filhos ter dois do sexo masculino e dois do sexo feminino é: 60% 0 - (UNICAMP SP) Uma empresa tem 000 funcionários. Desses, 48% têm mais de 30 anos, 36% são especializados e 400 têm mais de 30 anos e são especializados. Com base nesses dados, pergunta-se: 0% 4% 37,% 2% Quantos funcionários têm até 30 anos e não são especializados? Escolhendo um funcionário ao acaso, qual a probabilidade de ele ter até 30 anos e ser especializado?

3 08 - (FGV) Beatriz lançou dois dados e anotou numa folha o módulo da diferença entre os números obtidos. Em seguida, propôs aos seus irmãos, Bruno e Dirceu, que adivinhassem o número anotado na folha. Disse-lhes que cada um deles poderia escolher dois números. Bruno escolheu os números 0 e 3, enquanto Dirceu optou por e. Podemos afirmar que: a probabilidade de Bruno acertar o resultado é 20% menor que a de Dirceu. Em determinado hospital, no segundo semestre de 2007, foram registrados 0 casos de câncer, distribuídos de acordo com a tabela abaixo: A probabilidade de uma dessas pessoas, escolhida ao acaso, ser mulher, sabendo-se que tem câncer de pulmão, é: a probabilidade de Bruno acertar o resultado é o dobro da de Dirceu. a probabilidade de Bruno acertar o resultado é 20% maior que a de Dirceu. Bruno e Dirceu têm iguais probabilidades de acertar o resultado. a probabilidade de Bruno acertar o resultado é a metade da de Dirceu (UNIMONTES MG) 09 - (MACK SP) Um ambulante tem, para venda, 20 bilhetes do metrô, dos quais 2 são falsos; comprando aleatoriamente, a probabilidade de uma pessoa adquirir 2 bilhetes que não sejam falsos é Na tabela abaixo, temos o número de jogadores de uma cidade por modalidade de esporte e por sexo Ao escolher, ao acaso, um desses jogadores, a probabilidade de o jogador escolhido ser homem ou jogar futebol será representada por m e a probabilidade de o jogador escolhido ser mulher e jogar vôlei será representada por m 2. Pode-se, então, concluir que m = 62% e m 2 = 38%. m = 68% e m 2 = 28%. m = 72% e m 2 = 28%. m = 8% e m 2 = 70%. 0 - (UFRN)

4 2 - (UnB DF) Um baralho comum de 2 cartas, das quais 2 são figuras (valete, dama e rei), é subdividido aleatoriamente em três partes. As partes são colocadas sobre uma mesa com as faces das cartas viradas para baixo. A carta de cima de cada uma das três partes é desvirada. Com base na situação acima descrita, julgue os itens abaixo: 0. A chance de que as três cartas desviradas sejam figuras é maior que %. 02. A probabilidade de que exatamente duas das cartas desviradas sejam figuras está entre 0,08 e 0, A probabilidade de que pelo menos uma das três cartas desviradas seja uma figura é maior que 0,. 3 - (UFPB) A probabilidade de se escolher, no conjunto A = {n N n 2}, um número que seja divisor de 2 e de 6 é: /7 4/2 /7 /2 4/7 4 - (UFV MG) Os bilhetes de uma rifa são numerados de a 00. A probabilidade do bilhete sorteado ser um número maior que 40 ou número par é: 60% 90% 0% - (UNESP SP) Para uma partida de futebol, a probabilidade de o jogador R não ser escalado é 0,2 e a probabilidade de o jogador S ser escalado é 0,7. Sabendo que a escalação de um deles é independente da escalação do outro, a probabilidade de os dois jogadores serem escalados é: 0,06. 0,4. 0,24. 0,6. 0, (UFPR) Uma loja tem um lote de 0 aparelhos de rádio/cd e sabe-se que nesse lote existem 2 aparelhos com defeito, perceptível somente após uso continuado. Um consumidor compra dois aparelhos do lote, escolhidos aleatoriamente. Então, é correto afirmar: 0. A probabilidade de o consumidor comprar 28 somente aparelhos sem defeito é A probabilidade de o consumidor comprar pelo menos um aparelho defeituoso é 0, A probabilidade de o consumidor comprar os dois aparelhos defeituosos é A probabilidade de o primeiro aparelho escolhido ser defeituoso é 0,20. 70% 80%

5 6. A probabilidade de o segundo aparelho escolhido ser defeituoso, sendo que o 0 primeiro já está escolhido, é Escolhendo-se, ao acaso, simultaneamente, dois alunos, um de cada turma, a probabilidade de serem os dois do mesmo 6 sexo é igual a (FGV) Um recipiente contém 4 balas de hortelã, de morango e 3 de anis. Se duas balas forem sorteadas sucessivamente e sem reposição, a probabilidade de que sejam de mesmo sabor é: Escolhendo-se, ao acaso, um aluno do 3 O ano, a probabilidade de ser mulher ou de ser da turma B é igual a 80%. 6. Reunindo-se as mulheres das duas turmas e escolhendo-se uma, ao acaso, a probabilidade de ser da turma A é igual a 3% GABARITO (UFBA) Em uma escola, o 3 O ano colegial tem duas turmas: A e B. A tabela mostra a distribuição, por sexo, dos alunos dessas turmas. Turma Homens Mulheres A 20 3 B 2 20 Com base nesses dados, pode-se afirmar: 0. Escolhendo-se, ao acaso, um aluno do 3 O ano, a probabilidade de ser homem é igual a 0,4. ) 30 2) E 3) B 4) D ) % 6) 0 7) D 8) D 9) B 0) A ) C 2) FVV 3) C 4) C ) D 6) VFVVF ) B 8) Escolhendo-se, ao acaso, um aluno do 3 O ano B, a probabilidade de ser mulher é igual a 20%.

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

Aula 16 - Erivaldo. Probabilidade

Aula 16 - Erivaldo. Probabilidade Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE 01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.

Leia mais

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas?

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas? TERCEIRA LISTA DE EXERCÍCIOS DE PROBABILIDADE CURSO: MATEMÁTICA PROF. LUIZ CELONI 1) Dê um espaço amostral para cada experimento abaixo. a) Uma urna contém bolas vermelhas (V), bolas brancas (B) e bolas

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios ) (UFRGS/20) Observe a figura abaixo. Na figura, um triângulo equilátero está inscrito em um círculo, e um hexágono regular está circunscrito ao mesmo círculo. Quando se lança um

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES 1) Determine a probabilidade de cada evento: a) Um nº par aparece no lançamento de um dado; b) Uma figura

Leia mais

Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA

Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA Matemática 9.º ano PROBABILIDADES + ESTATÍSTICA 01. Num saco estão 10 bolas indistinguíveis ao tato, das quais 6 são azuis e 4 são verdes. Retiram-se, sucessivamente e sem reposição duas bolas. Determine

Leia mais

c) 17 b) 4 17 e) 17 21

c) 17 b) 4 17 e) 17 21 Probabilidade I Exercícios. Dois jogadores A e B vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, B é quem ganha. Os dados são lançados. Sabe-se

Leia mais

Mat1- Lista Probabilidade-2 série- 2013

Mat1- Lista Probabilidade-2 série- 2013 Mat1- Lista Probabilidade-2 série- 2013 1. (Unicamp simulado 2011) Uma empresa tem 5000 funcionários. Desses, 48% têm mais de 30 anos e 36% são especializados. Entre os especializados, 1400 têm mais de

Leia mais

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO 1. (Magalhães e Lima, pg 40) Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos: (a) Uma moeda é lançada duas vezes

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Exercícios de exames e testes intermédios 1. Seja Ω, conjunto finito, o espaço de resultados associado a uma certa experiência

Leia mais

REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO ALUNO(A): Nº: MATEMÁTICA

REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO ALUNO(A): Nº: MATEMÁTICA REDE ISAAC NEWTON ENSINO FUNDAMENTAL 2º ano PROFESSORA: LUCIANO VIEIRA / F LUCIANO DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul MATEMÁTICA 0. (UFRGS - VESTIBULAR 205) Escolhe-se

Leia mais

1) Uma moeda é lançada vezes. Qual a probabilidade de sair coroa nas quatro vezes?

1) Uma moeda é lançada vezes. Qual a probabilidade de sair coroa nas quatro vezes? COLÉGIO DE APLICAÇÃO DOM HÉLDER CÂMARA AVALIAÇÃO: EXERCÍCIOS COMPLEMENTARES III DATA: / / DISCIPLINA: MATEMÁTICA PROFESSOR(A): PAULO ARTUR SÁ TURMA: M SÉRIE: 2º ANO ALUNO(A) DATA PARA ENTREGA: / / ORIENTAÇÕES

Leia mais

1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com 25 círculos dos quais 5 são premiados.

1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com 25 círculos dos quais 5 são premiados. COLÉGIO SANTA MARIA Matemática I / II - Professor: Flávio Verdugo Ferreira Lista de exercícios: Probabilidades 1) Calcular a probabilidade de se obter 2 prêmios ao abrirem-se 2 círculos de uma mesa com

Leia mais

ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO

ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO ESCOLA BÁSICA DOS 2º E 3º CICLOS DE SANTO ANTÓNIO Teste 1 Matemática 9.º C Nome: n.º Data: 14/10/2016 Classificação: Professor: Instruções gerais Não é permitido o uso de corretor. É permitido a utilização

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Exercício 3. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 Um teste de múltipla escolha e composto de 12 questões, com 5 alternativas de resposta, sendo que somente uma, é correta. Qual a probabilidade de uma pessoa, marcando aleatoriamente

Leia mais

Módulo de Introdução à Probabilidade. O que é Probabilidade? 2 a série E.M.

Módulo de Introdução à Probabilidade. O que é Probabilidade? 2 a série E.M. Módulo de Introdução à Probabilidade O que é Probabilidade? a série E.M. Probabilidade O que é Probabilidade? 1 Exercícios Introdutórios Exercício 1. Qual a probabilidade de, aleatoriamente, escolhermos

Leia mais

Matemática. Alex Amaral (Allan Pinho) Probabilidade

Matemática. Alex Amaral (Allan Pinho) Probabilidade Probabilidade Probabilidade 1. Observe a figura que mostra um desses baralhos, no qual as cartas representadas pelas letras A, J, Q e K são denominadas, respectivamente, ás, valete, dama e rei. Uma criança

Leia mais

acaso e colocado sobre uma mesa. Se a cor exposta é vermelha, calcule a probabilidade de o cartão escolhido ter a outra cor também vermelha.

acaso e colocado sobre uma mesa. Se a cor exposta é vermelha, calcule a probabilidade de o cartão escolhido ter a outra cor também vermelha. 1. (Unicamp) Em Matemática, um número natural a é chamado palíndromo se seus algarismos, escritos em ordem inversa, produzem o mesmo número. Por exemplo, 8, 22 e 373 são palíndromos. Pergunta-se: a) Quantos

Leia mais

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Matemática Atividades para Estudos Autônomos Data: 5 / 6 / 2017 Aluno(a): N o : Turma: 1) (Ufes)

Leia mais

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três. 1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica

Leia mais

a) 6,0% b) 6,4% c) 7,2% d) 7,8% e) 8,0% a) 7. d) 14. total de lançamentos c) 15

a) 6,0% b) 6,4% c) 7,2% d) 7,8% e) 8,0% a) 7. d) 14. total de lançamentos c) 15 . (Ufsm 204) A tabela mostra o resultado de uma pesquisa sobre tipos sanguíneos em que foram testadas 600 pessoas. Qual é a probabilidade de uma pessoa escolhida ao acaso ter sangue do tipo A + ou A? 4.

Leia mais

Trabalho de Recuperação Final - 3 Ano - Ensino Médio

Trabalho de Recuperação Final - 3 Ano - Ensino Médio Trabalho de Recuperação Final - 3 Ano - Ensino Médio 1. (Fuvest) Considere o experimento que consiste no lançamento de um dado perfeito (todas as seis faces têm probabilidades iguais). Com relação a esse

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

Exercícios. 1. (Uerj 2017) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes:

Exercícios. 1. (Uerj 2017) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes: Probabilidade - Questões Extras Exercícios 1. (Uerj 01) Considere o conjunto de números naturais abaixo e os procedimentos subsequentes: A {0, 1,, 3, 4, 5, 6,, 8, 9} 1. Cada número primo de A foi multiplicado

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

QUESTÕES n = 100 Fonte: Toledo (1985) Determinar: a) Desvio quartil. b) Desvio médio. c) Desvio padrão.

QUESTÕES n = 100 Fonte: Toledo (1985) Determinar: a) Desvio quartil. b) Desvio médio. c) Desvio padrão. 1 MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DO PIAUÍ CENTRO DE EDUCAÇÃO ABERTA E A DISTÂNCIA CEAD/UFPI-UAB/CAPES CURSO DE LICENCIATURA EM COMPUTAÇÃO 2ª Atividade Probabilidade e Estatística QUESTÕES

Leia mais

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da

Leia mais

LISTA DE EXERCÍCIOS: PROBABILIDADE PROBLEMAS GERAIS Prof. Rogerinho

LISTA DE EXERCÍCIOS: PROBABILIDADE PROBLEMAS GERAIS Prof. Rogerinho LISTA DE EXERCÍCIOS: PROBABILIDADE PROBLEMAS GERAIS Prof. Rogerinho NOME: Nº: TURMA: 0. (Ufscar) Um espaço amostral é um conjunto cujos elementos representam todos os resultados possíveis de algum experimento.

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis

Leia mais

Projeto Jovem Nota 10 Análise Combinatória Lista 1 Professor Marco Costa

Projeto Jovem Nota 10 Análise Combinatória Lista 1 Professor Marco Costa 1 TEXTO PARA A PRÓXIMA QUESTÃO Projeto Jovem Nota 10 (Unirio 2002) Um grupo de 8 rapazes, dentre os quais 2 eram irmãos, decidiu acampar e levou duas barracas diferentes: uma com capacidade máxima de 3

Leia mais

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.

Leia mais

Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal

Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Probabilidade Tópicos Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Conjuntos Conjunto: Na matemática, um conjunto é uma coleção de elementos com características

Leia mais

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M. Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com

Leia mais

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Nome: Data: / / 1. Das seguintes experiências diz, justificando, quais são as aleatórias: 1.1. Deitar um berlinde num copo de água

Leia mais

ANÁLISE COMBINATÓRIA II E PROBABILIDADE

ANÁLISE COMBINATÓRIA II E PROBABILIDADE 1. (Fac. Albert Einstein - Medicina 2016) Suponha que nos Jogos Olímpicos de 2016 apenas um representante do Brasil faça parte do grupo de atletas que disputarão a final da prova de natação dos 100 metros

Leia mais

Unidade 5 Estatística e probabilidade

Unidade 5 Estatística e probabilidade Sugestões de atividades Unidade 5 Estatística e probabilidade 9 MATEMÁTICA 1 Matemática 1. (Enem) Um apostador tem três opções para participar de certa modalidade de jogo, que consiste no sorteio aleatório

Leia mais

12.º Ano de Escolaridade

12.º Ano de Escolaridade gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) (Dec.-Lei n.º 286/89, de 29 de Agosto, para alunos

Leia mais

CAIXA ECONOMICA FEDERAL. Prof. Sérgio Altenfelder

CAIXA ECONOMICA FEDERAL. Prof. Sérgio Altenfelder 14.) (ICMS-MG/05) Um empréstimo contraído no início de abril, no valor de R$ 15.000,00 deve ser pago em dezoito prestações mensais iguais, a uma taxa de juros compostos de 2% ao mês, vencendo a primeira

Leia mais

Matéria Exame 2 Colegial. Aula 1 Matrizes. Aula 2 Matrizes: Igualdade, adição e subtração. Aulas 3 e 4 Multiplicação de matrizes

Matéria Exame 2 Colegial. Aula 1 Matrizes. Aula 2 Matrizes: Igualdade, adição e subtração. Aulas 3 e 4 Multiplicação de matrizes Matéria Eame Colegial Aula Matries Aula Matries: Igualdade, adição e subtração Aulas e Multiplicação de matries Aulas 5 e 6 Determinantes: Ordens, e Aula 7 Sistemas Lineares Aulas 8 Sistemas Lineares:

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Coordenadoria de Matemática. Apostila de Probabilidade

Coordenadoria de Matemática. Apostila de Probabilidade Coordenadoria de Matemática Apostila de Probabilidade Vitória ES 1. INTRODUÇÃO CAPÍTULO 03 Quando investigamos algum fenômeno, verificamos a necessidade de descrevê-lo por um modelo matemático que permite

Leia mais

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3

Leia mais

RESUMO TEÓRICO AULA 03: NOÇÕES DE PROBABILIDADE 3.1. INTRODUÇÃO 3.2. ESPAÇO AMOSTRAL S DIAGRAMA DE ÁRVORE 3.3. EVENTO E. marcelorenato.

RESUMO TEÓRICO AULA 03: NOÇÕES DE PROBABILIDADE 3.1. INTRODUÇÃO 3.2. ESPAÇO AMOSTRAL S DIAGRAMA DE ÁRVORE 3.3. EVENTO E. marcelorenato. RESUMO TEÓRICO AULA 0: NOÇÕES DE ROBABILIDADE.. INTRODUÇÃO rofessor Marcelo Renato Há certos fenômenos ou experimentos que, emora sejam repetidos muitas vezes e so condições idênticas, não apresentam os

Leia mais

a) 3% b) 5% c) 7% d) 9% e) 12% 03. Uma população de pessoas acima de 60 anos de idade foi dividida nos seguintes dois grupos:

a) 3% b) 5% c) 7% d) 9% e) 12% 03. Uma população de pessoas acima de 60 anos de idade foi dividida nos seguintes dois grupos: REDE ISAA NEWTON ENSINO MÉDIO 2º ANO PROFESSOR: LUIANO VIEIRA DATA: / / TURMA: ALUNO(A): Nº: UNIDADE: ( ) Riacho Fundo ( ) Taguatinga Sul Matemática 01. Uma formiga, um rato e uma cobra atravessam um deserto.

Leia mais

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos Primeira Lista de Exercícios Introdução à probabilidade e à estatística Prof Patrícia Lusié Assunto: Probabilidade. 1. (Apostila 1 - ex.1.1) Lançam-se três moedas. Enumerar o espaço amostral e os eventos

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES

LEIA ATENTAMENTE AS INSTRUÇÕES Matemática e suas Tecnologias CÓDIGO DA PROVA / SIMULADO Aluno(a): POMA - Matemática Questões Professores: Neydiwan PC 0-0 - 4 ª Série º Bimestre - N 0 / 06 / 06 LEIA ATENTAMENTE AS INSTRUÇÕES Este caderno

Leia mais

Ficha de Avaliação. Matemática A. Duração do Teste: 90 minutos. 12.º Ano de Escolaridade. Teste de Matemática A 12.º Ano Página 1

Ficha de Avaliação. Matemática A. Duração do Teste: 90 minutos. 12.º Ano de Escolaridade. Teste de Matemática A 12.º Ano Página 1 Ficha de Avaliação Matemática A Duração do Teste: 90 minutos 12.º Ano de Escolaridade Teste de Matemática A 12.º Ano Página 1 1. Colocaram-se numa urna 12 bolas, indistinguíveis pelo tato, numeradas de

Leia mais

Exercícios de Aprofundamento Mat. Combinação e Probabilidade

Exercícios de Aprofundamento Mat. Combinação e Probabilidade 1. (Unifesp 2015) Um tabuleiro de xadrez possui 64 casas quadradas. Duas dessas casas formam uma dupla de casas contíguas se estão lado a lado, compartilhando exatamente um de seus lados. Veja dois exemplos

Leia mais

Parte II. votos D 34 A 66 P 63. D e A 17. D e P 22. A e P 50. D,A e P 10. Sem problemas

Parte II. votos D 34 A 66 P 63. D e A 17. D e P 22. A e P 50. D,A e P 10. Sem problemas Parte II 1) Numa pesquisa feita com todos os moradores de um prédio, constatou-se que mais de 45% são homens e que mais de 60% pintam o cabelo. Explique por que se pode concluir que, nesse prédio, há homens

Leia mais

NDMAT Núcleo de Desenvolvimentos Matemáticos

NDMAT Núcleo de Desenvolvimentos Matemáticos 01) Quantos trajetos diferentes podem ser percorridos, para ir de A até E, usando-se apenas os caminhos e sentidos indicados na figura abaixo? 05) (FGV) Um inspetor visita 6 máquinas diferentes durante

Leia mais

Projeto Jovem Nota 10 Permutação Lista 1 Professor Marco Costa 1. (Fgv 97) Um processo industrial deve passar pelas etapas A, B, C, D e E.

Projeto Jovem Nota 10 Permutação Lista 1 Professor Marco Costa 1. (Fgv 97) Um processo industrial deve passar pelas etapas A, B, C, D e E. 1 1. (Fgv 97) Um processo industrial deve passar pelas etapas A, B, C, D e E. a) Quantas seqüências de etapas podem ser delineadas se A e B devem ficar juntas no início do processo e A deve anteceder B?

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

Lista Extra:Probabilidade +10-Mat1-2 anos

Lista Extra:Probabilidade +10-Mat1-2 anos Lista Extra:Probabilidade +10-Mat1-2 anos 1. (Upe 2014) Dois atiradores, André e Bruno, disparam simultaneamente sobre um alvo. - A probabilidade de André acertar no alvo é de 80%. - A probabilidade de

Leia mais

1- INTRODUÇÃO 2. CONCEITOS BÁSICOS

1- INTRODUÇÃO 2. CONCEITOS BÁSICOS 1 1- INTRODUÇÃO O termo probabilidade é usado de modo muito amplo na conversação diária para sugerir um certo grau de incerteza sobre o que ocorreu no passado, o que ocorrerá no futuro ou o que está ocorrendo

Leia mais

Módulo de Fração como Porcentagem e Probabilidade. Fração como Probabilidade. 6 ano E.F.

Módulo de Fração como Porcentagem e Probabilidade. Fração como Probabilidade. 6 ano E.F. Módulo de Fração como Porcentagem e Probabilidade Fração como Probabilidade. 6 ano E.F. Fração como Porcentagem e Probabilidade Fração como Probabilidade. 1 Exercícios Introdutórios Exercício 1. Um dado

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Aula 3 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS

LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS Universidade Federal de Ouro Preto Instituto de Ciências Exatas e Biológicas Departamento de Matemática MTM 5 Estatística Turma 22 Professor: Rodrigo Luiz Pereira Lara LISTA DE EXERCÍCIOS 2 VARIÁVEIS ALEATÓRIAS

Leia mais

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos)

ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) 1 ADAPTAÇÃO PEGA VARETAS (Números Inteiros Negativos) Objetivos Introduzir o conceito de números inteiros negativos; Desenvolvimento O professor confeccionará o jogo com os alunos ou distribuirá os jogos

Leia mais

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho

Contagem e Probabilidade Exercícios Adicionais. Paulo Cezar Pinto Carvalho Contagem e Probabilidade Exercícios Adicionais Paulo Cezar Pinto Carvalho Exercícios Adicionais Contagem e Probabilidade Para os alunos dos Grupos 1 e 2 1. Um grupo de 4 alunos (Alice, Bernardo, Carolina

Leia mais

a) 20 b) 16 c) 12 d) 10 e) 4

a) 20 b) 16 c) 12 d) 10 e) 4 Uma loja vende barras de chocolate de diversos sabores. Em uma promoção, era possível comprar três barras de chocolate com desconto, desde que estas fossem dos sabores ao leite, amargo, branco ou com amêndoas,

Leia mais

3 + i na forma trigonométrica. Um casal deseja ter quatro filhos. Qual a probabilidade de serem todos do mesmo sexo?

3 + i na forma trigonométrica. Um casal deseja ter quatro filhos. Qual a probabilidade de serem todos do mesmo sexo? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - ª SERIE - ENSINO MÉDIO - 3ª ETAPA ============================================================================================== 0- Assunto: Análise Combinatória

Leia mais

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais Prof. Hemílio Fernandes Depto. de Estatística - UFPB Um pouco de Probabilidade Experimento Aleatório: procedimento que, ao ser repetido

Leia mais

Probabilidade e Estatística Preparação para P1

Probabilidade e Estatística Preparação para P1 robabilidade e Estatística reparação para rof.: Duarte ) Uma TV que valia R$ 00,00, entrou em promoção e sofreu uma redução de 0% em seu preço. Qual é o novo preço da TV? ) Um produto foi vendido por R$

Leia mais

2 Conceitos Básicos de Probabilidade

2 Conceitos Básicos de Probabilidade CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como

Leia mais

2.º Teste de Matemática A. 12.º Ano 7 Dez ª Parte. Entrada

2.º Teste de Matemática A. 12.º Ano 7 Dez ª Parte. Entrada 2.º Teste de Matemática A.º Ano 7 Dez. 20 1.ª Parte Para cada uma das cinco questões desta primeira parte, seleccione a resposta correcta de entre as quatro alternativas que são apresentadas e escreva

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

Conjuntos. Parte I. Página 1. mdc x,y = 33;

Conjuntos. Parte I.  Página 1. mdc x,y = 33; Parte I Conjuntos 1. (Ufsj 2013) O diagrama que representa o conjunto ( A B) C ( C B) A é a) b) c) d) 2. (Cefet MG 2013) Em uma enquete realizada com pessoas de idade superior a 30 anos, pesquisou-se as

Leia mais

Exercícios de Matemática Probabilidade

Exercícios de Matemática Probabilidade Exercícios de Matemática Probabilidade TEXTO PARA AS PRÓXIMAS 2 QUESTÕES. (Enem) Um apostador tem três opções para participar de certa modalidade de jogo, que consiste no sorteio aleatório de um número

Leia mais

Questões MATEMÁTICA / PROFESSOR: RONILTON LOYOLA O1. Os anos bissextos têm, ao contrário dos outros anos, 366 dias. Esse dia a mais é colocado sempre no final do mês de fevereiro, que, nesses casos, passa

Leia mais

UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática

UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática 1 a Lista de Exercícios de Probabilidade e Estatística 1.

Leia mais

Análise Combinatória Intermediário

Análise Combinatória Intermediário Análise Combinatória Intermediário 1. (AFA) As senhas de acesso a um determinado arquivo de um microcomputador de uma empresa deverão ser formadas apenas por 6 dígitos pares, não nulos. Sr. José, um dos

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

Matemática E Extensivo V. 5

Matemática E Extensivo V. 5 Extensivo V Exercícios 0) a) / b) / c) / a) N(E) N(A), logo P(A) b) N(E) N(A), logo P(A) c) N(E) N(A), logo P(A) 0) a) 0 b) / % c) 9/0 90% d) /0 % 0) E a) N(E) 0 + + + 0 b) N(E) 0 N(A), logo P(A) 0, %

Leia mais

Questão 01 - (FGV /2015)

Questão 01 - (FGV /2015) SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: ª Série

Leia mais

12.º Ano de Escolaridade

12.º Ano de Escolaridade gabinete de avaliação educacional T E S T E I N T E R M É D I O D E M A T E M Á T I C A 12.º Ano de Escolaridade (Decreto-Lei n.º 286/89, de 29 de Agosto) (Dec.-Lei n.º 286/89, de 29 de Agosto, para alunos

Leia mais

ESTATÍSTICA EXPLORATÓRIA

ESTATÍSTICA EXPLORATÓRIA ESTATÍSTICA EXPLORATÓRIA Prof Paulo Renato A. Firmino praf62@gmail.com Aulas 07-08 Probabilidade Apanhado Geral Seguimos nossas discussões sobre a Incerteza Decidir usualmente envolve incerteza Uma presa

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: PARTE 1 - TRABALHO 4º BIMESTRE 3 9 =

LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: PARTE 1 - TRABALHO 4º BIMESTRE 3 9 = LISTA DE EXERCÍCIOS FUNÇÃO EXPONENCIAL - LOGARITMO PROFESSOR: Claudio Saldan CONTATO: saldan.mat@gmail.com PARTE - TRABALHO 4º BIMESTRE - (UEPG PR) + Dada a função f () =, assinale o que for correto. 0.

Leia mais

Lista de Exercícios de Probabilidades

Lista de Exercícios de Probabilidades Lista de Exercícios de Probabilidades Joel M. Corrêa da Rosa 2011 1. Lançam-se três moedas. Enumere o espaço amostral e os eventos : Ω = {(c, c, c); (k, k, k); (c, k, k); (k, c, k); (k, k, c); (k, c, c);

Leia mais

MATRIZ FORMAÇÃO E IGUALDADE

MATRIZ FORMAÇÃO E IGUALDADE MATRIZ FORMAÇÃO E IGUALDADE 1. Seja X = (x ij ) uma matriz quadrada de ordem 2, onde i + j para i = j ;1 - j para i > j e 1 se i < j. A soma dos seus elementos é igual a: a. -1 b. 1 c. 6 d. 7 e. 8 2. Se

Leia mais

02. No intervalo [0, 1], a variação de f é maior que a variação de h.

02. No intervalo [0, 1], a variação de f é maior que a variação de h. LISTA DE EXERCÍCIOS FUNÇÕES: CONCEITOS INICIAIS PROFESSOR: Claudio Saldan CONTATO: saldanmat@gmailcom 0 - (UEPG PR) Sobre o gráfico abaio, que representa uma função = f() definida em R, assinale o que

Leia mais

Ministério da Educação. Nome:... Número:

Ministério da Educação. Nome:... Número: Ministério da Educação Nome:...... Número: Unidade Lectiva de: Introdução às Probabilidades e Estatística Ano Lectivo de 2003/2004 Código1334 Teste Formativo Nº 2 1. Considere que na selecção de trabalhadores

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web MATEMÁTICA XXVII ENEM. (Enem 202) Certo vendedor tem seu salário mensal calculado da seguinte maneira: ele ganha um valor fixo de R$750,00, mais uma comissão de R$3,00 para cada produto vendido. Caso ele

Leia mais

ESTATÍSTICA Parte II

ESTATÍSTICA Parte II ESTATÍSTICA Parte II PARA OS CURSOS TÉCNICOS Material Didático Elaborado por: Alessandro da Silva Saadi MESTRE EM MATEMÁTICA 1 Capítulo 1 Escola Técnica Estadual Getúlio Vargas ESTATÍSTICA II Prof. Me.

Leia mais

Curso de linguagem matemática Professor Renato Tião

Curso de linguagem matemática Professor Renato Tião 1. Num estacionamento estão estacionados exatamente quatro carros cujas chaves ficam guardadas numa caixa na guarita do estacionamento. O manobrista do estacionamento não se lembra de qual é a chave de

Leia mais