Probabilidade e Estatística

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Probabilidade e Estatística"

Transcrição

1 Aula 3 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3

2 1.1 Por que estudar Probabilidade e Estatística? A Estatística é empregada como ferramenta fundamental em várias áreas, tais como: na área médica - metodologia adequada que possibilita decidir sobre a eficiência de um novo tratamento; na indústria - controle de qualidade de produto e processo; na pesquisa de mercado e de opinião pública - definição de novos produtos, lançamentos, vendas, etc; em computação - estudo do desempenho de sistemas, algoritmos para aumentar a eficiência, etc; na definição de indicadores econômicos e sociais; meteorologia, ecologia, biologia, entre outras. 4

3 Grande parte das informações divulgadas pelos meios de comunicação provém de pesquisas e estudos estatísticos: "a inflação esse mês foi..." 5 "a taxa de desemprego no Brasil no ano de " "o candidato A tem 32% da intenção de votos, o candidato B tem 41% e 27% dos entrevistados não souberam ou não quiseram responder" "o número de carros vendidos no país aumentou em 20%" " a altura média da população aumentou em 5% " "o time A teve 60% do tempo de posse de bola,..."

4 6 Pode também ajudar a responder perguntas do nosso dia a dia, como por exemplo:

5 Pode também ajudar a responder perguntas do nosso dia a dia, como por exemplo: Será que se jogarmos sempre no mesmo número na Mega Sena teremos uma possibilidade maior de ganhar? 7

6 Pode também ajudar a responder perguntas do nosso dia a dia, como por exemplo: Será que se jogarmos sempre no mesmo número na Mega Sena teremos uma possibilidade maior de ganhar? Se em um teste com várias perguntas onde teremos que responder "falso" ou "verdadeiro", dá para saber se teremos uma probabilidade de acertar um número maior de respostas se "chutarmos" sempre a mesma resposta? ou seria melhor alternarmos as respostas? 8

7 Para modelar e/ou avaliar o sistema a ser estudado é preciso coletar dados e/ou fazer algumas suposições: Caso 1: Sistema já existe e deseja-se coletar dados para seu estudo/modelagem. Caso 2: Sistema não existe e deseja-se criar um modelo para prever o seu desempenho. 9

8 Sobre a obtenção dos dados para estudo/modelagem do sistema: 10

9 Sobre a obtenção dos dados para estudo/modelagem do sistema: Por quanto tempo deve-se coletar os dados? Pode-se usar os dados coletados durante um certo período (amostra), para concluir sobre o comportamento do sistema? Como definir o período no qual deve-se coletar os dados (24h, somente pela manhã, no horário de maior uso do sistema)? Se o sistema não existe, como obter os dados para criar o modelo? 11

10 ii) O que fazer com os dados colhidos? Como organizar esses dados? Como extrair informações de interesse? Como fazer para que os dados obtidos para esse período de tempo possam ser generalizados para obtermos infomações sobre o sistema? 12

11 13 Ou seja, para colher os dados, organizá-los e analisá-los necessitamos de técnicas conhecidas, que nos permitam responder a essas questões com segurança e objetividade.

12 Ou seja, para colher os dados, organizá-los e analisá-los necessitamos de técnicas conhecidas, que nos permitam responder a essas questões com segurança e objetividade. Estas técnicas são: Estatística Probabilidade Inferência estatística 14

13 Estatística: conjunto de técnicas destinadas a descrever, organizar e resumir os dados a fim de que possamos tirar conclusões de características de interesse. 15

14 Estatística: conjunto de técnicas destinadas a descrever, organizar e resumir os dados a fim de que possamos tirar conclusões de características de interesse. Probabilidade: teoria utilizada para estudar a "incerteza" dos fenômenos de caráter "aleatório". Pode-se dizer que é a teoria utilizada para quantificar o acaso. 16

15 Estatística: conjunto de técnicas destinadas a descrever, organizar e resumir os dados a fim de que possamos tirar conclusões de características de interesse. Probabilidade: teoria utilizada para estudar a "incerteza" dos fenômenos de caráter "aleatório". Pode-se dizer que é a teoria utilizada para quantificar o acaso. Inferência estatística: estudo de técnicas que possibilitam a análise e interpretação de dados com objetivo de generalizar e prever resultados. 17

16 1.3 População e amostra A população é o conjunto de todos os dados que que temos interesse. 18

17 1.3 População e amostra A população é o conjunto de todos os dados que que temos interesse. Exemplos: i) Se o objeto de estudo for uma aplicação P2P, como por exemplo o BitTorrent. O que é a população? 19

18 1.3 População e amostra A população é o conjunto de todos os dados que que temos interesse. Exemplos: i) Se o objeto de estudo for uma aplicação P2P, como por exemplo o BitTorrent. O que é a população? ii) Se o objeto de estudo for a confiabilidade de um produto de uma certa fábrica durante um período de tempo, por exemplo, a durabilidade das lâmpadas produzidas durante o ano de 2004, a população será composta por todas as lâmpadas produzidas pela fábrica em questão no ano de

19 População pode ser finita ou infinita 21

20 População pode ser finita ou infinita Em determindas situações há impossibilidade de se analisar toda população, ou por razões econômicas, ou pela população ser infinita. 22

21 Um exemplo: Sabemos que uma aplicação é usada por milhões de pessoas, por exemplo o Skype, e queremos avaliar quantos pacotes de voz, em média, são perdidos prejudicando a qualidade da comunicação: 23

22 Um exemplo: Sabemos que uma aplicação é usada por milhões de pessoas, por exemplo o Skype, e queremos avaliar quantos pacotes de voz, em média, são perdidos prejudicando a qualidade da comunicação: População - todos os pacotes de voz transmitidos pela aplicação Amostra - parcela dos pacotes coletados Como escolher? 24

23 Amostra subconjunto da população a ser estudado o mais parecido possível com a população que lhe deu origem 25

24 Amostra subconjunto da população a ser estudado o mais parecido possível com a população que lhe deu origem Análise: feita na população total ou em uma amostra 26

25 Amostra subconjunto da população a ser estudado o mais parecido possível com a população que lhe deu origem Análise: feita na população total ou em uma amostra população amostra A1? A2? 27

26 Amostra subconjunto da população a ser estudado o mais parecido possível com a população que lhe deu origem Análise: feita na população total ou em uma amostra população amostra A1 28

27 Teoria de Probabilidade: Conceitos Básicos Fenômeno Aleatório Situação ou acontecimento cujos resultados não podem ser previstos com certeza. 29

28 Teoria de Probabilidade: Conceitos Básicos Fenômeno Aleatório Situação ou acontecimento cujos resultados não podem ser previstos com certeza. Exemplos: O resultado do lançamento de um dado. O clima num determinado dia da semana que vem. A média final que você tirará nesta disciplina. 30

29 Espaço amostral O conjunto de todos os resultados possíveis de um certo fenômeno aleatório. Denominaremos este espaço pela letra grega Ω (Ômega). 31

30 Espaço amostral O conjunto de todos os resultados possíveis de um certo fenômeno aleatório. Denominaremos este espaço pela letra grega Ω (Ômega). Os subconjuntos do espaço amostral são chamados de eventos e são representados por letras maiúsculas (A, B, C,...). 32

31 Exemplos: Uma moeda é lançada duas vezes e observam-se as faces obtidas Ω = {CC,CR,RC,RR}, onde aqui C é cara e R coroa. 33

32 Exemplos: Uma moeda é lançada duas vezes e observam-se as faces obtidas Ω = {CC,CR,RC,RR}, onde aqui C é cara e R coroa. Uma moeda é lançada consecutivamente até o aparecimento da primeira cara Ω = {C,RC,RRC,RRRC,...}, que contém um número infinito de elementos. 34

33 Lembrando da Teoria dos Conjuntos: O conjunto vazio é denotado por A união de dois eventos A e B representa a ocorrência de, pelo menos, um dos eventos A ou B. Denotamos a união de A com B por A intersecção do evento A com B é a ocorrência simultânea de A e B. Denotamos a intersecção de A com B por. 35

34 Exemplo Sejam A, B e C três eventos do espaço amostral Ω : A C B Ω = {A,B,C} Pelo menos um dos eventos ocorre A C B 36

35 Exemplo Sejam A, B e C três eventos do espaço amostral Ω : A C B Ω = {A,B,C} Ambos os eventos ocorrem A B C 37

36 Dois eventos A e B são disjuntos (ou mutuamente exclusivos) quando não têm elementos em comum, ou seja: Dois eventos A e B são complementares se sua união é o espaço amostral e sua intersecção é vazia, ou seja: 38

37 Exemplo: A B C A e C: eventos disjuntos A B C A c complementar de A A A c 39

38 Outros exemplos Pelo menos um dos eventos ocorre O evento A ocorre mas o evento B não Nenhum deles ocorre 40

39 4.3 Probabilidade Uma função P(.) é denominada probabilidade se satisfaz as condições:,com todos os disjuntos. ou seja, probabilidade é a função que atribui valores numéricos aos eventos do espaço amostral. 41

40 Questão que se coloca: como atribuir probabilidade aos elementos do espaço amostral? 42

41 Questão que se coloca: como atribuir probabilidade aos elementos do espaço amostral? 1) Baseado nas características da realização de um fenômeno; 2) Usando as freqüências de ocorrência. 43

42 Baseado nas características da realização de um fenômeno Exemplo: Lançamento de um dado cúbico perfeitamente homogêneo e simétrico com os lados numerados, teremos o espaço amostral: E nesse caso a probabilidade de ocorrência de cada evento será: 44

43 Usando as freqüências de ocorrência Exemplo: Pegamos um dado e jogamos várias vezes. Para um número suficientemente grande de lançamentos, podemos usar as freqüências de ocorrência como probabilidades. Mas... 45

44 O que quer dizer número suficientemente grande de lançamentos? Geralmente a medida que o número de repetições aumenta, as freqüências relativas vão se estabilizando em um número que chamaremos de probabilidade. 46

45 Exemplo: Usemos a tabela abaixo que mostra o número de alunos de cada sexo numa escola: Sexo F M Total n f 37 0, , Sabendo que 52% dos alunos estão na turma A e 48% na turma B, escolhemos um estudante ao acaso. Qual a probabilidade de escolhermos um estudante do sexo feminino ou alguém da turma B? 47

46 Tabela Da tabela e das características das turmas A e B temos P(F) = 0,74; P(A) = 0,52; P(M) = 0,26; P(B) = 0,48. 48

47 Pergunta colocada: "Qual a probabilidade de escolhermos um estudante do sexo feminino ou alguém da turma B?" P(F) = 0,74; P(A) = 0,52; P(M) = 0,26; P(B) = 0,48. Queremos Não podemos simplesmente somar P(F) com P(B) já que teríamos probabilidade maior que 1. Estamos somando duas vezes alguns elementos pois há mulheres em ambas as turmas 49

48 Temos que é igual ao número de estudantes do sexo feminino e da turma B. Assim, para obter a probabilidade correta temos que somar as probabilidades P(F) com P(B) e, então subtrair deste valor ou seja, 50

49 Para o caso geral, temos que a regra da adição de probabilidades, a probabilidade da união de dois eventos A e B, é dada por observe que se os eventos A e B forem disjuntos (e somente neste caso),a probabilidade da intersecção de A com B é nula e temos que a união é igual a soma das probabilidades dos dois eventos. Esta regra pode ser estendida para soma de três ou mais termos. 51

50 Observe que e que 52

51 Observe que e que Logo, 53

52 Como calcular as freqüências de ocorrência: Contando o número de casos favoráveis para ocorrência de um certo evento, se os eventos são equiprováveis Quando o espaço amostral é grande, temos que usar a análise combinatória P(E) = número de casos favoráveis/número total de casos 54

Conteúdo: Aula 2. Probabilidade e Estatística. Professora: Rosa M. M. Leão

Conteúdo: Aula 2. Probabilidade e Estatística. Professora: Rosa M. M. Leão Aula 2 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos Mutuamente

Leia mais

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

Prof.: Joni Fusinato

Prof.: Joni Fusinato Introdução a Teoria da Probabilidade Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais Prof. Hemílio Fernandes Depto. de Estatística - UFPB Um pouco de Probabilidade Experimento Aleatório: procedimento que, ao ser repetido

Leia mais

Aula 07. Modelos Probabilísticos. Stela Adami Vayego - DEST/UFPR 1

Aula 07. Modelos Probabilísticos. Stela Adami Vayego - DEST/UFPR 1 ula 07 Modelos Probabilísticos Stela dami Vayego - DEST/UFPR 1 Probabilidade Universo do estudo (população) Hipóteses, conjeturas,... Modelos Probabilísticos Distribuições de Frequências Resultados ou

Leia mais

ESTATÍSTICA EXPLORATÓRIA

ESTATÍSTICA EXPLORATÓRIA ESTATÍSTICA EXPLORATÓRIA Prof Paulo Renato A. Firmino praf62@gmail.com Aulas 07-08 Probabilidade Apanhado Geral Seguimos nossas discussões sobre a Incerteza Decidir usualmente envolve incerteza Uma presa

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades 08/06/07 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

Probabilidades. Carla Henriques e Nuno Bastos. Eng. do Ambiente. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Probabilidades. Carla Henriques e Nuno Bastos. Eng. do Ambiente. Departamento de Matemática Escola Superior de Tecnologia de Viseu Probabilidades Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Eng. do Ambiente Introdução Ao comprar acções, um investidor sabe que o ganho que vai obter

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

Prof.Letícia Garcia Polac. 26 de setembro de 2017

Prof.Letícia Garcia Polac. 26 de setembro de 2017 Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para

Leia mais

Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise

Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Você reconhece algum desses experimentos? Alguns

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES15

INTRODUÇÃO ÀS PROBABILIDADES15 INTRODUÇÃO ÀS PROBABILIDADES15 Vanderlei S. Bagnato 15.1 Introdução 15.2 Definição de Probabilidade 15.3 Adição de probabilidade 15.4 Multiplicação de probabilidades Referências Licenciatura em Ciências

Leia mais

1 Definição Clássica de Probabilidade

1 Definição Clássica de Probabilidade Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica

Leia mais

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Revisando - Análise combinatória

Leia mais

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Revisando - Análise combinatória

Leia mais

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES 0 1 INTRODUÇÃO A teoria das probabilidades é utilizada para determinar as chances de um experimento aleatório acontecer. 1.1

Leia mais

2 Conceitos Básicos de Probabilidade

2 Conceitos Básicos de Probabilidade CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas

Leia mais

TEORIA DA PROBABILIDADE

TEORIA DA PROBABILIDADE TEORIA DA PROBABILIDADE Lucas Santana da Cunha lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 22 de maio de 2017 Introdução Conceitos probabiĺısticos são necessários

Leia mais

Prof. Herivelto Tiago Marcondes dos Santos

Prof. Herivelto Tiago Marcondes dos Santos PROBABILIDADES Algumas ocorrências de nosso cotidiano de certos fenômenos naturais não podem ser previstos antecipadamente. Há nessas ocorrências o interesse em estudar a intensidade de chuvas em uma determinada

Leia mais

Matemática & Raciocínio Lógico

Matemática & Raciocínio Lógico Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur PROBABILIDADE No estudo das probabilidades estamos interessados em estudar o experimento

Leia mais

Teoria da Probabilidade

Teoria da Probabilidade Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos

Leia mais

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

Conceitos básicos de teoria da probabilidade

Conceitos básicos de teoria da probabilidade Conceitos básicos de teoria da probabilidade Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de

Leia mais

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO 1. (Magalhães e Lima, pg 40) Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos: (a) Uma moeda é lançada duas vezes

Leia mais

Sumário. 2 Índice Remissivo 12

Sumário. 2 Índice Remissivo 12 i Sumário 1 Definições Básicas 1 1.1 Fundamentos de Probabilidade............................. 1 1.2 Noções de Probabilidade................................ 3 1.3 Espaços Amostrais Finitos...............................

Leia mais

Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa

Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa Estatística Disciplina de Estatística 20/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa Estatística Inferencial Estudos das Probabilidades (noção básica) Amostragens e Distribuição

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística Probabilidade Disciplina: Cálculo das Probabilidades e Estatística I Prof. Tarciana Liberal Existem muitas situações que envolvem incertezas:

Leia mais

AULA 08 Probabilidade

AULA 08 Probabilidade Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

1 Definição de Probabilidade 2 Principais Teoremas 3 Probabilidades dos Espaços Amostrais 4 Espaços Amostrais Equiprováveis. Francisco Cysneiros

1 Definição de Probabilidade 2 Principais Teoremas 3 Probabilidades dos Espaços Amostrais 4 Espaços Amostrais Equiprováveis. Francisco Cysneiros Probabilidade 1 Definição de Probabilidade 2 Principais Teoremas 3 Probabilidades dos Espaços Amostrais 4 Espaços Amostrais Equiprováveis Francisco Cysneiros Introdução 1 - Conceito Clássico Se uma experiência

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 2 08/11 1 / 25

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 2 08/11 1 / 25 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 2 08/11 1 / 25 Prof. Tarciana Liberal (UFPB) Aula 2 08/11 2 / 25 Para apresentar os conceitos

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Espaço Amostral, Eventos, Álgebra de eventos Aula de hoje Probabilidade Análise Combinatória Independência Probabilidade Experimentos

Leia mais

* Acontecimento elementar: é formado por um só elemento do conjunto de. * Acontecimento composto: é formado por dois ou mais elementos do conjunto

* Acontecimento elementar: é formado por um só elemento do conjunto de. * Acontecimento composto: é formado por dois ou mais elementos do conjunto PROBABILIDADE A linguagem das probabilidades Quando lidamos com probabilidade, as experiências podem ser consideradas: Aleatórias ou casuais: quando é impossível calcular o resultado à partida. Como exemplo

Leia mais

Conceitos de Probabilidade

Conceitos de Probabilidade 1/1 Introdução à Bioestatística Conceitos de Probabilidade Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/1 Tipos de Fenômenos 1. Aleatório: Situação ou acontecimentos

Leia mais

Disciplina: Prof. a Dr. a Simone Daniela Sartorio. DTAiSeR-Ar

Disciplina: Prof. a Dr. a Simone Daniela Sartorio. DTAiSeR-Ar Disciplina: 221171 Probabilidade Prof. a Dr. a Simone Daniela Sartorio DTAiSeR-Ar 1 Revisão de conceitos Você sabe contar? 2 a) Quantos números de 2 algarismos distintos podem ser formados usando-se os

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

Parte 3 Probabilidade

Parte 3 Probabilidade Parte 3 Probabilidade A probabilidade tem origem no século XVII, motivada, inicialmente, pelos jogos de azar. De maneira bastante informal, refere-se à probabilidade como uma medida de chance de algum

Leia mais

Aula 16 - Erivaldo. Probabilidade

Aula 16 - Erivaldo. Probabilidade Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar

Leia mais

Princípios de Bioestatística Conceitos de Probabilidade

Princípios de Bioestatística Conceitos de Probabilidade 1/37 Princípios de Bioestatística Conceitos de Probabilidade Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/37 Tipos de Fenômenos 1. Aleatório: Situação ou

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução Exercícios de exames e testes intermédios 1. Como P (B) = 1 P ( B ) = P (B) P (A B) vem que P (B) = 1 0,7

Leia mais

Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr.

Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. 1 Ciclo 3 Encontro 2 PROBABILIDADE Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Probabilidade 2 Texto: Módulo Introdução à Probabilidade O que é probabilidade? parte 1 de Fabrício Siqueira

Leia mais

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

Definição de Probabilidade

Definição de Probabilidade INTRODUÇÃO A TEORIA DAS PROBABILIDADES A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

Probabilidades- Teoria Elementar

Probabilidades- Teoria Elementar Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

Probabilidade e Estatística Probabilidade Condicional

Probabilidade e Estatística Probabilidade Condicional Introdução Probabilidade e Estatística Probabilidade Condicional Em algumas situações, a probabilidade de ocorrência de um certo evento pode ser afetada se tivermos alguma informação sobre a ocorrência

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 13 a Lista de Exercícios Práticos Conceitos Básicos de Probabilidade 1) Considere um experimento que consiste em

Leia mais

Probabilidades 1. Motivação; 2. Conceitos importantes; 3. Definições de probabilidades; 4. Probabilidade Condicional; 5. Independência de eventos; 6.

Probabilidades 1. Motivação; 2. Conceitos importantes; 3. Definições de probabilidades; 4. Probabilidade Condicional; 5. Independência de eventos; 6. Probabilidades 1. Motivação; 2. Conceitos importantes; 3. Definições de probabilidades; 4. Probabilidade Condicional; 5. ndependência de eventos; 6. Regra da probabilidade total. Probabilidades Probabilidades

Leia mais

14/03/2014. Tratamento de Incertezas TIC Aula 1. Conteúdo Espaços Amostrais e Probabilidade. Revisão de conjuntos. Modelos Probabilísticos

14/03/2014. Tratamento de Incertezas TIC Aula 1. Conteúdo Espaços Amostrais e Probabilidade. Revisão de conjuntos. Modelos Probabilísticos Tratamento de Incertezas TIC-00.176 Aula 1 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176

Leia mais

PEDRO A. BARBETTA Estatística Aplicada às Ciências Sociais 6ed. Editora da UFSC, 2006.

PEDRO A. BARBETTA Estatística Aplicada às Ciências Sociais 6ed. Editora da UFSC, 2006. Como usar modelos de probabilidade para entender melhor os fenômenos aleatórios Capítulos 7 e 8. Estatística Aplicada às Ciências Sociais Sexta Edição Pedro Alberto Barbetta Florianópolis: Editora da UFSC,

Leia mais

Aula 10 - Erivaldo. Probabilidade

Aula 10 - Erivaldo. Probabilidade Aula 10 - Erivaldo Probabilidade Experimento determinístico Dizemos que um experimento é determinístico quando repetido em condições semelhantes conduz a resultados idênticos. Experimento aleatório Dizemos

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

BIOESTATISTICA. Unidade IV - Probabilidades

BIOESTATISTICA. Unidade IV - Probabilidades BIOESTATISTICA Unidade IV - Probabilidades 0 PROBABILIDADE E DISTRIBUIÇÃO DE FREQUÊNCIAS COMO ESTIMATIVA DA PROBABILIDADE Noções de Probabilidade Após realizar a descrição dos eventos utilizando gráficos,

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

Sequências Generalizando um pouco, podemos então dizer que sequências de elementos são grupos com elementos obedecendo a determinada ordem. Obteremos uma sequência diferente quando se altera a ordem. No

Leia mais

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ ESTATÍSTICA II Nota de aula 1 Prof. MSc. Herivelto T Marcondes dos Santos Fevereiro /2009 1 Modelos de probabilidade 1.1 Variável aleatória Definição: Sejam ε um

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

Ministério da Educação. Nome:... Número:

Ministério da Educação. Nome:... Número: Ministério da Educação Nome:...... Número: Unidade Lectiva de: Introdução às Probabilidades e Estatística Ano Lectivo de 2003/2004 Código1334 Teste Formativo Nº 2 1. Considere que na selecção de trabalhadores

Leia mais

Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução

Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

Prof. Janete Pereira Amador 1. 1 Introdução

Prof. Janete Pereira Amador 1. 1 Introdução Prof. Janete Pereira Amador 1 1 Introdução A ciência manteve-se até pouco tempo atrás, firmemente apegada à lei da causa e efeito. Quando o efeito esperado não se concretizava, atribuía-se o fato ou a

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

CAPÍTULO 3 PROBABILIDADE

CAPÍTULO 3 PROBABILIDADE CAPÍTULO 3 PROBABILIDADE 1. Conceitos 1.1 Experimento determinístico Um experimento se diz determinístico quando repetido em mesmas condições conduz a resultados idênticos. Exemplo 1: De uma urna que contém

Leia mais

Aulão - Estatística Ministério da Fazenda Professor: Ronilton Loyola 1. Conceito de Estatística É uma técnica científica, uma metodologia adotada para se trabalhar com dados, com elementos de pesquisa.

Leia mais

Abertura Ver ângulo. Abreviar Significa valer-se de métodos que facilitem as operações. Exemplos: 1) = ( ) + 25 = = 125

Abertura Ver ângulo. Abreviar Significa valer-se de métodos que facilitem as operações. Exemplos: 1) = ( ) + 25 = = 125 A Abertura Ver ângulo. Abreviar Significa valer-se de métodos que facilitem as operações. Exemplos: 1) 24 + 25 + 76 = (24 + 76) + 25 = 100 + 25 = 125 2) 192 + 65 = (200 8) + 65 = 200 + 65 8 = 200 + 57

Leia mais

Estatística Básica. Probabilidade. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais

Estatística Básica. Probabilidade. Renato Dourado Maia. Instituto de Ciências Agrárias. Universidade Federal de Minas Gerais Estatística Básica Probabilidade Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Probabilidade Condicional Dados dois eventos A e B, a probabilidade condicional

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos Primeira Lista de Exercícios Introdução à probabilidade e à estatística Prof Patrícia Lusié Assunto: Probabilidade. 1. (Apostila 1 - ex.1.1) Lançam-se três moedas. Enumerar o espaço amostral e os eventos

Leia mais

2 a Lista de PE Solução

2 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 2 a Lista de PE Solução 1. a Ω {(d 1, d 2, m : d 1, d 2 {1,..., 6}, m {C, K}}, onde C coroa e K cara. b Ω {0, 1, 2,...} c Ω {(c 1, c 2, c 3, c 4 : c

Leia mais

UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática

UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática 1 a Lista de Exercícios de Probabilidade e Estatística 1.

Leia mais

Modelos de Probabilidade e Inferência Estatística

Modelos de Probabilidade e Inferência Estatística Modelos de Probabilidade e Inferência Estatística Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 2 03/14 1 / 31 Prof. Tarciana Liberal (UFPB) Aula 2 03/14

Leia mais

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1 Probabilidade ESQUEMA DO CAPÍTULO 2.1 ESPAÇOS AMOSTRAIS E EVENTOS 2.2 INTERPRETAÇÕES DE PROBABILIADE 2.3 REGRAS DE ADIÇÃO 2.4 PROBABILIDADE CONDICIONAL 2.5 REGRAS DA MULTIPLICAÇÃO E DA PROBABILIDADE TOTAL

Leia mais

Aula - Introdução a Teoria da Probabilidade

Aula - Introdução a Teoria da Probabilidade Introdução a Teoria da Probabilidade Prof. Magnos Martinello Aula - Introdução a Teoria da Probabilidade Universidade Federal do Espírito Santo - UFES Departamento de Informática - DI 5 de dezembro de

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 Probabilidade As definições de probabilidade apresentadas anteriormente podem

Leia mais

Elementos de Estatística. Michel H. Montoril Departamento de Estatística - UFJF

Elementos de Estatística. Michel H. Montoril Departamento de Estatística - UFJF Elementos de Estatística Michel H. Montoril Departamento de Estatística - UFJF O que é a estatística? Para muitos, a estatística não passa de conjuntos de tabelas de dados numéricos. Os estatísticos são

Leia mais

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

ESTATÍSTICA APLICADA A ENGENHARIA CIVIL

ESTATÍSTICA APLICADA A ENGENHARIA CIVIL ESTATÍSTICA APLICADA A ENGENHARIA CIVIL Prof. Rafael de Araujo da Silva OBJETIVO Objetivo principal da disciplina é a disseminação de conhecimento estatísticos. Os alunos serão instruídos na aplicação

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Científica Matemática Probabilidades e Estatística Curso Engenharia do Ambiente º Semestre º Ficha n.º: Probabilidades e Variáveis Aleatórias. Lançam-se ao acaso moedas. a) Escreva o espaço de resultados

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano Escola Secundária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 0/ Distribuição de probabilidades.º Ano Nome: N.º: Turma:. Numa turma do.º ano, a distribuição dos alunos por idade e sexo

Leia mais

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três. 1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

Módulo de Probabilidade Condicional. Lei Binomial da Probabilidade. 2 a série E.M.

Módulo de Probabilidade Condicional. Lei Binomial da Probabilidade. 2 a série E.M. Módulo de Probabilidade Condicional Lei Binomial da Probabilidade. a série E.M. Probabilidade Condicional Lei Binomial da Probabilidade Exercícios Introdutórios Exercício. Uma moeda tem probabilidade p

Leia mais