PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "PROBABILIDADE E ESTATÍSTICA PROBABILIDADES"

Transcrição

1 PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/ Produção de Recursos Educacionais Digitais

2 Revisando - Análise combinatória Se um evento pode ocorrer de qualquer um de n 1 modos e se, quando ele ocorre, um outro evento pode realizar-se de qualquer um de n 2 modos, então o número de maneiras segundo as quais ambos os evento podem ocorrer numa dada ordem será n 1 n 2. Exemplo. Se há 2 candidatos a governador e 6 a prefeito, de quantos modos podem ser preenchidos os dois cargos? 2 X 6 = 12 modos

3 Revisando Fatorial de n O fatorial de n, é representado por n!, sendo definido como: n! = n n 1 n 2 1. Exemplo: 5! = 5 x 4 x 3 x 2 x 1 = 120 Lembrando que 0! = 1

4 Revisando Permutações Uma permutação de n objetos diferentes, tomados r de cada vez, é um arranjo de r dos n objetos, levando-se em consideração a ordem de sua disposição. Sendo representado por:. n P r ; P n, r ou P n,r e é dado por:. n P r = n! n r!

5 Exemplo. (SPIEGEL) De quantas maneiras 10 pessoas poderão sentar-se em um banco, se houver apenas 4 lugares? R = 10 x 9 x 8 x 7 = O primeiro lugar pode ser preenchido de 10 maneiras, o segundo de 9 maneiras, o terceiro de 8 maneiras e o quarto de 7 maneiras.

6 Revisando Combinações Uma combinação de n objetos diferentes, tomados r de cada vez, é uma escolha de r dos n objetos, não se levando em consideração a ordem de sua disposição. Sendo representado por:. n C r ; C n, r ; C n,r ou n r e é dado por: n r =. n P r r!

7 Exemplo. (SPIEGEL) De quantas maneiras uma comissão de 5 pessoas pode ser escolhida entre 9? R = n r = 9! 5! = 9 x 8 x 7 x 6 x 5 5 x 4 x 3 x 2 x 1 = 126

8 Revisando Conjuntos Um conjunto é uma coleção de objetos, usualmente representados por letras maiúsculas. Podendo ser por união ou intersecção. União Exemplo: Definindo C como união de A e B, (denominado algumas vezes a soma de A e B), então: C = A B Desse modo, C será formado de todos os elementos que estejam em A, ou em B, ou em ambos.

9 Intersecção Revisando Conjuntos Exemplo: Definindo D como a intersecção de A e B, (denominada algumas vezes como o produto dea e B), então: D = A B Desse modo D, será formado por todos os elementos que estão em A e em B.

10 Probabilidade Definição clássica: Se um experimento aleatório tem n resultados igualmente prováveis, e n A desses resultados pertencem a certo evento A, então a probabilidade de ocorrência do evento A é definida como: P A = n A n

11 Probabilidade Definição experimental: Seja um experimento aleatório com espaço amostral Ω e um evento A de interesse, onde esse experimento é repetido n vezes e o evento A ocorreu n(a) vezes. Então a frequência relativa do evento A é dada por: f A = n(a) n

12 Exemplo 1. (SPIEGEL) Se em lances de uma moeda resultam 529 caras, a frequência relativa das caras é de 529/1.000 = 0,529. Se em outros lances resultam 493 caras, a frequência relativa no total dos lances é de ( )/2.000 = 0,511. De acordo com a definição estatística poder-se-á chegar cada vez mais próximos de um número que será denominado probabilidade de ocorrer uma cara no único lance de uma moeda, de acordo com os resultados apresentados até agora ele será de 0,5.

13 Espaço Amostral Definição: É o conjunto de todos os resultados possíveis de um dado experimento. Sendo representado por S ou Ω. Ao se estudar um número de resultados em um espaço amostral, surgem 2 possibilidades: O espaço amostral será discreto quando este for finito ou infinito numerável. O espaço amostral será contínuo quando este for infinito não numerável.

14 Espaço Amostral Finito Condições: (a) p i 0, i = 1, 2,, k (b) p 1 + p p k = 1

15 Espaço Amostral Finito Exemplo 2. (MEYER) Suponha que somente três resultados sejam possíveis em um experimento, a saber, a 1, a 2, a 3. Além disso, suponha que a 1 seja duas vezes mais provável de ocorrer que a 2, o qual por sua vez é duas vezes mais provável de ocorrer que a 3. Então: p 1 = 2p 2 e p 2 = 2p 3. p 1 + p 2 + p 3 = 1 4p 3 + 2p 3 + p 3 = 1 p 3 = 1 7 ; p 2 = 2 7 e p 1 = 4 7

16 Espaço Amostral Infinito Numerável Exemplo 3. Uma moeda ser lançada sucessivas vezes até que ocorra uma cara (K). Ω = { K, CK, CCK, CCCK, CCCCK,...,}

17 Espaço Amostral Infinito Não Numerável Exemplo 4. Uma lâmpada ao ser fabricada e ensaiada, observar o seu tempo de vida. Ω = t R t 0

18 Eventos Definição: Um evento é um subconjunto de um espaço amostral. Quando o espaço amostral for finito ou infinito numerável, todo subconjunto poderá ser considerado um evento. Quando o espaço amostral for infinito não enumerável, nem todo subconjunto poderá ser considerado um evento.

19 Operações entre eventos

20 Evento mutuamente excludentes Definição: Dois eventos são denominados excludentes se eles não puderem ocorrer juntos. Logo evento A e B serão mutuamente excludentes em: A B =

21 Exemplo 5. (MEYER) Um dispositivo eletrônico é ensaiado e o tempo total de serviço t é registrado. Admitindo que o espaço amostral seja { t t 0}. Sejam A, B e C três eventos definidos da seguinte maneira: A = {t t < 100}; B = { t 50 t 200}; C = { t t > 150}.

22 Portanto: A B = {t t 200}; A B = {t 50 t < 100}; B C = {t t 50}; B C = { t 150 < t 200}; A C = ; A C = { t t < 100 ou t > 150}; Ᾱ = { t t 100}; C = { t t 150}.

23 Exemplo 6. Se E1 é o evento extração de um às de um baralho e E2 é o da extração de um rei, logo: P(E 1 ) = 4 52 = 1 13 e P E 2 = 4 52 = 1 13, então, a probabilidade de se extrair ou um às, ou um rei, em um lance único é: P(E 1 + E 2 ) = P E 1 + P E 2 = = 2 13

24 Propriedades (1) 0 P(A) 1. (2) P (Ω) = 1. (3) Se A e B forem eventos mutuamente excludentes, P(A B) = P(A) + P(B).

25 Teoremas Teorema 1. Se for o conjunto vazio, então P( ) = 0 Demonstração: para qualquer evento (A), podemos escrever A = A, uma vez que ambas são mutuamente excludentes, e decorre da propriedade 3, que: P A = P A = P A + P( )

26 Teoremas Teorema 2. Se Ᾱ for o evento complementar de A, então: P A = 1 P(Ᾱ) Demonstração: pode-se escrever Ω = A Ᾱ e, empregando as propriedades 2 e 3, tem-se: 1 = P A + P(Ᾱ)

27 Teoremas Teorema 3. Se A e B forem dois eventos quaisquer, então: P A B = P A + P B P A B. Demonstração: esse teorema consiste em decompor A B e B em dois eventos mutuamente excludentes e, em seguida, a aplicação da Propriedade 3, logo: A B = A B Ᾱ, B = A B B Ᾱ

28 Resulta em: P A B = P A + P B Ᾱ, P(B) = P(A B + P B Ᾱ Subtraindo a segunda igualdade da primeira, têm-se: P A B P B = P A P(A B)

29 Teoremas Teorema 4. Se A, B e C forem três eventos quaisquer, então: P A B C = P A + P B + P C P A B P A C P B C + P(A B C) Demonstração: esse teorema consiste em escrever A B C na forma (A B) C e aplicar o resultado do teorema 3.

30 Teoremas Teorema 5. Se A B, então P(A) P(B) Demonstração: pode-se decompor B em dois eventos mutuamente excludentes, da seguinte forma: B = A B Ᾱ Portanto, Pois, P B = P A + P B Ᾱ P(A) P B Ᾱ 0 pela propriedade 1.

31 Probabilidade condicional Consiste em calcular a probabilidade de ocorrência de um evento (A) condicionada à ocorrência prévia de um evento (B). Essa probabilidade é representada por P(A B), ou seja, probabilidade de A dado B. Sendo assim, seja A e B eventos quaisquer, sendo P(B) > 0, a probabilidade condicional pode ser definida por: P A B = P(A B) P(B)

32 Probabilidade condicional Exemplo 7. (BARBETTA, pg 103) Seja o lançamento de 2 dados não viciados e a observação das faces voltadas para cima. Calcule: a) A probabilidade de ocorrer faces iguais, sabendo-se que a soma é menor ou igual a 5. b) A soma das faces menor ou igual a 5, sabendo que as faces são iguais.

33 Ω = (1,1) (2,1) (3,1) (4,1) (5,1) (6,1) (1,2) (2,2) (3,2) (4,2) (5,2) (6,2) (1,3) (2,3) (3,3) (4,3) (5,3) (6,3) (1,4) (2,4) (3,4) (4,4) (5,4) (6,4) (1,5) (2,5) (3,5) (4,5) (5,5) (6,5) (1,6) (2,6) (3,6) (4,6) (5,6) (6,6) E1 = faces iguais 1,1, 2,2, 3,3, 4,4, 5,5, (6,6) E2 = soma das faces é menor ou iguail a 5 = 1,1, 1,2, 1,3, 1,4, 2,1, 2,2, 2,3, 3,1, 3,2, (4,1)

34 Portanto, E1 E2 = { 1,1, 2,2 }, esquematicamente:

35 a) A probabilidade de ocorrer faces iguais, sabendo-se que a soma é menor ou igual a 5. P E 1 E 2 = P E 1 E 2 P(E 2 ) = = 2 10 = 0, 2

36 b) A soma das faces menor ou igual a 5, sabendo que as faces são iguais. P E 2 E 1 = P E 2 E 1 P(E 1 ) = = 2 6 = 0, %

37 Regra do produto A regra do produto é uma consequência da probabilidade condicional, obtida ao isolar a probabilidade da intersecção. P A B = P(A B) P(B) P(A B) = P B. P(A B) ou P B A = P(B A) P(A) P(A B) = P A. P(B A)

38 Exemplo 8. (BARBETTA, pg 105) Uma caixa contém 4 cartões amarelos e 8 vermelhos. Retira-se ao acaso, 2 cartões um após o outro, sem reposição. Qual a probabilidade que ambos sejam amarelos? R= Chamando de A i o evento que representa cartão amarelo na i -ésima extração, e V i, o evento que representa cartão vermelho na i -ésima extração (i = 1, 2), logo: Ω = A 1, A 2, A 1, V 2, V 1, A 2, (V 1, V 2 )

39 Como a probabilidade de interesse é P (A 1, A 2 ), aplicando a regra do produto, têm-se: P A 1 = 4 12 = 1 3 existe 4 cartões amarelos dentre os 12 cartões, e P A 2 A 1 = 3 11 supondo que tenha sido extraído cartão amarelo na 1ª extração, restando 3 amarelos dentre 11 cartões, logo: P A 1 A 2 = P A 1 P A 2 A 1 = = 1 11

40 Eventos Independentes Dois ou mais eventos são independentes quando a ocorrência de um dos eventos não influencia a probabilidade de ocorrência dos outros eventos. Portanto P A B = P A e P B A = P B logo evento independente pode ser definido como: A e B são independentes P A B = P A P(B)

41 Exemplo 9. (SPIEGEL), Sejam E 1 e E 2 os eventos cara na quinta jogada e cara na sexta jogada de uma moeda, respectivamente. Então E 1 e E 2 são eventos independentes, de modo que a probabilidade de ocorrer cara em ambas as jogadas, quinta e sexta, é admitindo-se que a moeda é honesta, logo: P = E 1 E 2 = P E 1. P E 2 = = 1 4

42 Exemplo 10. (MEYER), Admita-se que dentre 6 parafusos, dois sejam menores do que um comprimento especificado. Se dois dos parafusos forem escolhidos ao acaso, qual será a probabilidade de que os dois parafusos mais curtos sejam extraídos? Seja A i o evento (o i-ésimo parafuso escolhido é curto), i = 1, 2. P A 1 A 2 = P A 2 A 1 P A 1 = = 1 15

43 Teorema da Probabilidade Total Seja E 1, E 2, E 3,, E n eventos que constituem uma partição do espaço amostral Ω, então: a) E 1 E j = para todo i j b) P(E i ) > 0, para i = 1, 2, 3, k c) E 1 E 2 E k = Ω

44 Teorema da Probabilidade Total Pela regra do produto têm-se a equação do teorema da probabilidade total. P F = k i=1 P E i P(F E i )

45 Exemplo 11. As máquinas A e B são responsáveis por 70% e 30%, respectivamente, da produção de uma empresa. A máquina A produz 2% de peças defeituosas e a máquina B produz 8% de peças defeituosas. Calcule o percentual de peças defeituosas na produção desta empresa. Solução: P(A) = 70%; P(B) 30%; P(D A) = 2%; P(D B) = 8% P D = P D A. P A + P D B. P B Teorema da Probabilidade Total P D = 0,02.0,70 + 0,08.0,030 = 0, 038 3, 8%

46 Exemplo 12. Um aluno propõe-se a resolver uma questão de um trabalho. A probabilidade de que consiga resolver a questão sem necessidade de uma pesquisa é de 40%. Caso faça a pesquisa, a probabilidade de que consiga resolver a questão é de 70%. Se a probabilidade de o aluno fazer a pesquisa é de 80%, calcule a probabilidade de que consiga resolver a questão. Solução P(Sucesso sem pesquisa) = 40%; P(Fracasso sem pesquisa) = 60%; P(Sucesso com pesquisa) = 70%; P(Fracasso com pesquisa) = 30%; P(com pesquisa) = 80%; P(sem pesquisa) = 20%

47 P sucesso = P sucesso sem pesquisa + P sucesso com pesquisa = P(sucesso sem pesquisa). P(sem pesquisa) + P(sucesso sem pesquisa). P(sem pesquisa) Teorema da Probabilidade Total P D = 0,40 0,20 + 0,70 0,08 = 0,08 + 0,56 = 0, 64 64%

48 Teorema de Bayes Considere eventos E 1 mutuamente excludentes e um evento F qualquer cuja união representa o espaço amostral Ω, isto é, um dos eventos necessariamente deve ocorrer. Ou seja, o Teorema de Bayes permite obter a probabilidade de que um dos eventos E i ocorra, sabendo-se que o evento F ocorreu. Portanto, P(E i F) = P E i P(F E i ) P(F)

49 Teorema de Bayes Exemplo 13. As máquinas A e B são responsáveis por 60% e 40%, respectivamente, da produção de uma empresa. Os índices de peças defeituosas na produção destas máquinas valem 3% e 7% respectivamente. Se uma peça defeituosa foi selecionada da produção desta empresa, qual é a probabilidade de que tenha sido produzida pela máquina B? Solução A: peça produzida por A B: peça produzido por B d: peça defeituosa P(d A) = 3% = 0,03 P(d B) = 7% = 0,07 P(A) = 60% = 0,60 P(B) = 40% = 0,40

50 O exercício pede a probabilidade P(B d). Pelo Teorema de Bayes, P(B d) = P d B. P(B) P d A P A + P d B P(B) P B d = 0,07 0,4P B 0,03 0,6 + 0,07 0,4 = 0, , 87%

51 Teorema de Bayes Exemplo 14. (MEYER), Uma determinada peça é manufaturada por três fábricas (1, 2, 3). Sabe-se que a peça 1 produz o dobro de peças que 2, e 2 e 3 produzem o mesmo número de peças. Sabe-se também que 2% das peças produzidas por 1 e por 2 são defeituosas, enquanto 4% daquelas produzidas por 3 são defeituosas. Todas as peças produzidas são colocadas em um depósito, e depois uma peça é extraída ao acaso. Qual é a probabilidade de que tenha sido produzida na fábrica 1?

52 Pelo Teorema de Bayes P(B i A) = P A B i P(B i ) k P A B j P(B j ) i=1 i = 1, 2,, k P B i A = 0,02 0, , , = 0,40 40%

53 Referências SPIEGEL, M. R. Estatística.3ª Edição. São Paulo -SP, BARBETTA, P. A. REIS, M. M. BORNIA, A. C. Estatística para Cursos de Engenharia e Informática. 3ª Edição. Atlas S.A. São Paulo - SP, MEYER, P. L. Probabilidade: Aplicação à estatística. 2ª Edição. LTC. Rio de Janeiro RJ, Bertolo, L.A. Probabilidades, Teorema da Probabilidade Total e Teorema de Bayes. IMES- Catanduva. Disponível em: < o.pdf>. Acesso em Outubro de 2013.

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Técnicas de Contagem I II III IV V VI

Técnicas de Contagem I II III IV V VI Técnicas de Contagem Exemplo Para a Copa do Mundo 24 países são divididos em seis grupos, com 4 países cada um. Supondo que a escolha do grupo de cada país é feita ao acaso, calcular a probabilidade de

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

8 - PROBABILIDADE. 8.1 - Introdução

8 - PROBABILIDADE. 8.1 - Introdução INE 7002 - Probabilidade 1 8 - PROBABILIDADE 8.1 - Introdução No capítulo anterior foi utilizado um raciocínio predominantemente indutivo: os dados eram coletados, e através da sua organização em distribuições

Leia mais

Coordenadoria de Matemática. Apostila de Probabilidade

Coordenadoria de Matemática. Apostila de Probabilidade Coordenadoria de Matemática Apostila de Probabilidade Vitória ES 1. INTRODUÇÃO CAPÍTULO 03 Quando investigamos algum fenômeno, verificamos a necessidade de descrevê-lo por um modelo matemático que permite

Leia mais

Aula de Exercícios - Teorema de Bayes

Aula de Exercícios - Teorema de Bayes Aula de Exercícios - Teorema de Bayes Organização: Rafael Tovar Digitação: Guilherme Ludwig Primeiro Exemplo - Estagiários Três pessoas serão selecionadas aleatóriamente de um grupo de dez estagiários

Leia mais

Probabilidade e Estatística 2008/2. Regras de adicão, probabilidade condicional, multiplicação e probabilidade total.

Probabilidade e Estatística 2008/2. Regras de adicão, probabilidade condicional, multiplicação e probabilidade total. Probabilidade e Estatística 2008/2 Prof. Fernando Deeke Sasse Problemas Resolvidos Regras de adicão, probabilidade condicional, multiplicação e probabilidade total. 1. Um fabricante de lâmpadas para faróis

Leia mais

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO-

PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- Matemática Discreta 2009.10 Exercícios CAP2 pg 1 PRINCÍPIOS DA MULTIPLICAÇÃO, DA ADIÇÃO E DA INCLUSÃO- EXCLUSÃO 1. Quantas sequências com 5 letras podem ser escritas usando as letras A,B,C? 2. Quantos

Leia mais

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem

Ficha Prática 5: Cap 3.Princípios Elementares de Contagem Matemática Discreta - 2010/11 Cursos: Engenharia Informática, Informática de Gestão DEPARTAMENTO de MATEMÁTICA ESCOLA SUPERIOR de TECNOLOGIA e de GESTÃO - INSTITUTO POLITÉCNICO de BRAGANÇA Ficha Prática

Leia mais

COMENTÁRIO DA PROVA DO BANCO DO BRASIL

COMENTÁRIO DA PROVA DO BANCO DO BRASIL COMENTÁRIO DA PROVA DO BANCO DO BRASIL Prezados concurseiros, segue abaixo os comentários das questões de matemática propostas pela CESPE no último concurso para o cargo de escriturário do Banco do Brasil

Leia mais

Conceitos Básicos de Probabilidade

Conceitos Básicos de Probabilidade Conceitos Básicos de Probabilidade Como identificar o espaço amostral de um experimento. Como distinguir as probabilidades Como identificar e usar as propriedades da probabilidade Motivação Uma empresa

Leia mais

1- INTRODUÇÃO 2. CONCEITOS BÁSICOS

1- INTRODUÇÃO 2. CONCEITOS BÁSICOS 1 1- INTRODUÇÃO O termo probabilidade é usado de modo muito amplo na conversação diária para sugerir um certo grau de incerteza sobre o que ocorreu no passado, o que ocorrerá no futuro ou o que está ocorrendo

Leia mais

Introdução aos Processos Estocásticos - Independência

Introdução aos Processos Estocásticos - Independência Introdução aos Processos Estocásticos - Independência Eduardo M. A. M. Mendes DELT - UFMG Programa de Pós-Graduação em Engenharia Elétrica Universidade Federal de Minas Gerais emmendes@cpdee.ufmg.br Eduardo

Leia mais

Caique Tavares. Probabilidade Parte 1

Caique Tavares. Probabilidade Parte 1 Caique Tavares Probabilidade Parte 1 Probabilidade: A teoria das probabilidades é um ramo da Matemática que cria, elabora e pesquisa modelos para estudar experimentos ou fenômenos aleatórios. Principais

Leia mais

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES

QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE SUGESTÕES DE RESOLUÇÕES QUESTÕES PARA A 3ª SÉRIE ENSINO MÉDIO MATEMÁTICA 2º BIMESTE QUESTÃO 01 SUGESTÕES DE RESOLUÇÕES Descritor 11 Resolver problema envolvendo o cálculo de perímetro de figuras planas. Os itens referentes a

Leia mais

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento.

A probabilidade representa o resultado obtido através do cálculo da intensidade de ocorrência de um determinado evento. Probabilidade A probabilidade estuda o risco e a ocorrência de eventos futuros determinando se existe condição de acontecimento ou não. O olhar da probabilidade iniciou-se em jogos de azar (dados, moedas,

Leia mais

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa:

Modelo Uniforme. como eu e meu colega temos 5 bilhetes, temos a mesma probabilidade de ganhar a rifa: Modelo Uniforme Exemplo: Uma rifa tem 100 bilhetes numerados de 1 a 100. Tenho 5 bilhetes consecutivos numerados de 21 a 25, e meu colega tem outros 5 bilhetes, com os números 1, 11, 29, 68 e 93. Quem

Leia mais

ActivALEA. ative e atualize a sua literacia

ActivALEA. ative e atualize a sua literacia ActivALEA ative e atualize a sua literacia N.º 26 A FREQUÊNCIIA RELATIIVA PARA ESTIIMAR A PROBABIILIIDADE Por: Maria Eugénia Graça Martins Departamento de Estatística e Investigação Operacional da FCUL

Leia mais

Estatística e Probabilidade. Aula 5 Cap 03 Probabilidade

Estatística e Probabilidade. Aula 5 Cap 03 Probabilidade Estatística e Probabilidade Aula 5 Cap 03 Probabilidade Na aula anterior vimos... Conceito de Probabilidade Experimento Probabilístico Tipos de Probabilidade Espaço amostral Propriedades da Probabilidade

Leia mais

Aula 02: Probabilidade

Aula 02: Probabilidade ITA - Laboratório rio de Guerra Eletrônica EENEM 2008 Estatística stica e Probabilidade Aula 02: Probabilidade população probabilidade (dedução) inferência estatística stica (indução) amostra Definições

Leia mais

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS

DISTRIBUIÇÕES ESPECIAIS DE PROBABILIDADE DISCRETAS VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADES 1 1. VARIÁVEIS ALEATÓRIAS Muitas situações cotidianas podem ser usadas como experimento que dão resultados correspondentes a algum valor, e tais situações

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

PROBABILIDADE PROFESSOR: ANDRÉ LUIS

PROBABILIDADE PROFESSOR: ANDRÉ LUIS PROBABILIDADE PROFESSOR: ANDRÉ LUIS 1. Experimentos Experimento determinístico: são aqueles em que o resultados são os mesmos, qualquer que seja o número de ocorrência dos mesmos. Exemplo: Um determinado

Leia mais

Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra

Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra Matrizes de Transferência de Forças e Deslocamentos para Seções Intermediárias de Elementos de Barra Walter Francisco HurtaresOrrala 1 Sílvio de Souza Lima 2 Resumo A determinação automatizada de diagramas

Leia mais

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas?

5) Qual a probabilidade de sair um ás de ouros quando retiramos uma carta de um baralho de 52 cartas? TERCEIRA LISTA DE EXERCÍCIOS DE PROBABILIDADE CURSO: MATEMÁTICA PROF. LUIZ CELONI 1) Dê um espaço amostral para cada experimento abaixo. a) Uma urna contém bolas vermelhas (V), bolas brancas (B) e bolas

Leia mais

Função. Adição e subtração de arcos Duplicação de arcos

Função. Adição e subtração de arcos Duplicação de arcos Função Trigonométrica II Adição e subtração de arcos Duplicação de arcos Resumo das Principais Relações I sen cos II tg sen cos III cotg tg IV sec cos V csc sen VI sec tg VII csc cotg cos sen Arcos e subtração

Leia mais

Módulo VIII. Probabilidade: Espaço Amostral e Evento

Módulo VIII. Probabilidade: Espaço Amostral e Evento 1 Módulo VIII Probabilidade: Espaço Amostral e Evento Suponha que em uma urna existam cinco bolas vermelhas e uma branca. Extraindo-se, ao acaso, uma das bolas, é mais provável que esta seja vermelha.

Leia mais

M =C J, fórmula do montante

M =C J, fórmula do montante 1 Ciências Contábeis 8ª. Fase Profa. Dra. Cristiane Fernandes Matemática Financeira 1º Sem/2009 Unidade I Fundamentos A Matemática Financeira visa estudar o valor do dinheiro no tempo, nas aplicações e

Leia mais

Matemática Ficha de Apoio Modelos de Probabilidade - Introdução

Matemática Ficha de Apoio Modelos de Probabilidade - Introdução Matemática Ficha de Apoio Modelos de Probabilidade - Introdução 12ºano Introdução às probabilidades No final desta unidade, cada aluno deverá ser capaz de: - Identificar acontecimentos com conjuntos e

Leia mais

Distribuição Normal de Probabilidade

Distribuição Normal de Probabilidade Distribuição Normal de Probabilidade 1 Aspectos Gerais 2 A Distribuição Normal Padronizada 3 Determinação de Probabilidades 4 Cálculo de Valores 5 Teorema Central do Limite 1 1 Aspectos Gerais Variável

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD.

Questão 1. Questão 3. Questão 2. Resposta. Resposta. Resposta. a) calcule a área do triângulo OAB. b) determine OC e CD. Questão Se Amélia der R$,00 a Lúcia, então ambas ficarão com a mesma quantia. Se Maria der um terço do que tem a Lúcia, então esta ficará com R$ 6,00 a mais do que Amélia. Se Amélia perder a metade do

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos

Leia mais

Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões

Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões Fundamentos de Bancos de Dados 3 a Prova Caderno de Questões Prof. Carlos A. Heuser Dezembro de 2009 Duração: 2 horas Prova com consulta Questão 1 (Construção de modelo ER) Deseja-se projetar a base de

Leia mais

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano

Módulo de Equações do Segundo Grau. Equações do Segundo Grau: Resultados Básicos. Nono Ano Módulo de Equações do Segundo Grau Equações do Segundo Grau: Resultados Básicos. Nono Ano Equações do o grau: Resultados Básicos. 1 Exercícios Introdutórios Exercício 1. A equação ax + bx + c = 0, com

Leia mais

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc.

PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR. Prof. Angelo Augusto Frozza, M.Sc. PESQUISA OPERACIONAL -PROGRAMAÇÃO LINEAR Prof. Angelo Augusto Frozza, M.Sc. ROTEIRO Esta aula tem por base o Capítulo 2 do livro de Taha (2008): Introdução O modelo de PL de duas variáveis Propriedades

Leia mais

AV2 - MA 12-2011 UMA SOLUÇÃO

AV2 - MA 12-2011 UMA SOLUÇÃO Questão 1. Considere os caminhos no plano iniciados no ponto (0, 0) com deslocamentos paralelos aos eixos coordenados, sempre de uma unidade e no sentido positivo dos eixos x e y (não se descarta a possibilidade

Leia mais

3º Ano do Ensino Médio. Aula nº06

3º Ano do Ensino Médio. Aula nº06 Nome: Ano: º Ano do E.M. Escola: Data: / / 3º Ano do Ensino Médio Aula nº06 Assunto: Noções de Estatística 1. Conceitos básicos Definição: A estatística é a ciência que recolhe, organiza, classifica, apresenta

Leia mais

UMA ANÁLISE BAYESIANA DO PERFIL COR/RAÇA DOS INDIVÍDUOS QUE TEM CURSO SUPERIOR NO BRASIL

UMA ANÁLISE BAYESIANA DO PERFIL COR/RAÇA DOS INDIVÍDUOS QUE TEM CURSO SUPERIOR NO BRASIL ISSN 2175-6295 Rio de Janeiro- Brasil, 08 e 09 novembro de 2007. SPOLM 2007 UMA ANÁLISE BAYESIANA DO PERFIL COR/RAÇA DOS INDIVÍDUOS QUE TEM CURSO SUPERIOR NO BRASIL Giovani Glaucio de Oliveira Costa Universidade

Leia mais

Teorema da Probabilidade Total e Teorema de Bayes

Teorema da Probabilidade Total e Teorema de Bayes PROBABILIDADES Teorema da Probabilidade Total e Teorema de Bayes BERTOLO Lembrando a Aula Anterior Probabilidade Condicional: Teorema do Produto:. ) Se os eventos B e E 1 forem INDEPENDENTES:. ) 06/09/2012

Leia mais

EGEA ESAPL - IPVC. Resolução de Problemas de Programação Linear, com recurso ao Excel

EGEA ESAPL - IPVC. Resolução de Problemas de Programação Linear, com recurso ao Excel EGEA ESAPL - IPVC Resolução de Problemas de Programação Linear, com recurso ao Excel Os Suplementos do Excel Em primeiro lugar deverá certificar-se que tem o Excel preparado para resolver problemas de

Leia mais

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística

AMEI Escolar Matemática 9º Ano Probabilidades e Estatística AMEI Escolar Matemática 9º Ano Probabilidades e Estatística A linguagem das probabilidades As experiências podem ser consideradas: - aleatórias ou casuais: quando é impossível calcular o resultado à partida;

Leia mais

Lista de Exercícios 5: Soluções Teoria dos Conjuntos

Lista de Exercícios 5: Soluções Teoria dos Conjuntos UFMG/ICEx/DCC DCC Matemática Discreta Lista de Exercícios 5: Soluções Teoria dos Conjuntos Ciências Exatas & Engenharias 2 o Semestre de 206. Escreva uma negação para a seguinte afirmação: conjuntos A,

Leia mais

Módulo de Princípios Básicos de Contagem. Segundo ano

Módulo de Princípios Básicos de Contagem. Segundo ano Módulo de Princípios Básicos de Contagem Combinação Segundo ano Combinação 1 Exercícios Introdutórios Exercício 1. Numa sala há 6 pessoas e cada uma cumprimenta todas as outras pessoas com um único aperto

Leia mais

Processos Estocásticos Parte 1 Probabilidades. Professora Ariane Ferreira

Processos Estocásticos Parte 1 Probabilidades. Professora Ariane Ferreira rocessos Estocásticos arte 1 robabilidades rofessora Conteúdos Conteúdos 2 arte 1.1 : Conceitos de robabilidade arte 1.2 : Variáveis Aleatórias Bibliografia indicada aos alunos [1] aul Meyer. robabilidade

Leia mais

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE

CAPÍTULO I - ELEMENTOS DE PROBABILIDADE CAPÍTULO I - ELEMENTOS DE PROBABILIDADE 1.1 INTRODUÇÃO Em geral, um experimento ao ser observado e repetido sob um mesmo conjunto especificado de condições, conduz invariavelmente ao mesmo resultado. São

Leia mais

Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios

Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios Comandos de Eletropneumática Exercícios Comentados para Elaboração, Montagem e Ensaios O Método Intuitivo de elaboração de circuitos: As técnicas de elaboração de circuitos eletropneumáticos fazem parte

Leia mais

Entropia, Entropia Relativa

Entropia, Entropia Relativa Entropia, Entropia Relativa e Informação Mútua Miguel Barão (mjsb@di.uevora.pt) Departamento de Informática Universidade de Évora 13 de Março de 2003 1 Introdução Suponhamos que uma fonte gera símbolos

Leia mais

Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento

Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Raciocínio Lógico Professor: Custódio Nascimento Análise e Resolução da prova de Agente de Polícia Federal Disciplina: Professor: Custódio Nascimento 1- Análise da prova Análise e Resolução da prova de Agente / PF Neste artigo, farei a análise das questões

Leia mais

Raciocínio Lógico 1 Probabilidade

Raciocínio Lógico 1 Probabilidade PROBABILIDADE 1. CONCEITOS INICIAIS A Teoria da Probabilidade faz uso de uma nomenclatura própria, de modo que há três conceitos fundamentais que temos que passar imediatamente a conhecer: Experimento

Leia mais

IV Seminário de Iniciação Científica

IV Seminário de Iniciação Científica 385 AVALIAÇÃO DA RESISTÊNCIA À COMPRESSÃO E DO MÓDULO DE ELASTICIDADE DO CONCRETO QUANDO SUBMETIDO A CARREGAMENTO PERMANENTE DE LONGA DURAÇÃO (Dt = 9 dias) Wilson Ferreira Cândido 1,5 ;Reynaldo Machado

Leia mais

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial

Álgebra Linear Aplicada à Compressão de Imagens. Universidade de Lisboa Instituto Superior Técnico. Mestrado em Engenharia Aeroespacial Álgebra Linear Aplicada à Compressão de Imagens Universidade de Lisboa Instituto Superior Técnico Uma Breve Introdução Mestrado em Engenharia Aeroespacial Marília Matos Nº 80889 2014/2015 - Professor Paulo

Leia mais

Programa Gulbenkian de Língua e Cultura Portuguesas REGULAMENTO DO CONCURSO DE APOIO A CONGRESSOS NOS DOMÍNIOS DA LÍNGUA E DA CULTURA PORTUGUESAS

Programa Gulbenkian de Língua e Cultura Portuguesas REGULAMENTO DO CONCURSO DE APOIO A CONGRESSOS NOS DOMÍNIOS DA LÍNGUA E DA CULTURA PORTUGUESAS REGULAMENTO DO CONCURSO DE APOIO A CONGRESSOS NOS DOMÍNIOS DA LÍNGUA E DA CULTURA PORTUGUESAS 2014 Enquadramento A Fundação Calouste Gulbenkian (Fundação), através de concurso, vai conceder apoio à organização

Leia mais

Espaço Amostral ( ): conjunto de todos os

Espaço Amostral ( ): conjunto de todos os PROBABILIDADE Espaço Amostral (): conjunto de todos os resultados possíveis de um experimento aleatório. Exemplos: 1. Lançamento de um dado. = {1,, 3, 4,, 6}. Doador de sangue (tipo sangüíneo). = {A, B,

Leia mais

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1

Probabilidade III. Ulisses U. dos Anjos. Departamento de Estatística Universidade Federal da Paraíba. Período 2014.1 Probabilidade III Ulisses U. dos Anjos Departamento de Estatística Universidade Federal da Paraíba Período 2014.1 Ulisses Umbelino (DE-UFPB) Probabilidade III Período 2014.1 1 / 42 Sumário 1 Apresentação

Leia mais

Matemática Discreta - 08

Matemática Discreta - 08 Universidade Federal do Vale do São Francisco urso de Engenharia da omputação Matemática Discreta - 08 Prof. Jorge avalcanti jorge.cavalcanti@univasf.edu.br www.univasf.edu.br/~jorge.cavalcanti www.twitter.com/jorgecav

Leia mais

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação.

FUNÇÕES. É uma seqüência de dois elementos em uma dada ordem. 1.1 Igualdade. Exemplos: 2 e b = 3, logo. em. Represente a relação. PR ORDENDO É uma seqüência de dois elementos em uma dada ordem Igualdade ( a, ( c,d) a c e b d Eemplos: E) (,) ( a +,b ) a + e b, logo a e b a + b a b 6 E) ( a + b,a (,6), logo a 5 e b PRODUTO CRTESINO

Leia mais

PERMUTAÇÃO, ARRANJO E COMBINAÇÃO Monitora Juliana

PERMUTAÇÃO, ARRANJO E COMBINAÇÃO Monitora Juliana PERMUTAÇÃO, ARRANJO E COMBINAÇÃO Monitora Juliana PERMUTAÇÕES SIMPLES Uma permutação de se denominarmos objetos distintos é qualquer agrupamento ordenado desses objetos, de modo que, o número das permutações

Leia mais

SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA

SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA SITUAÇÃO DE APRENDIZAGEM 4 PROBABILIDADE E GEOMETRIA Leitura e Análise de Texto O π e a agulha de Buffon O estudo da probabilidade, aparentemente, não tem uma ligação direta com a Geometria. A probabilidade

Leia mais

Árvores de Decisão Matemática Discreta

Árvores de Decisão Matemática Discreta Bruno Duarte Eduardo Germano Isolino Ferreira Vagner Gon Árvores de Decisão Matemática Discreta 28/04/2011 Serra IFES Definição de Árvores de Decisão: Arvore de Decisão é uma árvore em que seus nós internos

Leia mais

Prova de Fundamentos de Bancos de Dados 1 a Prova

Prova de Fundamentos de Bancos de Dados 1 a Prova Prova de Fundamentos de Bancos de Dados 1 a Prova Prof. Carlos A. Heuser Abril de 2009 Prova sem consulta duas horas de duração 1. (Peso 2 Deseja-se projetar um banco de dados para o sítio de uma prefeitura.

Leia mais

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B)

ISEG - ESTATÍSTICA I - EN, Economia/Finanças - 1 de Junho de 2010 Tópicos de correcção. 1ª Parte. > 0. Justifique a igualdade: P(( A B) ISEG - ESTATÍSTICA I - EN, Economia/Finanças - de Junho de 00 Tópicos de correcção ª Parte. Sejam os acontecimentos A, B, C tais que P ( A B) > 0. Justifique a igualdade: ( A B) C) = B A). A). C ( A B)).

Leia mais

Matemática. Resolução das atividades complementares. M3 Conjuntos

Matemática. Resolução das atividades complementares. M3 Conjuntos Resolução das atividades complementares Matemática M Conjuntos p. (UEMG) Numa escola infantil foram entrevistadas 8 crianças, com faia etária entre e anos, sobre dois filmes, e. Verificou-se que 4 delas

Leia mais

Análise Qualitativa no Gerenciamento de Riscos de Projetos

Análise Qualitativa no Gerenciamento de Riscos de Projetos Análise Qualitativa no Gerenciamento de Riscos de Projetos Olá Gerente de Projeto. Nos artigos anteriores descrevemos um breve histórico sobre a história e contextualização dos riscos, tanto na vida real

Leia mais

Resolução da Lista de Exercício 6

Resolução da Lista de Exercício 6 Teoria da Organização e Contratos - TOC / MFEE Professor: Jefferson Bertolai Fundação Getulio Vargas / EPGE Monitor: William Michon Jr 10 de novembro de 01 Exercícios referentes à aula 7 e 8. Resolução

Leia mais

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA

TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA TEORIA 5: EQUAÇÕES E SISTEMAS DO 1º GRAU MATEMÁTICA BÁSICA Nome: Turma: Data / / Prof: Walnice Brandão Machado Equações de primeiro grau Introdução Equação é toda sentença matemática aberta que exprime

Leia mais

Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado

Espaços Amostrais e Eventos. Probabilidade 2.1. Capítulo 2. Espaço Amostral. Espaço Amostral 02/04/2012. Ex. Jogue um dado Capítulo 2 Probabilidade 2.1 Espaços Amostrais e Eventos Espaço Amostral Espaço Amostral O espaço amostral de um experimento, denotado S, é o conjunto de todos os possíveis resultados de um experimento.

Leia mais

Seu pé direito nas melhores Faculdades

Seu pé direito nas melhores Faculdades 10 Insper 01/11/009 Seu pé direito nas melhores Faculdades análise quantitativa 40. No campeonato brasileiro de futebol, cada equipe realiza 38 jogos, recebendo, em cada partida, 3 pontos em caso de vitória,

Leia mais

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.

Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8. Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Notas da Disciplina de Estatística (versão 8.) PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de

Leia mais

Matemática - Módulo 1

Matemática - Módulo 1 1. Considerações iniciais Matemática - Módulo 1 TEORIA DOS CONJUNTOS O capítulo que se inicia trata de um assunto que, via-de-regra, é abordado em um plano secundário dentro dos temas que norteiam o ensino

Leia mais

- PARA CRIMES CUJA PENA MÁXIMA SEJA IGUAL OU SUPERIOR A QUATRO ANOS: PROCEDIMENTO ORDINÁRIO;

- PARA CRIMES CUJA PENA MÁXIMA SEJA IGUAL OU SUPERIOR A QUATRO ANOS: PROCEDIMENTO ORDINÁRIO; ESQUEMA DE ESTUDO PROCEDIMENTOS PENAIS PROFESSOR: PIETRO CHIDICHIMO JUNIOR NOVA FORMA DE ESCOLHA DOS PROCEDIMENTOS COMUNS COM O ADVENTO DA LEI N.º 11.719/08. EXCEÇÕES: PROCEDIMENTO DE FUNCIONÁRIO E HONRA

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

[RESOLUÇÃO] Economia I; 2012/2013 (2º semestre) Prova da Época Recurso 3 de Julho de 2013

[RESOLUÇÃO] Economia I; 2012/2013 (2º semestre) Prova da Época Recurso 3 de Julho de 2013 Economia I; 01/013 (º semestre) Prova da Época Recurso 3 de Julho de 013 [RESOLUÇÃO] Distribuição das respostas correctas às perguntas da Parte A (6 valores) nas suas três variantes: ER A B C P1 P P3 P4

Leia mais

PRICÍPIO DA MULTIPLICAÇÃO: Podemos agora enunciar o princípio da multiplicação ou princípio fundamental da contagem, segue:

PRICÍPIO DA MULTIPLICAÇÃO: Podemos agora enunciar o princípio da multiplicação ou princípio fundamental da contagem, segue: ANÁLISE COMBINATÓRIA Prof. Aurimenes A análise combinatória é a parte da matemática que estuda os problemas de contagem, isto é, podemos calcular a quantidade de subconjuntos de um dado conjunto finito,

Leia mais

Perguntas frequentes graduação sanduíche Ciência sem Fronteiras

Perguntas frequentes graduação sanduíche Ciência sem Fronteiras Perguntas frequentes graduação sanduíche Ciência sem Fronteiras Como fico sabendo se minha universidade assinou Entre em contato com o departamento responsável o acordo de adesão? pela graduação, ou órgão

Leia mais

Emparelhamentos Bilineares Sobre Curvas

Emparelhamentos Bilineares Sobre Curvas Emparelhamentos Bilineares Sobre Curvas Eĺıpticas Leandro Aparecido Sangalli sangalli@dca.fee.unicamp.br Universidade Estadual de Campinas - UNICAMP FEEC - Faculdade de Engenharia Elétrica e de Computação

Leia mais

1 O gráfico no plano cartesiano expressa a alta dos preços médios de televisores de tela plana e alta definição, do modelo LCD, full HD, 32

1 O gráfico no plano cartesiano expressa a alta dos preços médios de televisores de tela plana e alta definição, do modelo LCD, full HD, 32 1 O gráfico no plano cartesiano expressa a alta dos preços médios de televisores de tela plana e alta definição, do modelo LCD, full HD, 32 polegadas, antes da Copa do Mundo na África do Sul e sua queda

Leia mais

Aula 6 Propagação de erros

Aula 6 Propagação de erros Aula 6 Propagação de erros Conteúdo da aula: Como estimar incertezas de uma medida indireta Como realizar propagação de erros? Exemplo: medimos A e B e suas incertezas. Com calcular a incerteza de C, se

Leia mais

Probabilidade. Distribuição Binomial

Probabilidade. Distribuição Binomial Probabilidade Distribuição Binomial Distribuição Binomial (Eperimentos de Bernoulli) Considere as seguintes eperimentos/situações práticas: Conformidade de itens saindo da linha de produção Tiros na mosca

Leia mais

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase II 2014

Olimpíada Brasileira de Raciocínio Lógico Nível III Fase II 2014 1 2 Questão 1 Um dado é feito com pontos colocados nas faces de um cubo, em correspondência com os números de 1 a 6, de tal maneira que somados os pontos que ficam em cada par de faces opostas é sempre

Leia mais

UTILIZAÇÃO DE SENSORES CAPACITIVOS PARA MEDIR UMIDADE DO SOLO.

UTILIZAÇÃO DE SENSORES CAPACITIVOS PARA MEDIR UMIDADE DO SOLO. UTILIZAÇÃO DE SENSORES CAPACITIVOS PARA MEDIR UMIDADE DO SOLO. Silveira, Priscila Silva; Valner Brusamarello. Universidade Federal do Rio Grande do Sul UFRGS Av. Osvaldo Aranha, 103 - CEP: 90035-190 Porto

Leia mais

Prof. Eugênio Carlos Stieler

Prof. Eugênio Carlos Stieler CAPITALIZAÇÃO COMPOSTA CAPITALIZAÇÁO COMPOSTA: MONTANTE E VALOR ATUAL PARA PAGAMENTO ÚNICO Capitalização composta é aquela em que a taxa de juros incide sobre o capital inicial, acrescido dos juros acumulados

Leia mais

Prática. Exercícios didáticos ( I)

Prática. Exercícios didáticos ( I) 1 Prática Exercício para início de conversa Localize na reta numérica abaixo os pontos P correspondentes aos segmentos de reta OP cujas medidas são os números reais representados por: Exercícios didáticos

Leia mais

I. Conjunto Elemento Pertinência

I. Conjunto Elemento Pertinência TEORI DOS CONJUNTOS I. Conjunto Elemento Pertinência Conjunto, elemento e pertinência são três noções aceitas sem definição, ou seja, são noções primitivas. idéia de conjunto é praticamente a mesma que

Leia mais

FÍSICA EXPERIMENTAL 3001

FÍSICA EXPERIMENTAL 3001 FÍSICA EXPERIMENTAL 3001 EXPERIÊNCIA 1 CIRCUITO RLC EM CORRENTE ALTERNADA 1. OBJETIOS 1.1. Objetivo Geral Apresentar aos acadêmicos um circuito elétrico ressonante, o qual apresenta um máximo de corrente

Leia mais

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada

Resumo: Estudo do Comportamento das Funções. 1º - Explicitar o domínio da função estudada Resumo: Estudo do Comportamento das Funções O que fazer? 1º - Explicitar o domínio da função estudada 2º - Calcular a primeira derivada e estudar os sinais da primeira derivada 3º - Calcular a segunda

Leia mais

Inteligência Artificial

Inteligência Artificial Inteligência Artificial Aula 7 Programação Genética M.e Guylerme Velasco Programação Genética De que modo computadores podem resolver problemas, sem que tenham que ser explicitamente programados para isso?

Leia mais

AULA DO CPOG. Progressão Aritmética

AULA DO CPOG. Progressão Aritmética AULA DO CPOG Progressão Aritmética Observe as seqüências numéricas: 2 4 6 8... 12 9 6 3... 5 5 5 5... Essas seqüências foram construídas de forma que cada termo (número), a partir do segundo, é a soma

Leia mais

OPERAÇÕES COM FRAÇÕES

OPERAÇÕES COM FRAÇÕES OPERAÇÕES COM FRAÇÕES Adição A soma ou adição de frações requer que todas as frações envolvidas possuam o mesmo denominador. Se inicialmente todas as frações já possuírem um denominador comum, basta que

Leia mais

Modelo Comportamental

Modelo Comportamental MEDIDA 2.2 - Cursos de Educação e Formação de Adultos Modelo Comportamental Documento de apoio 3 Diagrama Entidade Relação Curso de Educação e Formação de Adultos Turma de Qualificação Escolar de Nível

Leia mais

Dureza Rockwell. No início do século XX houve muitos progressos. Nossa aula. Em que consiste o ensaio Rockwell. no campo da determinação da dureza.

Dureza Rockwell. No início do século XX houve muitos progressos. Nossa aula. Em que consiste o ensaio Rockwell. no campo da determinação da dureza. A UU L AL A Dureza Rockwell No início do século XX houve muitos progressos no campo da determinação da dureza. Introdução Em 1922, Rockwell desenvolveu um método de ensaio de dureza que utilizava um sistema

Leia mais

MATEMATICA PERMUTAÇÕES SIMPLES QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9?

MATEMATICA PERMUTAÇÕES SIMPLES QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9? MATEMATICA 8 ANÁLISE COMBINATÓRIA E PROBABILIDADE ORIENTAÇÃO PARA O PROFESSOR EXEMPLO PERMUTAÇÕES SIMPLES QUANTOS NÚMEROS, DE 3 ALGARISMOS DISTINTOS, PODEMOS FORMAR COM OS DÍGITOS 7, 8 E 9? Temos o conjunto

Leia mais

EDITAL DE SELEÇÃO PARA MESTRADO 2016 PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO (UNIFEI)

EDITAL DE SELEÇÃO PARA MESTRADO 2016 PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO (UNIFEI) 1 EDITAL DE SELEÇÃO PARA MESTRADO 2016 PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA DE PRODUÇÃO (UNIFEI) O Coordenador do Programa de Pós-Graduação em Engenharia de Produção (PPGEP) da Universidade Federal

Leia mais

Registro de Retenções Tributárias e Pagamentos

Registro de Retenções Tributárias e Pagamentos SISTEMA DE GESTÃO DE PRESTAÇÃO DE CONTAS (SiGPC) CONTAS ONLINE Registro de Retenções Tributárias e Pagamentos Atualização: 20/12/2012 A necessidade de registrar despesas em que há retenção tributária é

Leia mais