Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Experiências Aleatórias. Espaço de Resultados. Acontecimentos"

Transcrição

1 Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados possíveis. Espaço de Resultados Conjunto dos resultados possíveis de uma experiência aleatória. É usualmente representado por Ω ou S. 1

2 Experiências Aleatórias. Espaço de Resultados. Acontecimentos Acontecimento É uma colecção de resultados possíveis de uma experiência aleatória, ou seja, um subconjunto do espaço de resultados Ω. acontecimento impossível; Ω acontecimento certo. Acontecimento Elementar Subconjunto de Ω com apenas um elemento (conjunto singular). 2

3 Experiências Aleatórias. Espaço de Resultados. Acontecimentos Acontecimento Composto Subconjunto de Ω com mais de um elemento. Realização do Acontecimento A Diz-se que o acontecimento A se realizou se o resultado da experiência aleatória pertence a A. A Acontecimento Contrário de A É o acontecimento Ω A = Ω\A. 3

4 Experiências Aleatórias. Espaço de Resultados. Acontecimentos A B Intersecção de Dois Acontecimentos É o acontecimento que ocorre quando ocorrem simultaneamente ambos. A B União de Dois Acontecimentos É o acontecimento que ocorre quando pelo menos um deles ocorre. Acontecimentos Incompatíveis ou Mutuamente Exclusivos São acontecimentos que nunca ocorrem simultaneamente (A B = ). 4

5 Experiências Aleatórias. Espaço de Resultados. Acontecimentos Exemplo (2.1) Considere o lançamento de um dado cúbico com as faces numeradas de 1 a 6 e sejam os acontecimentos A sair face par e B sair face múltipla de 3. A = {2, 4, 6}; B = {3, 6}; A = {1, 3, 5} sair face ímpar ; A B = {6} sair face par múltipla de 3 ; A B = {2, 3, 4, 6} sair face par ou múltipla de 3 ; A B = {2, 4} sair face par que não seja múltipla de 3. 5

6 Experiências Aleatórias. Espaço de Resultados. Acontecimentos Exemplo (2.2) Considere o lançamento de dois dados cúbicos com as faces numeradas de 1 a 6. Os acontecimentos A, soma das faces é 7 e B, faces iguais, são acontecimentos incompatíveis, pois A = {(1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1)}; B = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}; A B =. 6

7 Álgebra de Acontecimentos É toda a subfamília A de P(Ω) (partes de Ω) que verifique os axiomas das álgebras de conjuntos, isto é: A1) Ω A; A2) Se A A, então A A; A3) Se A A e B A, então A B A. Espaço de Acontecimentos Ao par (Ω, A) chamamos espaço de acontecimentos. 7

8 Exercício (2.1) Considere o lançamento de um dado cúbico com as faces numeradas de 1 a 6. Verifique se (Ω, A) é um espaço de acontecimentos, onde A = {, {1, 2}, {4, 5, 6}, {3, 4, 5, 6}, {1, 2, 3, 4, 5, 6}}. 8

9 Se (Ω, A) é um espaço de acontecimentos, então: A; Se A A e B A, então A B A; Se A A e B A, então A B = A B A; Se A 1,..., A n A, então n i=1 A i A e n i=1 A i A. 9

10 σ-álgebra É toda a subfamília de P(Ω) que verifique os axiomas A1, A2 das álgebra de acontecimentos e, em alternativa a A3, o axioma A3*) Se A 1, A 2,... são elementos de A, então A i A. i=1 10

11 Medida de Probabilidade (Axiomática de Kolmogorov) É toda a função de conjunto P : A IR que verifique os axiomas: P1) P(A) 0, para todo o A A; P2) P(Ω) = 1; P3) Se A e B são acontecimentos incompatíveis, então P(A B) = P(A) + P(B). 11

12 Nota Se Ω é um conjunto infinito, exigimos em alternativa a P3 P3*) Se A 1, A 2,... são acontecimentos mutuamente exclusivos dois a dois, então ( P i=1 A i ) = P(A i ). i=1 Espaço de Probabilidade Ao terno (Ω, A, P) chamamos espaço de probabilidade. 12

13 Se (Ω, A, P) é um espaço de probabilidade, então: P( ) = 0; P(A) = 1 P(A), A A; P(A B) = P(A) P(A B), A, B A; Se A, B A e A B, então P(A) P(B); 0 P(A) 1, A A; P(A B) = P(A) + P(B) P(A B), A, B A. 13

14 Teorema (Regra da Adição) Sejam (Ω, A, P) um espaço de probabilidade e A 1, A 2,..., A n A. Então ( n ) n P A k = P(A k ) P(A k1 A k2 )+ k=1 k=1 k 1 <k 2 + ( n P(A k1 A k2 A k3 ) + ( 1) n+1 P A k ). k 1 <k 2 <k 3 k=1 14

15 Caso Particular Considerando três acontecimentos A, B e C, P(A B C) = P(A) + P(B) + P(C) P(A B) P(A C) P(B C) + P(A B C). 15

16 Corolário Se A 1, A 2,..., A n são mutuamente exclusivos dois a dois, então ( n P k=1 A k ) = n P(A k ). k=1 16

17 Regra de Laplace A probabilidade de um acontecimento A é dada por P(A) = número de casos favoráveis a A número de casos possíveis, desde que se admita a priori que os acontecimentos elementares são equiprováveis. A regra de Laplace obedece à axiomática de Kolmogorov. 17

18 Nota Quando o espaço de resultados é infinito, a exigência de equiprobabilidade imposta pela regra de Laplace pode ser ultrapassada considerando acontecimentos equiprováveis não elementares. Exercício (2.2) Qual a probabilidade de um ponto escolhido ao acaso no intervalo [0,1] pertencer ao intervalo [0.25,0.5]? 18

19 A Análise Combinatória fornece ferramentas adequadas para procedermos a contagens e dependerá da relevância ou não da ordem pela qual os elementos são considerados ou extraídos, e se há reposição ou não dos mesmos. Teorema Fundamental da Análise Combinatória Sejam X 1,..., X k conjuntos tais que #X 1 = n 1,..., #X k = n k. Então #(X 1 X k ) = n 1 n k. 19

20 Exercício (2.3) Considere o lançamento de três moedas (ou lançamento de uma moeda três vezes). Quantos casos possíveis há? 20

21 Arranjos com Repetição O número de sequências ordenadas com k elementos obtidas por extracções com repetição (ou reposição) de n elementos é n n = n k, sendo por vezes chamado arranjos com reposição (ou completos) de n elementos, k a k. 21

22 Exercício (2.4) Quantos números distintos com três algarismos podemos obter com os algarismos 1, 2, 3 e 4, admitindo que não os podemos repetir? 22

23 Arranjos sem Repetição O número de sequências ordenadas com k elementos obtidas por extracções sem repetição de n elementos é n (n 1) (n k + 1) denotado por n A k ou n P k, e denominado arranjos sem repetição (ou arranjos simples) de n elementos, k a k. 23

24 Exercício (2.5) Quantos subconjuntos de 3 elementos distintos podemos formar a partir de um conjunto com 4 elementos? 24

25 Combinações (sem Repetição) O número de subconjuntos de k elementos que podemos obter a partir de um conjunto com n elementos (n k), em que cada elemento do universo só pode configurar uma vez no subconjunto, é dado pelas combinações de n, k a k, isto é, por ( ) n n C k = k = n! k!(n k)! = n A k k!. 25

26 Combinações com Repetição O número de subconjuntos de k elementos que podemos obter a partir de um conjunto com n elementos admitindo que as tiragens são feitas com reposição é dado pelas combinações com repetição de n, k a k, ou seja, ( ) n + k 1. k 26

27 Exercício (2.5) De quantas maneiras podemos distribuir 3 bolas por 4 urnas? 27

28 Se uma experiência é realizada um número de vezes, sob idênticas condições, podem ocorrer resultados diferentes de cada vez ou alguns que se repetem. Esta frequência de ocorrência pode ser pensada como uma probabilidade. Probabilidade Frequencista P(A) = limite da frequência relativa com que se observa o acontecimento A. 28

29 À medida que se adquire alguma informação sobre um acontecimento, há quem prefira proceder a uma reavaliação da probabilidade considerada a priori para o mesmo. Probabilidade Subjectivista É uma medida de credibilidade que, numa primeira fase, pode ser baseada em convicções, palpites, experiências, etc. 29

30 Probabilidade Condicional. Independência Exercício (2.6) Considere o lançamento de um dado cúbico com as faces numeradas de 1 a 6. Seja A o acontecimento sair face 2. Então P(A) = 1 6. Suponha agora que o dado foi lançado e que se registou a saída de face par. Qual é a probabilidade de ter saído a face 2? 30

31 Probabilidade Condicional. Independência Probabilidade Condicional Sejam (Ω, A, P) um espaço de probabilidade e B um acontecimento tal que P(B) > 0. A probabilidade condicional de A dado B é P(A B) P(A B) =. P(B) O acontecimento B é chamado acontecimento condicionante, e passa a funcionar como novo espaço de resultados. 31

32 Probabilidade Condicional. Independência Da definição de probabilidade conjunta segue que P(A B) = P(B)P(A B) = P(A)P(B A). Teorema (Regra da Multiplicação) Sejam (Ω, A, P) um espaço de probabilidade e A 1, A 2,..., A n A. Então ( n P k=1 A k ) = P(A 1 ) P(A 2 A 1 ) P(A 3 A 1 A 2 ) P(A n A 1... A n 1 ). 32

33 Probabilidade Condicional. Independência Exercício (2.7) Procede-se à tiragem sucessiva de 3 peças de um lote que contém 30 peças das quais 10 são defeituosas. Qual a probabilidade de se obter a sequência DDN, onde D denota peça defeituosa e N peça não defeituosa? 33

34 Probabilidade Condicional. Independência Exercício (2.8) Considere novamente o lançamento de um dado cúbico. Sejam os acontecimentos A sair face 2 ou 3 e B sair face par. Qual a probabilidade de A e a probabilidade de A dado B? 34

35 Probabilidade Condicional. Independência Independência de Dois Acontecimentos Dois acontecimentos A e B dizem-se (mutuamente) independentes se, e só se, P(A B) = P(A)P(B). Nota Dois acontecimentos incompatíveis, ou mutuamente exclusivos, não podem ser independentes, excepto se um deles for impossível. 35

36 Probabilidade Condicional. Independência Exercício (2.9) Numa determinada cidade foi efectuado um levantamento de dados sobre certos acontecimentos. A probabilidade de ocorrência de cada um deles encontra-se registada no seguinte quadro: Cancro Sujeito Tem Não Tem Fumador Não Fumador Verifique se ser fumador e ter cancro são acontecimentos independentes nessa cidade. 36

37 Probabilidade Condicional. Independência Por exemplo, três acontecimentos A, B e C são independentes se, e só se, P(A B) = P(A)P(B); P(A C) = P(A)P(C); P(B C) = P(B)P(C); P(A B C) = P(A)P(B)P(C). Se os acontecimentos A 1, A 2,..., A n forem independentes, então P(A 1 A 2... A n ) = P(A 1 ) P(A 2 ) P(A n ). 37

38 Probabilidade Condicional. Independência Teorema da Probabilidade Total Sejam (Ω, A, P) um espaço de probabilidade, B um acontecimento e {A k } k K uma partição de Ω. Então P(B) = k K P(A k )P(B A k ). Nota A probabildade de B está a ser calculada como uma média ponderadada das probabilidades condicionais P(B A k ), onde k K P(A k) = 1. 38

39 Probabilidade Condicional. Independência Corolário Se A e B forem dois acontecimentos, então P(B) = P(A)P(B A) + P(A)P(B A). 39

40 Probabilidade Condicional. Independência Exemplo (2.2) Numa urna há 10 bolas brancas e 10 bolas pretas. Tira-se uma bola, observa-se a cor, e a bola é reposta na urna com mais 100 bolas da cor observada. Procede-se a uma segunda extracção de uma bola. Qual a probabilidade de sair bola branca? 40

41 Probabilidade Condicional. Independência Sejam os acontecimentos: A : B : sair bola branca na 1 a extracção sair bola branca na 2 a extracção Então P(B) = P(A)P(B A) + P(A)P(B A) = =

42 Probabilidade Condicional. Independência Exemplo (2.3) Considere-se o exemplo anterior. Suponhamos que a cor da bola da segunda extracção é branca. Qual a probabilidade da primeira bola extraída ter sido branca? 42

43 Probabilidade Condicional. Independência Pretende-se calcular P(A)P(B A) P(A B) = P(A)P(B A) + P(A)P(B A) = =

44 Probabilidade Condicional. Independência Teorema de Bayes Sejam (Ω, A, P) um espaço de probabilidade, B um acontecimento e {A k } k K uma partição de Ω. Então P(A j B) = P(A j)p(b A j ) P(A k )P(B A k ), j K. k K Nota O teorema de Bayes também é conhecido pelo teorema da probabilidade inversa, ou das probabilidades das causas. 44

Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise

Probabilidade. Professora Ana Hermínia Andrade. Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Probabilidade Professora Ana Hermínia Andrade Universidade Federal do Amazonas Faculdade de Estudos Sociais Departamento de Economia e Análise Período 2016.2 Você reconhece algum desses experimentos? Alguns

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

Probabilidades- Teoria Elementar

Probabilidades- Teoria Elementar Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

Probabilidades. Carla Henriques e Nuno Bastos. Eng. do Ambiente. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Probabilidades. Carla Henriques e Nuno Bastos. Eng. do Ambiente. Departamento de Matemática Escola Superior de Tecnologia de Viseu Probabilidades Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Eng. do Ambiente Introdução Ao comprar acções, um investidor sabe que o ganho que vai obter

Leia mais

Probabilidade e Estatística Probabilidade Condicional

Probabilidade e Estatística Probabilidade Condicional Introdução Probabilidade e Estatística Probabilidade Condicional Em algumas situações, a probabilidade de ocorrência de um certo evento pode ser afetada se tivermos alguma informação sobre a ocorrência

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades 08/06/07 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto

Leia mais

Sumário. 2 Índice Remissivo 12

Sumário. 2 Índice Remissivo 12 i Sumário 1 Definições Básicas 1 1.1 Fundamentos de Probabilidade............................. 1 1.2 Noções de Probabilidade................................ 3 1.3 Espaços Amostrais Finitos...............................

Leia mais

Prof.: Joni Fusinato

Prof.: Joni Fusinato Introdução a Teoria da Probabilidade Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

Prof.Letícia Garcia Polac. 26 de setembro de 2017

Prof.Letícia Garcia Polac. 26 de setembro de 2017 Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados

Leia mais

1 Definição Clássica de Probabilidade

1 Definição Clássica de Probabilidade Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Experiência aleatória Observação de uma acção cujos resultados não são conhecidos a priori (conhecendo-se no entanto quais as possibilidades) Características: Possibilidade de repetição da experiência

Leia mais

BIOESTATÍSTICA. Parte 2 - Probabilidade

BIOESTATÍSTICA. Parte 2 - Probabilidade BIOESTATÍSTICA Parte 2 - Probabilidade Aulas Teóricas de 15/02/2011 a 24/03/2011 2.1. Experiência de Resultados. Espaço Amostra. Acontecimentos Frequentemente somos confrontados com situações em que está

Leia mais

REGRAS DE PROBABILIDADE

REGRAS DE PROBABILIDADE REGRAS DE PROBABILIDADE Lucas Santana da Cunha lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 24 de maio de 2017 Propriedades As probabilidades sempre se referem a

Leia mais

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico.

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico. Tipos de Modelo Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM 1 M 2 /r 2 Causas Efeito

Leia mais

Conceitos básicos de teoria da probabilidade

Conceitos básicos de teoria da probabilidade Conceitos básicos de teoria da probabilidade Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Espaço Amostral, Eventos, Álgebra de eventos Aula de hoje Probabilidade Análise Combinatória Independência Probabilidade Experimentos

Leia mais

Experiências aleatórias e probabilidade

Experiências aleatórias e probabilidade Experiências aleatórias e probabilidade L.J. Amoreira UBI Novembro 2010 Experiências aleatórias Experiências aleatórias são aquelas cujos resultados não são conhecidos de antemão. Espaço de resultados

Leia mais

Experiência Aleatória

Experiência Aleatória Probabilidades Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados possíveis. Exemplo

Leia mais

PROBABILIDADE 1. INTRODUÇÃO

PROBABILIDADE 1. INTRODUÇÃO proporção de caras Revisões PROBABILIDADE 1. INTRODUÇÃO As experiências aleatórias apresentam as seguintes características:.o resultado individual é imprevisível.são conhecidos todos os possíveis resultados.a

Leia mais

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω.

Chamamos de evento qualquer subconjunto do espaço amostral: A é um evento A Ω. PROBABILIDADE 1.0 Conceitos Gerais No caso em que os possíveis resultados de um experimento aleatório podem ser listados (caso discreto), um modelo probabilístico pode ser entendido como a listagem desses

Leia mais

2. Noções básicas de probabilidade

2. Noções básicas de probabilidade 2. Noções básicas de probabilidade Palavras como provável (provavelmente) probabilidade acaso sorte pertencem ao vocabulário corrente e são utilizadas com extrema frequência por todos, em parte por termos

Leia mais

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Revisando - Análise combinatória

Leia mais

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,

Leia mais

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Revisando - Análise combinatória

Leia mais

Teoria da Probabilidade

Teoria da Probabilidade Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos

Leia mais

Cap. 4 - Probabilidade

Cap. 4 - Probabilidade Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 2004 Cap. 4 - Probabilidade APOIO: Fundação de Apoio à Pesquisa

Leia mais

Matemática & Raciocínio Lógico

Matemática & Raciocínio Lógico Matemática & Raciocínio Lógico para concursos Prof. Me. Jamur Silveira www.professorjamur.com.br facebook: Professor Jamur PROBABILIDADE No estudo das probabilidades estamos interessados em estudar o experimento

Leia mais

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência

EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência EST029 Cálculo de Probabilidade I Cap. 3: Probabilidade Condicional e Independência Prof. Clécio da Silva Ferreira Depto Estatística - UFJF 1 Perguntas 1. Um novo aparelho para detectar um certo tipo de

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 7 - Probabilidade condicional e independência Departamento de Economia Universidade Federal de Pelotas (UFPel) Maio de 2014 Probabilidade condicional Seja (Ω, A, P) um espaço de probabilidade. Se

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

1 Definição de Probabilidade 2 Principais Teoremas 3 Probabilidades dos Espaços Amostrais 4 Espaços Amostrais Equiprováveis. Francisco Cysneiros

1 Definição de Probabilidade 2 Principais Teoremas 3 Probabilidades dos Espaços Amostrais 4 Espaços Amostrais Equiprováveis. Francisco Cysneiros Probabilidade 1 Definição de Probabilidade 2 Principais Teoremas 3 Probabilidades dos Espaços Amostrais 4 Espaços Amostrais Equiprováveis Francisco Cysneiros Introdução 1 - Conceito Clássico Se uma experiência

Leia mais

Introdução à Probabilidade

Introdução à Probabilidade A Teoria de Probabilidade é responsável pelo estudo de fenômenos que envolvem a incerteza (é impossível prever antecipadamente o resultado) e teve origem na teoria de jogos, servindo como ferramenta para

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Científica Matemática Probabilidades e Estatística Curso Engenharia do Ambiente º Semestre º Ficha n.º: Probabilidades e Variáveis Aleatórias. Lançam-se ao acaso moedas. a) Escreva o espaço de resultados

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

Resumo. Parte 2 Introdução à Teoria da Probabilidade. Ramiro Brito Willmersdorf Introdução.

Resumo. Parte 2 Introdução à Teoria da Probabilidade. Ramiro Brito Willmersdorf Introdução. Parte 2 Introdução à Teoria da Probabilidade Ramiro Brito Willmersdorf ramiro@willmersdorf.net Departamento de Engenharia Mecânica Universidade Federal de Pernambuco 2011.2 Resumo 1 Introdução 2 Espaço

Leia mais

NOÇÕES DE PROBABILIDADE

NOÇÕES DE PROBABILIDADE NOÇÕES DE PROBABILIDADE ALEATORIEDADE Menino ou Menina me? CARA OU COROA? 3 Qual será o rendimento da Caderneta de Poupança no final deste ano? E qual será a taxa de inflação acumulada em 014? Quem será

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos

Processos Estocásticos. Introdução. Probabilidade. Introdução. Espaço Amostral. Luiz Affonso Guedes. Fenômenos Determinísticos Processos Estocásticos Luiz ffonso Guedes Sumário Probabilidade Variáveis leatórias Funções de Uma Variável leatória Funções de Várias Variáveis leatórias Momentos e Estatística Condicional Teorema do

Leia mais

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1

Probabilidade ESQUEMA DO CAPÍTULO. UFMG-ICEx-EST Cap. 2- Probabilidade 1 Probabilidade ESQUEMA DO CAPÍTULO 2.1 ESPAÇOS AMOSTRAIS E EVENTOS 2.2 INTERPRETAÇÕES DE PROBABILIADE 2.3 REGRAS DE ADIÇÃO 2.4 PROBABILIDADE CONDICIONAL 2.5 REGRAS DA MULTIPLICAÇÃO E DA PROBABILIDADE TOTAL

Leia mais

Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa

Estatística. Disciplina de Estatística 2011/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa Estatística Disciplina de Estatística 20/2 Curso de Administração em Gestão Pública Profª. Ms. Valéria Espíndola Lessa Estatística Inferencial Estudos das Probabilidades (noção básica) Amostragens e Distribuição

Leia mais

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR)

Fernando de Pol Mayer. Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução Exercícios de exames e testes intermédios 1. Como P (B) = 1 P ( B ) = P (B) P (A B) vem que P (B) = 1 0,7

Leia mais

Capítulo 2. Noções básicas de probabilidade

Capítulo 2. Noções básicas de probabilidade Probabilidades e Estatística Colectânea de Exercícios 2004/05 LEIC + LERCI + LEE Capítulo 2 Noções básicas de probabilidade Exercício 1.1 Admita que um lote contém peças pesando 5, 10, 15, 20 g e que existem

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

2. Lança-se ao acaso uma moeda 4 vezes e conta-se o número de faces obtidas. Escreva o espaço amostral da experiência.

2. Lança-se ao acaso uma moeda 4 vezes e conta-se o número de faces obtidas. Escreva o espaço amostral da experiência. Escola Superior de Tecnologia de Viseu Fundamentos de Estatística 2010/2011 Ficha nº 2 1. Lançam-se ao acaso 2 moedas. a) Escreva o espaço de resultados da experiência. b) Descreva os acontecimentos elementares.

Leia mais

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística Probabilidade Disciplina: Cálculo das Probabilidades e Estatística I Prof. Tarciana Liberal Existem muitas situações que envolvem incertezas:

Leia mais

2 Conceitos Básicos de Probabilidade

2 Conceitos Básicos de Probabilidade CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Probabilidades e Estatística Curso Engenharia do Ambiente 2º Semestre 1º Ficha n.º1: Probabilidades e Variáveis Aleatórias 1. Lançam- ao acaso 2 moedas. a) Escreva o espaço de resultados

Leia mais

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S. PROBABILIDADE A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade.

Leia mais

* Acontecimento elementar: é formado por um só elemento do conjunto de. * Acontecimento composto: é formado por dois ou mais elementos do conjunto

* Acontecimento elementar: é formado por um só elemento do conjunto de. * Acontecimento composto: é formado por dois ou mais elementos do conjunto PROBABILIDADE A linguagem das probabilidades Quando lidamos com probabilidade, as experiências podem ser consideradas: Aleatórias ou casuais: quando é impossível calcular o resultado à partida. Como exemplo

Leia mais

AULA 08 Probabilidade

AULA 08 Probabilidade Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral

Leia mais

TEORIA DA PROBABILIDADE

TEORIA DA PROBABILIDADE TEORIA DA PROBABILIDADE Lucas Santana da Cunha lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 22 de maio de 2017 Introdução Conceitos probabiĺısticos são necessários

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos:

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos: Eisencraft e Loiola 2.1 Probabilidade 37 Modelo matemático de experimentos Para resolver problemas de probabilidades são necessários 3 passos: a Estabelecimento do espaço das amostras b Definição dos eventos

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade Condicional 08/16 1 / 56 Introdução É provável que você ganhe um aumento....

Leia mais

MATEMÁTICA MÓDULO 4 PROBABILIDADE

MATEMÁTICA MÓDULO 4 PROBABILIDADE PROBABILIDADE Consideremos um experimento com resultados imprevisíveis e mutuamente exclusivos, ou seja, cada repetição desse experimento é impossível prever com certeza qual o resultado que será obtido,

Leia mais

Probabilidade Aula 03

Probabilidade Aula 03 0303200 Probabilidade Aula 03 Magno T. M. Silva Escola Politécnica da USP Março de 2017 Sumário Teorema de Bayes 2.5 Independência Teorema de Bayes Sejam A 1,,A k uma partição de S (eventos disjuntos)

Leia mais

Capítulo 2 Probabilidades

Capítulo 2 Probabilidades Capítulo 2 Probabilidades Slide 1 Definições Slide 2 Acontecimento Qualquer colecção de resultados de uma experiência. Acontecimento elementar Um resultado que não pode ser simplificado ou reduzido. Espaço

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano Escola Secundária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 0/ Distribuição de probabilidades.º Ano Nome: N.º: Turma:. Numa turma do.º ano, a distribuição dos alunos por idade e sexo

Leia mais

1.4.2 Probabilidade condicional

1.4.2 Probabilidade condicional M. Eisencraft 1.4 Probabilidades condicionais e conjuntas 9 Portanto, P(A B) = P(A)+P(B) P(A B) (1.2) Para eventos mutuamente exclusivos, P(A B) = e P(A)+P(B) = P(A B). 1.4.2 Probabilidade condicional

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 6 - Introdução à probabilidade Departamento de Economia Universidade Federal de Pelotas (UFPel) Maio de 2014 Experimento Experimento aleatório (E ): é um experimento que pode ser repetido indenidamente

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 Probabilidade As definições de probabilidade apresentadas anteriormente podem

Leia mais

CAPÍTULO 3 PROBABILIDADE

CAPÍTULO 3 PROBABILIDADE CAPÍTULO 3 PROBABILIDADE 1. Conceitos 1.1 Experimento determinístico Um experimento se diz determinístico quando repetido em mesmas condições conduz a resultados idênticos. Exemplo 1: De uma urna que contém

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

Conceitos de Probabilidade

Conceitos de Probabilidade 1/1 Introdução à Bioestatística Conceitos de Probabilidade Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/1 Tipos de Fenômenos 1. Aleatório: Situação ou acontecimentos

Leia mais

Princípios de Bioestatística Conceitos de Probabilidade

Princípios de Bioestatística Conceitos de Probabilidade 1/37 Princípios de Bioestatística Conceitos de Probabilidade Enrico A. Colosimo/UFMG http://www.est.ufmg.br/ enricoc/ Depto. Estatística - ICEx - UFMG 2/37 Tipos de Fenômenos 1. Aleatório: Situação ou

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES15

INTRODUÇÃO ÀS PROBABILIDADES15 INTRODUÇÃO ÀS PROBABILIDADES15 Vanderlei S. Bagnato 15.1 Introdução 15.2 Definição de Probabilidade 15.3 Adição de probabilidade 15.4 Multiplicação de probabilidades Referências Licenciatura em Ciências

Leia mais

Prof. Janete Pereira Amador 1. 1 Introdução

Prof. Janete Pereira Amador 1. 1 Introdução Prof. Janete Pereira Amador 1 1 Introdução A ciência manteve-se até pouco tempo atrás, firmemente apegada à lei da causa e efeito. Quando o efeito esperado não se concretizava, atribuía-se o fato ou a

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos Mutuamente

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Aula 3 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3

Leia mais

Conteúdo: Aula 2. Probabilidade e Estatística. Professora: Rosa M. M. Leão

Conteúdo: Aula 2. Probabilidade e Estatística. Professora: Rosa M. M. Leão Aula 2 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3

Leia mais

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência

Leia mais

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Experimento Aleatório

Experimento Aleatório Probabilidades 1 Experimento Aleatório Experimento aleatório (E) é o processo pelo qual uma observação é ob;da. Exemplos: ü E 1 : Jogar uma moeda 3 vezes e observar o número de caras ob;das; ü E 2 : Lançar

Leia mais

14/03/2014. Tratamento de Incertezas TIC Aula 1. Conteúdo Espaços Amostrais e Probabilidade. Revisão de conjuntos. Modelos Probabilísticos

14/03/2014. Tratamento de Incertezas TIC Aula 1. Conteúdo Espaços Amostrais e Probabilidade. Revisão de conjuntos. Modelos Probabilísticos Tratamento de Incertezas TIC-00.176 Aula 1 Conteúdo Espaços Amostrais e Probabilidade Professor Leandro Augusto Frata Fernandes laffernandes@ic.uff.br Material disponível em http://www.ic.uff.br/~laffernandes/teaching/2014.1/tic-00.176

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer

Leia mais

Lista de Exercícios 4

Lista de Exercícios 4 Introdução à Teoria de Probabilidade. Informática Biomédica. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 30 de maio de 2007. Lista de Exercícios 4 são difíceis, são bem mais difíceis.

Leia mais

Sequências Generalizando um pouco, podemos então dizer que sequências de elementos são grupos com elementos obedecendo a determinada ordem. Obteremos uma sequência diferente quando se altera a ordem. No

Leia mais

MOQ-13/PO-210: Probabilidade e Estatística

MOQ-13/PO-210: Probabilidade e Estatística Instituto Tecnológico de Aeronáutica Divisão de Engenharia Mecânica MOQ-13/PO-210: Probabilidade e Estatística Profa. Denise Beatriz Ferrari www.mec.ita.br/ denise denise@ita.br 2o. semestre/2017 SEMANA

Leia mais

Definição de Probabilidade

Definição de Probabilidade INTRODUÇÃO A TEORIA DAS PROBABILIDADES A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Departamento de Estatística Prof. Daniel Furtado Ferreira 13 a Lista de Exercícios Práticos Conceitos Básicos de Probabilidade 1) Considere um experimento que consiste em

Leia mais

Probabilidade - aula II

Probabilidade - aula II 25 de Março de 2014 Interpretações de Probabilidade Amostras Aleatórias e Objetivos Ao final deste capítulo você deve ser capaz de: Calcular probabilidades de eventos conjuntos. Interpretar e calcular

Leia mais

ESTATÍSTICA EXPLORATÓRIA

ESTATÍSTICA EXPLORATÓRIA ESTATÍSTICA EXPLORATÓRIA Prof Paulo Renato A. Firmino praf62@gmail.com Aulas 07-08 Probabilidade Apanhado Geral Seguimos nossas discussões sobre a Incerteza Decidir usualmente envolve incerteza Uma presa

Leia mais

Matéria Exame 2 Colegial. Aula 1 Matrizes. Aula 2 Matrizes: Igualdade, adição e subtração. Aulas 3 e 4 Multiplicação de matrizes

Matéria Exame 2 Colegial. Aula 1 Matrizes. Aula 2 Matrizes: Igualdade, adição e subtração. Aulas 3 e 4 Multiplicação de matrizes Matéria Eame Colegial Aula Matries Aula Matries: Igualdade, adição e subtração Aulas e Multiplicação de matries Aulas 5 e 6 Determinantes: Ordens, e Aula 7 Sistemas Lineares Aulas 8 Sistemas Lineares:

Leia mais

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes.

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes. TE802 Processos Estocásticos em Engenharia Conceitos Básicos de Teoria de Probabilidade 7 de março de 2016 Informação sobre a disciplina Terças e Quintas feiras das 09:30 às 11:20 horas Professor: Evelio

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Propostas de resolução MATEMÁTICA A - 1o Ano Probabilidades - Noções gerais Propostas de resolução Exercícios de exames e testes intermédios 1. Organizando todos os resultados possíveis para os dois números possíveis de observar,

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 2 08/11 1 / 25

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula 2 08/11 1 / 25 Probabilidade I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula 2 08/11 1 / 25 Prof. Tarciana Liberal (UFPB) Aula 2 08/11 2 / 25 Para apresentar os conceitos

Leia mais

2. Probabilidade. Aula 3

2. Probabilidade. Aula 3 Aula 3 2. Probabilidade 2-1 Espaços de amostragem e eventos 2-1.1 Experimentos randômicos 2-1.2 Espaços de amostragem 2-1.3 Eventos 2-2 Interpretações de probabilidade 2-2.1 Introdução 2-2.2 Axiomas de

Leia mais