Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação"

Transcrição

1 Polinômios 1. (Ufsc 015) Em relação à(s) proposição(ões) abaixo, é CORRETO afirmar ue: 01) Se o gráfico abaixo representa a função polinomial f, definida em por f(x) ax bx cx d, com a, b e c coeficientes reais, então f() 4. 0) Se f(x) (x ) (x 1) 5ax b, com a e b reais, é divisível por a b 1. 04) As raízes da euação 08) Se f(x) x (p )x e reais, então p. x 9x x ) Os valores reais de p para ue a euação.. (Pucpr 015) Se (x ) é um fator do polinômio igual a: a). b). c). d) 6. e) 6. (x 1), então estão em progressão aritmética de razão 1. g(x) x (p )x x são divisíveis por ( x), com p e x x p 0 admita uma raiz dupla são e x kx 1x 8, então, o valor de k é. (Uece 015) Se a expressão algébrica x 9 se escreve identicamente como a(x 1) b(x 1) c onde a, b e c são números reais, então o valor de a b c é a) 9. b) 10. c) 1. d) 1. Página 1 de 11

2 4. (Espcex (Aman) 015) O polinômio (x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( 1) é a) 10. b) 4. c) 0. d) 4. e) f(x) x x x 1, uando dividido por 5. (Unicamp 015) Seja (a,b,c,d) uma progressão geométrica (PG) de números reais, com razão 0 e a 0. 1 a) Mostre ue x é uma raiz do polinômio cúbico p(x) a bx cx dx. b) Sejam e e f números reais uaisuer e considere o sistema linear nas variáveis x e y, a c x e. Determine para ue valores da razão esse tem solução única. d b y f 6. (Udesc 015) Um polinômio p(x) dividido por x 1 deixa resto 16; por x 1 deixa resto 1, e por x deixa resto 1. Sabendo ue o resto da divisão de p(x) por (x 1)(x 1)x é da forma ax bx c, então o valor numérico da soma das raízes do polinômio ax bx c é: a) 5 b) c) 15 d) 4 e) 7. (Unicamp 014) O polinômio p(x) x x 9x 18 tem três raízes: r, r e s. a) Determine os valores de r e s. b) Calcule p(z) para z = 1+i, onde i é a unidade imaginária. 8. (Pucrj 014) Sabendo ue 1 é raiz do polinômio p(x) é igual a: a) x x b) x x 1 x 1 c) x x d) x x 1 x 1 e) x x x 1 p(x) x ax x, podemos afirmar ue 9. (Pucrs 014) A representação gráfica da função dada por y f(x) ax bx c, sendo a 0, intercepta o eixo das abscissas no ponto em ue x. Então, o resto da divisão de f(x) por x é a) b) 0 c) d) c e) c Página de 11

3 10. (Espcex (Aman) 014) Sabendo ue é uma raiz do polinômio então o conjunto de todos os números reais x para os uais a expressão é: a) {x / 1 x } b) {x 1 / x } c) {x 1 / x 1 ou x } d) {x / x } e) {x / x e x 1} P(x) x 5x x, 11. (Uerj 014) Observe o gráfico da função polinomial de em definida por P(x) x 6x x. P(x) está definida Determine o conjunto solução da ineuação P(x) (Unesp 014) O polinômio P(x) a x x b é divisível por x e, uando divisível por x +, deixa resto 45. Nessas condições, os valores de a e b, respectivamente, são a) 1 e 4. b) 1 e 1. c) 1 e 1. d) e 16. e) 1 e (Pucrj 014) Assinale a alternativa correta: 4 a) x x x x 8 16 b) 4 c) 4 4 d) x x x x e) x x x x 4 8 x x x x 4x 8 16 x x x x 4x Página de 11

4 14. (Uepg 014) Ao dividir o Polinômio P(x) por x, obtém-se o uociente. Nessas condições, assinale o ue for correto. 01) P(x) é divisível por x 1. 0) P(x) é um polinômio do º grau. 04) P(x) 7. 08) O termo independente de x no polinômio vale 11. x 5 e o resto 15. (Unesp 014) Sabe-se ue, na euação x 4x x 6 0, uma das raízes é igual à soma das outras duas. O conjunto solução (S) desta euação é a) S = {,, 1} b) S = {,, + 1} c) S = {+ 1, +, + } d) S = { 1, +, + } e) S = {, + 1, + } 16. (Fuvest 014) Os coeficientes a, b e c do polinômio p(x) x ax bx c são reais. Sabendo ue 1 e 1 αi, com α 0, são raízes da euação p(x) 0 e ue o resto da divisão de p(x) por (x 1) é 8, determine a) o valor de α ; b) o uociente de p(x) por (x 1). i é a unidade imaginária, i (Espm 014) O trinômio a) 0 b) 1 c) d) e) (Ufrgs 014) Considere os polinômios p(x) x e euação p(x) (x), no conjunto dos números reais, é a) 0. b) 1. c). d). e) 4. x ax b é divisível por x e por x 1. O valor de a b é: (x) x x. O número de soluções da Página 4 de 11

5 Gabarito: Resposta da uestão 1: = 18. [01] Incorreta. Do gráfico, sabemos ue as raízes de f são, 1 e 1. Além disso, temse f(0). Desse modo, encontramos f(x) a(x )(x 1)(x 1) f(0) a 1. Portanto, segue ue f() ( )( 1)( 1) 1. [0] Correta. Sabendo ue pelo dispositivo prático de Briot-Ruffini, vem a 7 b a 7 5a b a f(x) x x (15 5a)x 7 b é divisível por Donde obtemos a e b 4. Em conseuência, segue ue a b 1. (x 1), então, [04] Incorreta. Por inspeção, concluímos facilmente ue x 1 é raiz da euação. Ademais, x 0 não é raiz e, portanto, se as raízes constituíssem uma progressão aritmética de razão 1, então elas seriam 1, e. Contudo, segue ue x não é raiz. [08] Incorreta. Se f e g são divisíveis por ( x), então f() g() 0. Porém, tem-se (p ) 0 p. [16] Correta. Toda raiz dupla de x x p 0 também é raiz da euação x 0. Portanto, como as raízes dessa euação são 1 e 1, segue-se ue p ou p. Resposta da uestão : [E] Se (x ) é fator do polinômio dado, então é raiz desse polinômio. Portanto: k k 4 k 6 Página 5 de 11

6 Resposta da uestão : [D] Desenvolvendo e agrupando termos semelhantes, obtemos a(x 1) b(x 1) c ax (a b)x a b c. Assim, para ue a 1 a 1 a b 0 b. a b c 9 c 10 x 9 seja idêntica a(x 1) b(x 1) c, deve-se ter Portanto, temos a b c 1 ( ) Resposta da uestão 4: [A] 5 4 x 0x x x 0x 1 x 0x x 5 4 x 0x x x x x x 0x 1 x 0x 6x 4 Portanto, x 6x r(x) x 6x e Resposta da uestão 5: a) Tem-se ue b a, c a e r( 1) ( 1) 6( 1) 10. d a. Logo, vem p a a a a a a a a 0. Por conseguinte, 1 x é uma raiz do polinômio p(x). b) De (a), obtemos a c x e a a x e. d b y f a a y f Sabendo ue a 0, 0 e, o sistema terá solução única se, e somente se, Página 6 de 11

7 a a a a 5 0 a a 0 a (1 )(1 ) 0. Portanto, além de 0, deve-se ter 1. Resposta da uestão 6: [C] Tem-se, pelo Teorema do Resto, ue p( 1) 16, p(1) 1 e p(0) 1. Além disso, sabemos ue p(x) (x 1)(x 1)x (x) ax bx c, com (x) sendo o uociente da divisão de p(x) por (x 1)(x 1)x. Desse modo, temos p( 1) a b c a b c 16, p(1) a b c 1 e p(0) c c 1. Resolvendo o sistema formado pelas euações a b 17 e a b 1, concluímos ue a 15, b. Portanto, vem ax bx c 15x x 1 e, assim, o resultado pedido é Resposta da uestão 7: a) Fatorando p(x), obtemos p(x) x x 9x 18 x (x ) 9(x ) (x )(x 9). Portanto, r e s. b) Se z 1 i, então p(z) (1 i )(i 9) i 9i i i. z (1 i) i. Logo, Página 7 de 11

8 Resposta da uestão 8: [B] Se p(1) 0, então 1 a Logo, a 0 e, portanto, p(x) x x x(x 1) x(x 1)(x 1). Resposta da uestão 9: [B] Como a função f intercepta o eixo x no ponto (,0), concluímos ue f() = 0. Considerando agora o teorema do resto, temos ue o resto da divisão de f(x) por (x ) é f(). Portanto, o resto é 0. Resposta da uestão 10: [C] Já ue é raiz, podemos utilizar do dispositivo de Briot-Ruffini para determinar as outras raízes e então fazer o estudo do sinal dessa função polinomial. Logo, P(x) ( x ) ( x x 1), fazendo outras duas raízes. x temos x = 1 ou x = -1/, ue são as x 1 0, Fazendo agora o estudo do sinal do polinômio P(x), temos: A expressão P(x) estará definida para P(x) 0, ou seja, 1 x / x 1 ou x Página 8 de 11

9 Resposta da uestão 11: O número é raiz, pois p() = 0. Dividindo p(x) por (x ), temos: Logo, P x x x x 1 Onde suas raízes são 1 x, x. Resolvendo, agora a ineuação P(x) 0 através do gráfico do polinômio P(x). Portanto, a solução da ineuação será dada por 1 1 S x / x ou x. Resposta da uestão 1: [E] De acordo com o Teorema do Resto e as informações do problema, temos ue: P() = 0 e P( ) = 45. Resolvendo o sistema abaixo, temos: 8a 4 b 0 7a 6 b 45 Multiplicando a primeira euação por 1 e somando com a segunda temos: 5a = 5, ou seja, a = 1. Substituindo a = 1 na primeira euação, temos: b = 0, ou seja, b = 1. Página 9 de 11

10 Resposta da uestão 1: [B] Tomando convenientemente x, é fácil ver ue as únicas opções possíveis são as identidades dos itens [A] e [B]. Agora, basta fazer x para concluir ue a identidade correta é a do item [B]. Resposta da uestão 14: = 06. O polinômio P(x) é dado por P(x) (x ) (x 5) x 4x 5x 7. [01] Incorreto. Note ue por x 1. [0] Correto. De fato, o grau de P é P. [04] Correto. Com efeito, tem-se ue P( 1) ( 1) 4 ( 1) 5 ( 1) Logo, P(x) não é divisível [08] Incorreto. O termo independente de x vale 7. Resposta da uestão 15: [B] P(0) Sejam r, s e t as raízes da euação x 4x x 6 0 e considere ue r = s + t. Utilizando a relação de soma de Girard, temos: 4 r s t 1 r r 4 r Concluímos então ue dois é uma de suas raízes. Dividindo, agora x 4x x 6 por (x ) x 4x x 6 (x ) (x x ) 0 x 0 x x x x ou x 1 Logo, S = {,, + 1}. Página 10 de 11

11 Resposta da uestão 16: a) Como os coeficientes de p(x) são números reais, segue-se ue suas raízes são 1, 1 αi e 1 αi. Logo, p(x) (x ( 1))(x (1 αi))(x (1 αi)) (x 1)(x x α 1). Sabendo ue o resto da divisão de p(x) por (x 1) é 8 e α 0, pelo Teorema do Resto, vem p(1) 8 (1 1)(1 1 α 1) 8 α 4 α. b) Utilizando os resultados obtidos em (a), segue ue o uociente de p(x) por x 1 é p(x) (x 1)(x x 5) x x 5. x 1 x 1 Resposta da uestão 17: [D] Tem-se ue x ax b (x )(x 1) x x. Daí segue ue a 1, b e, portanto, a b 1 ( ). Resposta da uestão 18: [D] p(x) (x) x x x x (x x 1) 0 Temos então duas euações: x 0 (já resolvida) ou x x 1 0 (com discriminante Δ 5, portanto, com duas raízes distintas). Portanto, o número de soluções da euação p(x) (x) é. Página 11 de 11

Exercícios de Aprofundamento 2015 Mat - Polinômios

Exercícios de Aprofundamento 2015 Mat - Polinômios Exercícios de Aprofundamento 05 Mat - Polinômios. (Espcex (Aman) 05) O polinômio (x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( ) é a) 0. b) 4. c) 0. d) 4. e) 0. 5 f(x) x x x, uando dividido

Leia mais

POLINÔMIOS. Nível Básico

POLINÔMIOS. Nível Básico POLINÔMIOS Nível Básico. (Eear 07) Considere P(x) x bx cx, tal que P() e P() 6. Assim, os valores de b e c são, respectivamente, a) e b) e c) e d) e. (Epcar (Afa) 05) Considere o polinômio a) x 0 não é

Leia mais

Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2

Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2 Polinômios. (ITA 2005) No desenvolvimento de (ax 2 2bx + c + ) 5 obtém-se um polinômio p(x) cujos coeficientes somam 32. Se 0 e são raízes de p(x), então a soma a + b + c é igual a (A) 2 (B) 4 (C) 2 (D)

Leia mais

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06. (Unicamp 06) Considere o polinômio cúbico p() a, onde a é um número real. a) No caso em que p() 0, determine os valores de para os quais a matriz A abaio não é invertível.

Leia mais

2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1).

2. (Ita 2002) Com base no gráfico da função polinomial y = f(x) esboçado a seguir, responda qual é o resto da divisão de f(x) por (x - 1/2) (x 1). 1 Projeto Jovem Nota 10 Polinômios Lista B Professor Marco Costa 1. (Fuvest 2002) As raízes do polinômio p(x) = x - 3x + m, onde m é um número real, estão em progressão aritmética. Determine a) o valor

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Erivaldo. Polinômios

Erivaldo. Polinômios Erivaldo Polinômios Polinômio ou Função Polinomial Definição: P(x) = a o + a 1.x + a 2.x 2 + a 3.x 3 +... + a n.x n a o, a 1, a 2, a 3,..., a n : Números complexos Exemplos: 1) f(x) = x 2 + 3x 7 2) P(x)

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

Álgebra. Polinômios.

Álgebra. Polinômios. Polinômios 1) Diga qual é o grau dos polinômios a seguir: a) p(x) = x³ + x - 1 b) p(x) = x c) p(x) = x 7 - x² + 1 d) p(x) = 4 ) Discuta o grau dos polinômios em função de k R: a) p(x) = (k + 1)x² + x +

Leia mais

Matemática E Extensivo V. 8

Matemática E Extensivo V. 8 Matemática E Extensivo V. 8 Resolva Aula 9 9.) D x + x 7x 6 = x = é raiz. Aula.) x + px + = Se + i é raiz, então i também é. 5 7 6 Soma = b a = p p = + i + i p = p = Q(x) = x + 5x + Resolvendo Q(x) =,

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x.

Revisão de Função. Inversa e Composta. Professor Gaspar. f : 1,,3, f(x) x 2x 2 e. g(x) x 2x 4. Para qual valor de x tem f(g(x)) g(f(x))? g(x) 2x. Revisão de Função. (Espcex (Aman) 05) Considere a função bijetora f :,,, definida por f(x) x x e seja (a,b) o ponto de intersecção de f com sua inversa. O valor numérico da expressão a b é a). b) 4. c)

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa

Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufv 2000) Sabendo-se que o número complexo z=1+i é raiz do polinômio p(x)=2x +2x +x+a,calcule o valor de a. 2. (Ita 2003) Sejam a, b, c e d constantes reais. Sabendo que a divisão

Leia mais

Visite : e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180

Visite :  e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180 ) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, então temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d) P(0) = e) N.D.A. ) (UFC) Seja P(x) um

Leia mais

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes

Leia mais

Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7

Função Modular. 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 Função Modular 1. (Eear 2017) Seja f(x) x 3 uma função. A soma dos valores de x para os quais a função assume o valor 2 é a) 3 b) 4 c) 6 d) 7 2. (Pucrj 2016) Qual dos gráficos abaixo representa a função

Leia mais

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões: Lista de eercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho Questões: 0.(GV) Num polinômio P() do terceiro grau, o coeficiente de P() = 0, calcule o valor de P( ). é. Sabendo-se

Leia mais

a) 10 b) 7 c) 0 d) 3 e) 4 6. (G1 - cftmg 2013) A soma das raízes da equação a) 7. b) 4. c) 3. d) 5.

a) 10 b) 7 c) 0 d) 3 e) 4 6. (G1 - cftmg 2013) A soma das raízes da equação a) 7. b) 4. c) 3. d) 5. Equações Modulares 1. (Espcex (Aman) 015) O número de soluções da equação 1 x x = x, no conjunto, é a) 1. b). c). d) 4. e) 5.. (Ufsc 014) Assinale a(s) proposição(ões) CORRETA(S). x 1 01) O domínio da

Leia mais

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde

Leia mais

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa 1 1. (Fuvest 97) Suponha que o polinômio do 3 grau P(x) = x + x + mx + n, onde m e n são números reais, seja divisível por x - 1. a) Determine n em função de m. b) Determine m para que P(x) admita raiz

Leia mais

RREGUOJMatemática Régis Cortes. Matemática Régis Cor POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD

RREGUOJMatemática Régis Cortes. Matemática Régis Cor POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD 1 Propriedades importantes: P1 - Toda equação algébrica de grau n possui exatamente n raízes. Exemplo: a equação x 3 - x = 0 possui 3 raízes a saber: x = 0

Leia mais

(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é:

(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é: APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado

Leia mais

8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau

8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau 8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau 9. Quais das seguintes funções são polinomiais? Justifique. a) ( ) b) ( ) c) ( ) d) ( ) e) ( ) 10. Sendo ( ), calcule:

Leia mais

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios Matemática Polinômios CAPÍTULO 02 OPERAÇÕES COM POLINÔMIOS 1 INTRODUÇÃO Como com qualquer outra função, podemos fazer operações de adição, subtração, multiplicação e divisão com polinômios. A soma e a

Leia mais

Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2

Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2 Matemática Frente II CAPÍTULO 22 EQUAÇÕES POLINOMIAIS 1 INTRODUÇÃO Nos capítulos anteriores, durante o estudo de polinômios, já estudamos alguns teoremas que nos ajudam a encontrar as raízes de polinômios.

Leia mais

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, = Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de

Leia mais

CEM Centro De Estudos Matemáticos

CEM Centro De Estudos Matemáticos 1. (Udesc ) Sejam A = (a ij ) e B = (b ij ) matrizes quadradas de ordem 3 de tal forma que: a ij = i + j b ij = j e os elementos de cada coluna, de cima para baixo, formam uma progressão geométrica de

Leia mais

Matemática. Questão 1. 3 a série do Ensino Médio Turma. 2 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO

Matemática. Questão 1. 3 a série do Ensino Médio Turma. 2 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 2 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Dada a equação

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba Professor Gilmar Bornatto

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba Professor Gilmar Bornatto Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba 1. Para fazer uma caixa sem tampa com um único pedaço de papelão, utilizou-se um retângulo de 16 cm de largura por 30 cm

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios Primeira Lista de Exercícios disciplina: Introdução à Teoria dos Números (ITN) curso: Licenciatura em Matemática professores: Marnei L. Mandler, Viviane M. Beuter Primeiro semestre de 2012 1. Determine

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +

Leia mais

. Determine os valores de P(1) e P(22).

. Determine os valores de P(1) e P(22). Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja

Leia mais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por

Leia mais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais

Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira. MAT146 - Cálculo I - Integração por Frações Parciais MAT146 - Cálculo I - Integração por Frações Parciais Alexandre Miranda Alves Anderson Tiago da Silva Edson José Teixeira Iremos agora desenvolver um método para resolver integrais de funções racionais,

Leia mais

RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR

RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR RACIOCÍNIO LÓGICO AULA 11 ÁLGEBRA LINEAR I - POLINÔMIOS POLINÔMIOS E EQUAÇÕES ALGÉBRICAS 1 Definição Seja C o conjunto dos números complexos ( números da forma a + bi, onde a e b são números reais e i

Leia mais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação

Leia mais

EQUAÇÕES POLINOMIAIS

EQUAÇÕES POLINOMIAIS EQUAÇÕES POLINOMIAIS Prof. Patricia Caldana Denominamos equações polinomiais ou algébricas, as equações da forma: P(x)=0, onde P(x) é um polinômio de grau n > 0. As raízes da equação algébrica, são as

Leia mais

Função Inversa. f(x) é invertível. Assim,

Função Inversa. f(x) é invertível. Assim, Função Inversa. (Eear 07) Sabe-se que a função a) b) 4 c) 6 d) x f(x) é invertível. Assim, 5 f () é. (Espm 07) O conjunto imagem de uma função inversível é igual ao domínio de sua x inversa. Sendo f :

Leia mais

Números Complexos. é igual a a) 2 3 b) 3. d) 2 2 2

Números Complexos. é igual a a) 2 3 b) 3. d) 2 2 2 Números Complexos 1. (Epcar (Afa) 01) Considerando os números complexos z 1 e z, tais que: z 1 é a raiz cúbica de 8i que tem afixo no segundo quadrante z é raiz da equação x x 1 0 Pode-se afirmar que z1

Leia mais

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Mostre que MÓDULO 7 Radiciações e Equações 3 + 8 5 + 3 8 5 é múltiplo de 4. 2. a) Escreva A + B como uma soma de radicais simples. b) Escreva

Leia mais

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU

FUNÇÕES(1) FUNÇÃO POLINOMIAL DO 2º GRAU FUNÇÕES(1) FUNÇÃO POLINOMIAL DO º GRAU 1. (Uece 015) Se a função real de variável real, definida por f(1) =, f() = 5 e f(3) =, então o valor de f() é a). b) 1. c) 1. d). f(x) = ax + bx + c, é tal que.

Leia mais

Exercícios de Aprofundamento Mat Sistemas Lineares

Exercícios de Aprofundamento Mat Sistemas Lineares 1. (Unesp 013) Uma coleção de artrópodes é formada por 36 exemplares, todos eles íntegros e que somam, no total da coleção, 113 pares de patas articuladas. Na coleção não há exemplares das classes às quais

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. a) P() = ³ + 7. ² 7. P() = + 7 7

Leia mais

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES

BANCO DE QUESTÕES TURMA PM-PE FUNÇÕES 01. (ESPCEX-AMAN/016) Considere as funções reais f e g, tais que f(x) x 4 e f(g(x)) x 5, onde g(x) é não negativa para todo x real. Assinale a alternativa cujo conjunto contém todos os possíveis valores

Leia mais

Função Logarítmica. 1. (Fuvest 2013) Seja f uma função a valores reais, com domínio D, tal que. f(x) log (log (x x 1)),

Função Logarítmica. 1. (Fuvest 2013) Seja f uma função a valores reais, com domínio D, tal que. f(x) log (log (x x 1)), Função Logarítmica 1. (Fuvest 01) Seja f uma função a valores reais, com domínio D, tal que 10 1 para todo x D. f(x) log (log (x x 1)), O conjunto que pode ser o domínio D é x ; 0 x 1 a) b) x ; x 0 ou

Leia mais

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano Módulo de Equações do Segundo Grau Relações entre coeficientes e raízes. Nono Ano Relações entre Coeficientes e Raízes. Exercícios Introdutórios Exercício. Fazendo as operações de soma e de produto entre

Leia mais

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2006 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Seja E um ponto externo a uma circunferência. Os segmentos e interceptam essa circunferência nos pontos B e A, e, C

Leia mais

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução:

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução: EXERCÍCIOS 01. Calcule o valor numérico de P(x) = 2x 4 x 3 3x 2 + x + 5 para x = i. P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i 02. Dado o polinômio P(x) = x 3 + kx 2 2x + 5, determine

Leia mais

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores

Determinante x x x. x x (Ime 2013) Seja o determinante da matriz. O número de possíveis valores Determinante. (Ime 0) Seja o determinante da matriz de x reais que anulam é a) 0 b) c) d) e) x x x. x x O número de possíveis valores. (Uepg 0) Sobre a matriz cos 0 sen 0 0) A sen 0 cos 0 0) det A. t cos

Leia mais

AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12.

AULA 01 (A) 9. (B) 1. (C) 0. (D) 7. (E) 10. (E) Se k 5 então axterá ( ) grau 1. (D) d(3) 4. (E) d(4) 12. AULA 01 Observe cada um dos polinômios a seguir: x p( x) x 9x 4x x x 7 3 (I) 7 6 5 3 x 3x (II) mx ( ) 5 4 3 (III) n( x) 8x 3x 10x 3 6 Se organizarmos estes polinômios em ordem crescente de grau teremos

Leia mais

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ),

Função Quadrática SUPERSEMI. 1)(Afa 2013) O gráfico de uma função polinomial do segundo grau y = f( x ), Florianópolis Professor: Erivaldo Santa Catarina Função Quadrática SUPERSEMI 1)(Afa 013) O gráfico de uma função polinomial do segundo grau y = f( x ), que tem como coordenadas do vértice (5, ) e passa

Leia mais

Exercícios de Matemática Funções Função Polinomial

Exercícios de Matemática Funções Função Polinomial Exercícios de Matemática Funções Função Polinomial 5. (Unesp) A figura a seguir mostra o gráfico da função polinomial f(x)=ax +x +x,(a 0). 1. (Ufpe) Seja F(x) uma função real, na variável real x, definida

Leia mais

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos.

Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de 3 pontos. Geometria Analítica retas equações e inclinações, distância entre dois pontos, área de triângulo e alinhamento de pontos. 1. (Ufpr 014) A figura abaixo apresenta o gráfico da reta r: y x + = 0 no plano

Leia mais

Inequação Logarítmica

Inequação Logarítmica Inequação Logarítmica. (Fuvest 05) Resolva as inequações: 3 a) 6 0; 3 b) log 6.. (Uerj 05) Ao digitar corretamente a epressão log 0( ) em uma calculadora, o retorno obtido no visor corresponde a uma mensagem

Leia mais

3 + =. resp: A=5/4 e B=11/4

3 + =. resp: A=5/4 e B=11/4 ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 3º ENSINO MÉDIO - PROF. CARLINHOS BONS ESTUDOS! ASSUNTO : POLINÔMIOS 1) Identifique as expressões abaixo que são

Leia mais

Retas Tangentes à Circunferência

Retas Tangentes à Circunferência Retas Tangentes à Circunferência 1. (Fuvest 01) São dados, no plano cartesiano, o ponto P de coordenadas (,6) e a circunferência C de equação um ponto Q. Então a distância de P a Q é a) 15 b) 17 c) 18

Leia mais

1 INTRODUÇÃO 3 RELAÇÕES DE GIRARD 2 SOMAS DE GIRARD. Exercício Resolvido 1. Matemática Polinômios CAPÍTULO 04 RELAÇÕES DE GIRARD

1 INTRODUÇÃO 3 RELAÇÕES DE GIRARD 2 SOMAS DE GIRARD. Exercício Resolvido 1. Matemática Polinômios CAPÍTULO 04 RELAÇÕES DE GIRARD Matemática Polinômios CAPÍTULO 04 RELAÇÕES DE GIRARD 1 INTRODUÇÃO Aprendemos, até agora, a resolver equações do primeiro e do segundo grau. Nossa meta, agora, é encontrar maneiras de resolver equações

Leia mais

... Onde usar os conhecimentos os sobre...

... Onde usar os conhecimentos os sobre... IX NÚMEROS COMPLEXOS E POLINÔMIOS Por que aprender sobre Números Complexos?... Ao estudar os Números Complexos percebemos que sua ligação à geometria nos dá uma perspectiva mais rica dos métodos geométricos

Leia mais

Técnicas de. Integração

Técnicas de. Integração Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO 7.4 Integração de Funções Racionais por Frações Parciais Nessa seção, vamos aprender como integrar funções racionais reduzindo-as a uma soma de

Leia mais

Lista de Função Quadrática e Módulo (Prof. Pinda)

Lista de Função Quadrática e Módulo (Prof. Pinda) Lista de Função Quadrática e Módulo (Prof. Pinda) 1. (Pucrj 015) Sejam as funções f(x) x 6x e g(x) x 1. O produto dos valores inteiros de x que satisfazem a desigualdade f(x) g(x) é: a) 8 b) 1 c) 60 d)

Leia mais

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA

EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA EXERCICIOS DE APROFUNDAMENTO - MATEMÁTICA - RETA - 015 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0),

Leia mais

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU

LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU LISTA DE REVISÃO PROVA TRIMESTRAL DE ÁLGEBRA AULAS 30 a 38 FUNÇÕES DE 1ºGRAU 1. (G1-014) O gráfico representa a função real definida por f(x) = a x + b. O valor de a + b é igual a A) 0,5. B) 1,0. C) 1,5.

Leia mais

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio

Leia mais

Sequências. 1. (Uem 2013) Seja r um número inteiro positivo fixado. Considere a sequência numérica definida por 1 r

Sequências. 1. (Uem 2013) Seja r um número inteiro positivo fixado. Considere a sequência numérica definida por 1 r Sequências. (Uem 03) Seja r um número inteiro positivo fixado. Considere a sequência numérica a definida por r e assinale o que for correto. an an a 0) A soma dos 50 primeiros termos da sequência (a, a,

Leia mais

BLITZ PRÓ MASTER MATEMÁTICA A. em que N 0 é a quantidade inicial, isto é, N0

BLITZ PRÓ MASTER MATEMÁTICA A. em que N 0 é a quantidade inicial, isto é, N0 MATEMÁTICA A 01. (Pucpr) O número de bactérias N em um meio de cultura que cresce exponencialmente pode kt ser determinado pela equação N N0e em que N 0 é a quantidade inicial, isto é, N0 N (0) e k é a

Leia mais

Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que:

Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que: Material by: Caio Guimarães Polinômios A seguir, apresento uma lista de vários exercícios propostos (com gabarito) sobre polinômios. Os exercícios são para complementar a vídeo-aula a respeito de polinômios

Leia mais

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x)

DETERMINANTE Calcule o determinante da matriz obtida pelo produto de A B. sen(x) sec(x) cot g(x) DETERMINANTE 2016 1. (Uerj 2016) Considere uma matriz A com 3 linhas e 1 coluna, na qual foram escritos os valores 1, 2 e 13, nesta ordem, de cima para baixo. Considere, também, uma matriz B com 1 linha

Leia mais

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3

= 2 sen(x) (cos(x) (b) (7 pontos) Pelo item anterior, temos as k desigualdades. sen 2 (2x) sen(4x) ( 3/2) 3 Problema (a) (3 pontos) Sendo f(x) = sen 2 (x) sen(2x), uma função π-periódica, temos que f (x) = 2 sen(x) cos(x) sen(2x) + sen 2 (x) 2 cos(2x) = 2 sen(x) (cos(x) sen(2x) + sen(x) cos(2x) ) = 2 sen(x)

Leia mais

2. (Ufrj 2003) Os números reais a, b, c e d formam, nesta ordem, uma progressão aritmética. Calcule o determinante da matriz

2. (Ufrj 2003) Os números reais a, b, c e d formam, nesta ordem, uma progressão aritmética. Calcule o determinante da matriz 1 Projeto Jovem Nota 10 1. (Uff 2000) Numa progressão aritmética, de termo geral aš e razão r, tem-se a=r=1/2. Calcule o determinante da matriz mostrada na figura adiante. 2. (Ufrj 2003) Os números reais

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Funções polinomiais Logaritmo Aula 03 Funções Polinomiais Introdução: Polinômio Para a sucessão de termos comcom, um polinômio de grau n possui a seguinte forma : Ex : Funções

Leia mais

O problema proposto possui alguma solução? Se sim, quantas e quais são elas?

O problema proposto possui alguma solução? Se sim, quantas e quais são elas? PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas

Leia mais

ASSUNTO:POLINÔMIOS. a) Do 3º grau resp: m ±6 b) Do 2º grau resp: m=6 c) do 1 º grau m=-6

ASSUNTO:POLINÔMIOS. a) Do 3º grau resp: m ±6 b) Do 2º grau resp: m=6 c) do 1 º grau m=-6 ASSUNTO:POLINÔMIOS 1) Identifique as expressões abaixo que são polinômios: a) 3x 3-5x 2 +x-4 b) 5x -4 -x -2 +x-9 c) x 4-16 d)x 2 3 +2x+6 e) x 2 4 resp: a, c,d 2) Dado o polinômio P(x)= 2x 3-5x 2 +x-3.

Leia mais

Gráficos de Logaritmos

Gráficos de Logaritmos Gráficos de Logaritmos 1. (Ueg 013) O gráfico da função y log(x 1) é representado por: a) b) c) d). (Espcex (Aman) 01) Na figura abaixo, dois vértices do trapézio sombreado estão no eixo x e os outros

Leia mais

EFOMM , sabendo-se que I 1 corresponde ao ruído sonoro de 8 decibéis de uma aproximação de dois. metro quadrado.

EFOMM , sabendo-se que I 1 corresponde ao ruído sonoro de 8 decibéis de uma aproximação de dois. metro quadrado. EFOMM 009 (0) Qual é o número inteiro cujo produto por 9 é um número natural composto apenas pelo algarismo? (A) 459 (B) 4569 (C) 45679 (D) 45789 (E) 456789. (0) O logotipo de uma certa Organização Militar

Leia mais

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3

1. (Espcex 2013) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 3 b) 6 3 c) 5 3 d) 4 3 e) 3 3 Complexos 06. (Espcex 0) A figura geométrica formada pelos afixos das raízes complexas da equação a) 7 b) 6 c) 5 d) e) x 8 0 tem área igual a. (Unicamp 0) Chamamos de unidade imaginária e denotamos por

Leia mais

max(x 2x + 2; 1+ x ) = 50, é igual a:

max(x 2x + 2; 1+ x ) = 50, é igual a: . (Ufpr 0) Durante o mês de dezembro, uma loja de cosméticos obteve um total de R$ 900,00 pelas vendas de um certo perfume. Com a chegada do mês de janeiro, a loja decidiu dar um desconto para estimular

Leia mais

O DNA das equações algébricas

O DNA das equações algébricas Reforço escolar M ate mática O DNA das equações algébricas Dinâmica 3 3º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações

Leia mais

NOME DO ALUNO N DISCIPLINA: Matemática DATA: 27/03/2012 CURSO: Ensino Médio ANO: º A / B

NOME DO ALUNO N DISCIPLINA: Matemática DATA: 27/03/2012 CURSO: Ensino Médio ANO: º A / B COLÉGIO ADVENTISTA DE SÃO JOSÉ DO RIO PRETO NOME DO ALUNO N DISCIPLINA: Matemática DATA: 7/0/01 CURSO: Ensino Médio ANO: º A / B BIMESTRE: 1º Complexos: PROFESSOR: Alexandre da Silva Bairrada 1i 1i 1.

Leia mais

Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l

Nota: Turma: MA 327 Álgebra Linear. Terceira Prova. Boa Prova! Primeiro Semestre de T o t a l Turma: Nota: MA 327 Álgebra Linear Primeiro Semestre de 26 Terceira Prova Nome: RA: Questões Pontos Questão 1 Questão 2 Questão 3 Questão 4 Questão 5 T o t a l Boa Prova! Questão 1. 2. Pontos) Seja U um

Leia mais

Exercícios de Aprofundamento Matemática Geometria Analítica

Exercícios de Aprofundamento Matemática Geometria Analítica 1. (Unicamp 015) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta

Leia mais

SUMÁRIO FUNÇÕES POLINOMIAIS

SUMÁRIO FUNÇÕES POLINOMIAIS Curso de Pré Cálculo Dif. Int. I Aula 05 Ministrante Profª. Drª. Luciana Schreiner de Oliveira Material elaborado pelo Programa de Pré-Cálculo da Unicamp http://www.ime.unicamp.br/~chico/ma091/page14.html

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Polinômios TEXTO PARA A PRÓXIMA QUESTÃO (Ufpe) Na(s) questão(ões) a seguir escreva nos parênteses a letra (V) se a afirmativa for verdadeira ou (F) se for falsa. 1. Na figura a

Leia mais

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é Questão 01) O polinômio p(x) = x 3 + x 2 3ax 4a é divisível pelo polinômio q(x) = x 2 x 4. Qual o valor de a? a) a = 2 b) a = 1 c) a = 0 d) a = 1 e) a = 2 TEXTO: 1 Para fazer um estudo sobre certo polinômio

Leia mais

Matemática I Capítulo 11 Função Modular

Matemática I Capítulo 11 Função Modular Nome: Nº Curso: Mecânica Integrado Disciplina: Matemática I 1 Ano Prof. Leonardo Data: / /016 Matemática I Capítulo 11 Função Modular 11.1 - Módulo O módulo, ou valor absoluto, de um número real x representado

Leia mais

NÚMEROS COMPLEXOS

NÚMEROS COMPLEXOS NÚMEROS COMPLEXOS - 016 1. (EFOMM 016) O número complexo, z z (cos θ i sen θ), sendo i a unidade imaginária e 0 θ π, que satisfaz a inequação z i e que possui o menor argumento θ, é a) b) c) d) 5 5 z i

Leia mais

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS

EXERCICIOS DE APROFUNDAMENTO MATEMATICA FUNÇÕES NUMEROS COMPLEXOS 1. (Unicamp 01) Seja r a reta de equação cartesiana x y 4. Para cada número real t tal que 0 t 4, considere o triângulo T de vértices em (0, 0), (t, 0) e no ponto P de abscissa x t pertencente à reta r,

Leia mais

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função polinomial Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Função polinomial Função polinomial:

Leia mais

CPV 82% de aprovação na ESPM

CPV 82% de aprovação na ESPM 8% de aprovação na ESPM ESPM NOVEMBRO/00 Prova E MATemática. Assinale a alternativa cujo valor seja a soma dos valores das demais: a) 0 + b) 5% c) d) 75% de 3 e) log 0,5 a) 0 + + 3,5 5 b) 5 % 5 00 0 0,5

Leia mais

Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0

Circunferências. λ : x y 4x 10y λ : x y 4x 5y 12 0 Circunferências 1. (Espcex (Aman) 014) Sejam dados a circunferência λ : x y 4x 10y 5 0 e o ponto P, que é simétrico de ( 1, 1) em relação ao eixo das abscissas. Determine a equação da circunferência concêntrica

Leia mais

Matrizes. a inversa da matriz , onde cada elemento aij

Matrizes. a inversa da matriz , onde cada elemento aij Matrizes. (Ufpe 03) Seja a c b d a inversa da matriz 3. 4 Indique a b c d.. (Espm 03) A distribuição dos n moradores de um pequeno prédio de apartamentos é 4 x 5 dada pela matriz 3 y, onde cada elemento

Leia mais

Função de 2º Grau. Parábola: formas geométricas no cotidiano

Função de 2º Grau. Parábola: formas geométricas no cotidiano 1 Função de 2º Grau Parábola: formas geométricas no cotidiano Toda função estabelecida pela lei de formação f(x) = ax² + bx + c, com a, b e c números reais e a 0, é denominada função do 2º grau. Generalizando

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016. Gabarito Questão 01 [ 1,00 ] A secretaria de educação de um município recebeu uma certa quantidade de livros para distribuir entre as escolas

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº GABARITO COMENTADO ) A função será y,5x +, onde y (preço a ser pago) está em função de x (número de quilômetros

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

Números Complexos 2017

Números Complexos 2017 Números Complexos 07. (Eear 07) Se i é a unidade imaginária, então i i i é um número complexo que pode ser representado no plano de Argand-Gauss no quadrante. a) primeiro b) segundo c) terceiro d) quarto.

Leia mais

EXERCÍCIOS DE REVISÃO PROVA MENSAL - 1º TRIMESTRE - 3º ANO MATEMÁTICA E SUAS TECNOLOGIAS

EXERCÍCIOS DE REVISÃO PROVA MENSAL - 1º TRIMESTRE - 3º ANO MATEMÁTICA E SUAS TECNOLOGIAS EXERCÍCIOS DE REVISÃO PROVA MENSAL - 1º TRIMESTRE - 3º ANO MATEMÁTICA E SUAS TECNOLOGIAS 1) Assinale a alternativa INCORRETA: A) existe x, x, tal que B) para todo x, x, C) existe um único x, x, tal que

Leia mais

Conteúdo. 2 Polinômios Introdução Operações... 13

Conteúdo. 2 Polinômios Introdução Operações... 13 Conteúdo 1 Conjunto dos números complexos 1 1.1 Introdução.......................................... 1 1.2 Operações (na forma algébrica).............................. 2 1.3 Conjugado..........................................

Leia mais

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e

Equações de 2º grau. Denomina-se equação do 2º grau na incógnita x, toda equação da forma: IR e Equações de 2º grau Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c IR e Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e

Leia mais

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente.

a é sempre o coeficiente de x²; b é sempre o coeficiente de x, c é o coeficiente ou termo independente. Definições Denomina-se equação do 2º grau na incógnita x, toda equação da forma: ax 2 + bx + c = 0; a, b, c Exemplo: x 2-5x + 6 = 0 é um equação do 2º grau com a = 1, b = -5 e c = 6. 6x 2 - x - 1 = 0 é

Leia mais