Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal"

Transcrição

1 Probabilidade

2 Tópicos Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal

3 Conjuntos Conjunto: Na matemática, um conjunto é uma coleção de elementos com características em comum,, geralmente representado por letras maiúsculas Ex: Alunos do Tesla Concursos Elemento: qualquer um dos componentes de um conjunto, geralmente representado por letras minúsculas

4 Conjuntos Os elementos dos conjuntos são divididos em: Elementos pertencem a apenas a um deles (diferença) Pertencem pelo menos a um deles (união). Pertencem ao dois (interseção) Não pertencem a nenhum.

5 Conjuntos Conjuntos União Interseção Diferença

6 Conjuntos Conjuntos k B A y x z

7 Conjuntos Cálculo do total de elementos do conjunto: Total = Grupo 1 + Grupo 2 + Nenhum Ambos No exemplo anterior: Total = (x+y) + (y+z) + k -y

8 Conjuntos Exemplo Dentre os 150 estudantes em uma escola de línguas, 80 estudam Alemão, 66 estudam Inglês e 53 não estudam nem Alemão nem Inglês. Quantos alunos estudam tanto Alemão quanto Inglês?

9 Conjuntos Solução n A x Total = (x+y)+(z+y)+n-y 150 = y y= 49 I y z

10 Conjuntos

11 Conjuntos

12 Conjuntos Total = (X+Z)+(Y+Z)+W-Y=100% (1) 70% dos funcionários ou trabalham no desenvolvimento ou produção: X+Y=70% (2) 1/3 dos funcionários de desenvolvimento também trabalham em produção: D=Y+Z D/3=Z Y=2Z (3) 50% não trabalham em produção: Y+W=50% (4)

13 Conjuntos Substituindo (2) em (1): W+Z=30 (5) Substituindo (3) em (4): W=50-2z (6) Substituindo (5) em (6) 50-2Z+Z=30 Z=20% Resposta C

14 Fatorial Definição: Se n é um inteiro maior que 1, então n fatorial, ou n!, é o produto de todos os inteiros de 1 até n, ou seja: 2!=2 1=2 3!=3 2 1=6 4!= =24 Deve ser utilizada quando você quiser contar quantas possibilidades existem de se organizar um número de objetos de forma distinta. Por definição 0!=1!=1

15 Fatorial Exemplo: Calcule o número de anagramas da palavra LIVRO. Solução O número de anagramas da palavra livro é calculado com o fatorial do seu número de letras: 5! = 5 x 4 x 3 x 2 x1 = 120

16 Permutação Definição: Número de formas diferentes de arranjar elementos sequencialmente (a ordem é importante). n: quantidade de elementos no grupo k: quantidade restrita de elementos a serem permutados.

17 Permutação Exemplo: Grêmio (RS), Flamengo (RJ), Internacional (RS) e São Paulo (SP) disputam um campeonato. Levando-se em conta apenas a unidade da federação de cada um dos clubes, de quantas maneiras diferentes pode terminar o campeonato?

18 Combinação Definição: É o número de maneiras de organizar um grupo de elementos pertencente a um grupo maior, sendo que a ordem dos elementos não é importante. n: quantidade de elementos no grupo k: quantidade restrita de elementos a serem combinados.

19 Combinação Considerando a ocorrência de duas combinações A e B: O número de combinações possíveis com ambos ocorrendo é: CAB= CAxCB

20 Combinação Em permutação a ordem dos elementos é importante: Campeonatos; Eleições; Em combinação a ordem não é importante: Lançamentos de moedas; Sorteio de loteria; Distribuição de pessoas em grupos.

21 Probabilidade Probabilidade é a chance de um evento desejado ocorrer dentre os demais eventos possíveis, ou seja:

22 Probabilidade Determinação do número de eventos possíveis: EP = (Número de possibilidades)número de repetições Exemplos: 4 lançamentos de uma moeda: Ep = [2 possibilidades (cara ou coroa)]4 lançamentos = 24=16 Lançamentos de 2 dados: Ep = [6 possibilidades (números de 1 a 6)]2 lançamentos = 62=36

23 Probabilidade Considerando a ocorrência de dois eventos independentes A e B: Probabilidade de que ambos ocorram P(A B)= P(A) x P(B) Probabilidade de que um ou outro ocorram P(A U B) = P(A) + P(B) Probabilidade de ocorrer o evento A tendo já ocorrido o evento B: P(A/B) = P(A B)/P(B)

24 Combinação Exemplo De quantas maneiras diferentes é possível escolher 3 jogadores para entrar em campo dentre um grupo de 8 jogadores que estão na reserva? Solução: Deve-se realizar uma combinação de 8 jogadores agrupados em 3: Há 56 combinações de 3 jogadores para entrar em campo.

25 Combinação Exercício De um total de 6 pratos à base de carboidratos e 4 pratos à base de proteínas, pretende-se fazer um prato com 5 destes itens, itens diferentes, de forma que os pratos contenham ao menos 2 proteínas. Qual é o número máximo de pratos distintos que pode-se fazer?

26 Combinação

27 Combinação Multiplicando as combinações: Deve-se desconsiderar também as combinações de 5 pratos com carboidratos: Assim, o número máximo de pratos é dado por: = 186 pratos.

28 Combinação Pg 59 2ed Pg 58 3ed

29 Combinação Combinar 3 questões respondidas corretamente dentre as 5 questões. Para cada cartão resposta com 3 questões respondidas corretamente, há 9 possibilidades de responder as 2 questões erradas: Excluindo a alternativa correta da questão, ainda nos resta 3 opções de alternativa errada. Portanto, 3 alternativas de uma questão errada X 3 alternativas da outra questão errada = 9. Assim, o número de cartões-respostas distintos que apresentam exatamente 3 respostas certas são: 10*9 = 90. Resposta E

30 Combinação Pg 59 2ed Pg 59 3ed

31 Combinação Combinar 4 questões respondidas corretamente dentre as 5 questões. O candidato tem 5 maneiras de acertar 4 questões, sendo que para cada uma dessas maneiras ele pode chutar errado 1 questão de 3 formas diferentes, escolhendo 1 das 3 alternativas erradas. Assim, o número de eventos desejados é 3x5 = 15. Sendo o número de eventos possíveis = 45 = 1024, A probabilidade de o candidato acertar exatamente 4 questões é: Resposta A

32 Probabilidade Exemplo Uma bola será retirada de uma sacola contendo 5 bolas verdes e 7 bolas amarelas. Qual a probabilidade desta bola ser verde? Número de eventos desejados: 5 Número de eventos possíveis: 12

33 Probabilidade Exercício Em uma caixa há 2 fichas amarelas, 5 fichas azuis e 7 fichas verdes. Se retirarmos uma única ficha, qual a probabilidade dela ser verde ou amarela?

34 Probabilidade Solução Lembrando que: Probabilidade da ficha ser verde: Probabilidade da ficha ser amarela: Probabilidade da ficha ser verde ou amarela:

35 Probabilidade Exercício Dois dados não viciados são lançados. a)se a soma dos resultados apresentados pelos dados foi 5, qual é a probabilidade de ter ocorrido a face 2 em um deles? b) Se uma face 2 ocorreu, qual é a probabilidade da soma dos dados ser 5?

36 Probabilidade Solução Lembrando que a probabilidade de um evento A ter ocorrido já tendo ocorrido o evento B é: P(A/B) = P(A B)/P(B) Sendo os eventos B: soma 5: Possibilidades = {(1, 4); (2, 3); (3, 2); (4, 1)} A: face 2 Possibilidades = {(1,2); (2, 1); (2, 2); (2, 3); (2, 4); (2, 5); (2, 6); (3, 2); (4, 2); (5, 2); (6, 2)} P(A B) = 2/36 {(2, 3); (3, 2)} P(B) = 4/36, P(A) = 11/36

37 Probabilidade Solução Assim: a) P(A/B) = (2/36) = 1/2 (4/36) b) P(B/A) = (2/36) = 1/2 (11/36)

38 Probabilidade Exercício Em um lote de 12 peças, 4 são defeituosas e 2 peças são retiradas uma após a outra sem reposição. a) Qual a probabilidade de que ambas sejam boas? b) Qual a probabilidade de que ambas sejam defeituosas?

39 Probabilidade Solução a)primeiramente há 8 peças não defeituosas: P1 = 8/12 =2/3 Depois há 7 peças defeituosas de um total de 11. P2 = 7/11 P(1 2)= 2/3 x 7/11 = 14/33 b) Primeiramente há 4 peças defeituosas: P1 = 4/12 =1/3 Depois há 3 peças defeituosas de um total de 11. P2 = 3/11 P(1 2)= 1/3 x 3/11 = 3/33 ou 1/11

40 Probabilidade Exercício 1. Dados os algarismos 1, 2, 3, 4, 5, 6 e 7, constrói-se todos os números que podem ser representados utilizando-se dois deles. Escolhendo ao acaso, qual a probabilidade de o número sorteado ser: a)par b)múltiplo de cinco

41 Probabilidade

42 Probabilidade Solução b) Para o número ser múltiplo de 5, deve terminar em 5 (1 possibilidade) x 6(outros números possíveis) Então, o número de múltiplos de 5 é 1 x 6 = 6. Assim: Pmult=6/42 = 1/7

43 Probabilidade Exercício Um baralho tem 12 cartas, das quais 4 são ases. Retiram se 3 cartas ao acaso. Qual a probabilidade de haver pelo menos um ás entre as cartas retiradas?

44 Probabilidade Solução Sendo a probabilidade de não sair nenhum ás P(0) e a probabilidade de sair pelo menos um ás P(>1), temos que: P(>1)=1-P(0) Então Probabilidade da primeira carta não ser ás: P1=8/12 Probabilidade da segunda carta não ser ás: P2=7/11 Probabilidade da terceira carta não ser ás: P3=6/10

45 Probabilidade Solução P(1 2 3) = 8/12 x 7/11 x 6/10 = 14/55 P(>1)= 1 14/55 = 41/55

46 Probabilidade Exercício Um juiz de futebol possui três cartões no bolso. Um é todo amarelo, outro é todo vermelho e o terceiro é vermelho de um lado e amarelo do outro. Num determinado lance, o juiz retira, ao acaso, um cartão do bolso e mostra a um jogador. A probabilidade de a face que o juiz vê ser vermelha e de a outra face, mostrada ao jogador, ser amarela é: a. 1/2 b. 2/5 c. 1/5 d. 2/3 e. 1/6

47 Probabilidade Solução Sejam: A = cartão com as duas cores ser escolhido. B = face vermelha para o juiz. P(A)= 1/3 P(B)=1/2 P(A B)=1/3x1/2 = 1/6 Resposta E

48 Probabilidade Exercício Dois estudantes são escolhidos aleatoriamente para responder uma pergunta. Se na sala de aula há 5 meninas e 5 meninos, qual a probabilidade de ambos estudantes escolhidos serem meninas?

49 Probabilidade

50 Probabilidade

51 Probabilidade Em 4 lançamentos o número de eventos possíveis é: 2 possibilidades (Cara ou Coroa)4= 2 x 2 x 2 x 2 =16 3 casos possíveis: Caso 1: Coroa Coroa Cara Cara -> 1/16 Caso 2: Coroa Cara Coroa Cara -> 1/16 Caso 3: Cara Coroa Coroa Cara -> 1/16 A probabilidade será a soma das probabilidades, pois o jogo pode terminar com vitória no caso 1 ou caso 2 ou caso 3. + Caso 2 + Caso 3 = 3/16 Alternativa C

52 Probabilidade Pg 60 2ed Pg 59 3ed

53 Probabilidade A probabilidade será a soma de todas essas probabilidades, pois o jogo pode terminar com vitória no 2 ou 3 ou 4 ou 5 ou 6 lances: Alternativa B

54 Combinação Pg 174 2ed Pg 161 3ed

55 Combinação

56 Exemplo (PETROBRAS - Eng. E. Jr - T. e D.) Um equipamento contém itens fabricados por três fornecedores: A, B e C. Cada fornecedor produz, respectivamente, 50%, 40% e 10% do total do número de componentes dessa máquina. O controle de qualidade indicou que a quantidade de produtos defeituosos de cada um desses fornecedores é 1%, 5% e 15%, respectivamente. Se um item da máquina escolhido ao acaso é inspecionado e verifica-se que está defeituoso, a probabilidade de ter sido produzido pelo fornecedor A é de: a) 50% b) 37,5% c) 12,5% d) 10% e) 0,05%

57 Exemplo Solução Supondo peças A = 5000 B = 4000 C = 1000 com defeito A = 50 B = 200 C = 150 Total defeituoso = 400 PA = (no. defeitos A)/(no. defeitos total) = 50/400 = 12,5% Alternativa (C)

58 Exemplo -(PETROBRAS - Eng. Petróleo Jr) O gerente de um projeto quer dividir sua equipe, que é composta de 12 pessoas, em três grupos de quatro pessoas cada um. Entretanto, duas dessas pessoas, João e Maria, por questões de perfil profissional, serão colocadas em grupos diferentes. O número de maneiras distintas que esse gerente tem para dividir sua equipe segundo a forma descrita é (A) 930 (B) (C) (D) (E)

59 Exemplo Solução Grupo 1: J Grupo 2: M Grupo 3: = (10 X 9 X 8) / 3! = 120 = (7 X 6 X 5) / 3! = 35 = (4 X 3 X 2 X 1) / 4! = 1 Total: 120 X 35 X 1 = 4200 Alternativa (C)

60 Triângulo de Pascal Definição: é um triângulo aritmético formado por números que têm diversas relações entre si. É construído denominando-se as linhas de n = 1, 2,... e as colunas de k = 0, 1, 2,... Cada entrada C(n,k) é a soma do número acima com o da sua esquerda (também acima) de cada número.

61 Triângulo de Pascal

62 Triângulo de Pascal Coeficientes binomiais: uma das aplicações do triângulo de Pascal é a determinação dos coeficientes binomiais quando se faz a expansão do binômio de Newton: Ex: (p+q)2 = 1p2 + 2pq + 1q2 tem os coeficientes 1, 2 e 1, que estão, precisamente, na linha n = 2 no triângulo.

63 Binômio de Newton Definição: é todo binômio da forma (a + b)n, sendo n um número natural, que é chamado de ordem do binômio. Assim, para determinar quais são as combinações possíveis quando uma distribuição possui os parâmetros p e q, faz-se a expansão do Binômio de Newton: (p + q)n

64 Binômio de Newton Para expandir uma equação, pode-se seguir os passos: 1. Deve existir o termo p.q em todos os termos. 2. No primeiro membro atribui-se ao expoente de p o valor n e ao expoente de q o valor 0. A seguir diminui-se de 1 o valor do expoente de p e aumenta-se de 1 o valor do expoente de q. Continua-se até o último membro que deve ter o valor 0 no expoente de p o valor n no expoente de q. 3. A soma dos expoentes de cada membro deve ser igual ao expoente do binômio.

65 Binômio de Newton 4. Toma-se a sequência numérica obtida no triângulo referente ao número de combinações usado e distribui-se, ordenadamente.

66 Binômio de Newton Exemplo Use o binômio de Newton para expandir (2x -y)4

67 Binômio de Newton Solução Sendo p=2x e q=-y e n=4, temos que: Devem-se usar todos os termos multiplicados aumentando-se o expoente de q e diminuindo o de p (2x -y)4 = (-2x)4y0+(-2x)3y1+(-2x)2y2+(-2x)1y3+(-2x)0y4 (2x -y)4 = 16x4-8x3y+4x2y2-2x1y3+y4

68 Binômio de Newton Solução: Agora deve-se adicionar os coeficientes utilizando-se o triângulo de pascal, na linha n=4 (2x -y)4 = 1 16x4-4 8x3y+6 4x2y2-4 2x1y3+1 y4 (2x -y)4 =4x4-32x3y+24x2y2-8xy3+y4

69 Binômio de Newton Exercício: Desenvolvendo o binômio (2x - 3y)3n, obtemos um polinômio de 16 termos. Qual o valor de n?

70 Binômio de Newton Exercício: Desenvolvendo o binômio (2x - 3y)3n, obtemos um polinômio de 16 termos. Qual o valor de n?

71 Binômio de Newton Solução: Se o desenvolvimento do binômio possui 16 termos, então o expoente do binômio é igual a 15. Logo, 3n = 15 de onde conclui-se que n = 5.

72 Triângulo de Pascal

73 Triângulo de Pascal

74 Triângulo de Pascal Exercício A soma dos coeficientes do desenvolvimento de (2x + 3y)m é 625. O valor de m é:

75 Triângulo de Pascal Solução A soma dos coeficientes do binômio é o mesmo que a soma da linha correspondente à m no triângulo de Pascal, assim: No binômio: (2x + 3y)m, temos = 5, assim: 5m= 625 m=4

Estatística Aplicada. Prof. Carlos Alberto Stechhahn EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE. Administração. p(a) = n(a) / n(u)

Estatística Aplicada. Prof. Carlos Alberto Stechhahn EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE. Administração. p(a) = n(a) / n(u) Estatística Aplicada Administração p(a) = n(a) / n(u) EXERCÍCIOS - REVISÃO ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE Prof. Carlos Alberto Stechhahn 2014 1. Tema: Noções de Probabilidade 1) Considere o lançamento

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

Roteiro D. Nome do aluno: Número: Revisão. Combinações;

Roteiro D. Nome do aluno: Número: Revisão. Combinações; Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Roteiro D Nome do aluno: Número: Periodo: Grupo: Revisão Tópicos Tarefa Pesquisar história do Fatorial e outros tipos

Leia mais

Probabilidade em espaços discretos. Prof.: Joni Fusinato

Probabilidade em espaços discretos. Prof.: Joni Fusinato Probabilidade em espaços discretos Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Probabilidade em espaços discretos Definições de Probabilidade Experimento Espaço Amostral Evento Probabilidade

Leia mais

1 Definição Clássica de Probabilidade

1 Definição Clássica de Probabilidade Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica

Leia mais

LISTA 29 - PROBABILIDADE 1

LISTA 29 - PROBABILIDADE 1 LISTA 9 - PROBABILIDADE ) Um time de futebol amador ganhou uma taça ao vencer um campeonato. Os jogadores decidiram que o próprio seria guardado na casa de um deles. Todos quiseram guardar a taça em suas

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Segunda Lista de Exercícios

UNIVERSIDADE FEDERAL DA PARAÍBA. Cálculo das Probabilidades e Estatística I. Segunda Lista de Exercícios UNIVERSIDADE FEDERAL DA PARAÍBA Cálculo das Probabilidades e Estatística I Professora: Juliana Freitas Pires Segunda Lista de Exercícios Questão 1. Descreva o espaço amostral para cada um dos seguintes

Leia mais

Q05. Ainda sobre os eventos A, B, C e D do exercício 03, quais são mutuamente exclusivos?

Q05. Ainda sobre os eventos A, B, C e D do exercício 03, quais são mutuamente exclusivos? LISTA BÁSICA POIA PROBABILIDADES A história da teoria das probabilidades teve início com os jogos de cartas, de dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis

Leia mais

AULA 08 Probabilidade

AULA 08 Probabilidade Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral

Leia mais

Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais.

Lista de exercícios de Matemática Eventos, espaço amostral e definição de probabilidade. Probabilidade condicional. Exercícios gerais. p: João Alvaro w: www.matemaniacos.com.br e: joao.baptista@iff.edu.br. No lançamento de dois dados, D e D 2, tem-se o seguinte espaço amostral, dado em forma de tabela de dupla entrada. Lista de exercícios

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues Unidade IV ESTATÍSTICA Prof. Fernando Rodrigues Análise combinatória Analise combinatória é a área da Matemática que trata dos problemas de contagem. Ela é utilizada para contarmos o número de eventos

Leia mais

Prof.: Joni Fusinato

Prof.: Joni Fusinato Introdução a Teoria da Probabilidade Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso

Leia mais

MATEMÁTICA MÓDULO 4 PROBABILIDADE

MATEMÁTICA MÓDULO 4 PROBABILIDADE PROBABILIDADE Consideremos um experimento com resultados imprevisíveis e mutuamente exclusivos, ou seja, cada repetição desse experimento é impossível prever com certeza qual o resultado que será obtido,

Leia mais

Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística. Probabilidades

Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística. Probabilidades Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística Probabilidades Aluna(o): Aluna(o): Turma: Responsável: Prof. Silvano Cesar da Costa L O N D R I N A Estado do Paraná

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades 08/06/07 Universidade Federal do Pará Instituto de Tecnologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Engenharia Mecânica Universidade Federal do Pará Instituto

Leia mais

Introdução à Estatística

Introdução à Estatística Introdução à Estatística Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Introdução a Probabilidade Existem dois tipos de experimentos:

Leia mais

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Revisando - Análise combinatória

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2

2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2 GET00189 Probabilidade I Lista de exercícios - Capítulo 1 Profa. Ana Maria Lima de Farias SEÇÃO 1.1 Experimento aleatório, espaço amostral e evento 1. Lançam-se três moedas. Enumere o espaço amostral e

Leia mais

Aulas particulares. Conteúdo

Aulas particulares. Conteúdo Conteúdo Capítulo 6...2 Probabilidade...2 Exercícios...4 Restpostas...9 Capítulo 7... 12 Análise combinatória... 12 Fatorial... 12 Arranjo... 13 Combinação... 16 Exercícios... 17 Respostas... 22 1 Capítulo

Leia mais

Prof.Letícia Garcia Polac. 26 de setembro de 2017

Prof.Letícia Garcia Polac. 26 de setembro de 2017 Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

Matemática E Intensivo V. 2

Matemática E Intensivo V. 2 Matemática E Intensivo V. Exercícios 0) a) b) c) 8 8 8 a) 8 = =!! C = = ( 8 )!!!! b) 0 0 0 0 = =!! C = = ( 0 )!! 8!! n 0 n n c) Cn 0 = =!! = = ( n 0)! 0! n! 0) 0x O terceiro termo é dado por: T r + = n

Leia mais

Sequências Generalizando um pouco, podemos então dizer que sequências de elementos são grupos com elementos obedecendo a determinada ordem. Obteremos uma sequência diferente quando se altera a ordem. No

Leia mais

UFPE, 2-o semestre de ET-622 Elementos de Estatística para o curso de Biblioteconomia Professor André Toom. Ementa

UFPE, 2-o semestre de ET-622 Elementos de Estatística para o curso de Biblioteconomia Professor André Toom. Ementa [1] Avisos: UFPE, 2-o semestre de 2011. ET-622 Elementos de Estatística para o curso de Biblioteconomia Professor André Toom Ementa Notações: v.a. - variável aleatória, E - esperança matemática, o mesmo

Leia mais

Probabilidade e Estatística Preparação para P1

Probabilidade e Estatística Preparação para P1 robabilidade e Estatística reparação para rof.: Duarte ) Uma TV que valia R$ 00,00, entrou em promoção e sofreu uma redução de 0% em seu preço. Qual é o novo preço da TV? ) Um produto foi vendido por R$

Leia mais

Módulo Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 2 ano/e.m.

Módulo Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 2 ano/e.m. Módulo Binômio de Newton e o Triângulo de Pascal Desenvolvimento Multinomial. 2 ano/e.m. Binômio de Newton e o Triângulo de Pascal. Desenvolvimento Multinomial. 1 Exercícios Introdutórios Exercício 1.

Leia mais

Estatística Planejamento das Aulas

Estatística Planejamento das Aulas 7 de outubro de 2018 Fatorial Para n inteiro não negativo. O fatorial de n é definido por: Convenciona-se: Para n = 0, 0! = 1 Para n = 1, 1! = 1 Exemplos: 1. 6! = 6.5.4.3.2.1 = 720 2. 4! = 4.3.2.1 = 24

Leia mais

Exercícios de Probabilidade - Lista 1. Profa. Ana Maria Farias

Exercícios de Probabilidade - Lista 1. Profa. Ana Maria Farias Exercícios de Probabilidade - Lista 1 Profa. Ana Maria Farias 1. Lançam-se três moedas. Enumere o espaço amostral e os eventos A = faces iguais ; B = cara na primeira moeda ; C = coroa na segunda e terceira

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

CAPÍTULO 3 PROBABILIDADE

CAPÍTULO 3 PROBABILIDADE CAPÍTULO 3 PROBABILIDADE 1. Conceitos 1.1 Experimento determinístico Um experimento se diz determinístico quando repetido em mesmas condições conduz a resultados idênticos. Exemplo 1: De uma urna que contém

Leia mais

Probabilidade Condicional (grupo 2)

Probabilidade Condicional (grupo 2) page 39 Capítulo 5 Probabilidade Condicional (grupo 2) Veremos a seguir exemplos de situações onde a probabilidade de um evento émodificadapelainformação de que um outro evento ocorreu, levando-nos a definir

Leia mais

Lista 10 Análise Combinatória e Probabilidade

Lista 10 Análise Combinatória e Probabilidade Lista 10 Análise Combinatória e Probabilidade 1) Dada a palavra AMORECO, responda as seguintes questões: a) Quantos são seus anagramas? = 2520 b) Quantas são os anagramas que começam e terminam por consoante?.

Leia mais

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES

COLEÇÃO DARLAN MOUTINHO VOL. 01 RESOLUÇÕES COLEÇÃO DARLAN MOUTINHO VOL. 0 RESOLUÇÕES Me ta PÁGINA 8 0 0 Havendo apenas bolas verdes e azuis na urna, segue que a resposta é dada por Basta dividirmos o número de ocorrências, pelo número total de

Leia mais

Matemática E Extensivo V. 5

Matemática E Extensivo V. 5 Extensivo V. Exercícios 0) Casos possíveis: {,,,,, } Casos favoráveis: {,, } Assim, a probabilidade é: 0) 70% P Casos possíveis: 7 + 0 possibilidades Casos favoráveis: 7 (7 bolas pretas) P 7 0,7 70% 0

Leia mais

Módulo de Probabilidade Condicional. Lei Binomial da Probabilidade. 2 a série E.M.

Módulo de Probabilidade Condicional. Lei Binomial da Probabilidade. 2 a série E.M. Módulo de Probabilidade Condicional Lei Binomial da Probabilidade. a série E.M. Probabilidade Condicional Lei Binomial da Probabilidade Exercícios Introdutórios Exercício. Uma moeda tem probabilidade p

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a

Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a Lista 2 Estatística 1. Uma urna possui 6 bolas azuis, 10 bolas vermelhas e 4 bolas amarelas. Tirando-se uma bola com reposição, calcule a probabilidade se sair bola: a. azul; b. vermelha; c. amarela. 2.

Leia mais

PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO

PROBABILIDADES PROBABILIDADE DE UM EVENTO EM UM ESPAÇO AMOSTRAL FINITO PROBABILIDADES Probabilidade é um conceito filosófico e matemático que permite a quantificação da incerteza, permitindo que ela seja aferida, analisada e usada para a realização de previsões ou para a

Leia mais

Matemática 2 Prof. Heitor Achilles

Matemática 2 Prof. Heitor Achilles 2 ª SÉRIE EM ORIENTAÇÕES FINAIS Matemática 2 Prof. Heitor Achilles ORIENTAÇÃO DE ESTUDO CONTEÚDOS PARA A RECUPERAÇÃO FINAL COMBINATÓRIA: PFC, Permutações simples, Combinações simples, Permutação com elementos

Leia mais

Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução

Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma

Leia mais

UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática

UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática 1 a Lista de Exercícios de Probabilidade e Estatística 1.

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Gravitação F = GM 1 M 2 /r 2. Aceleração clássica. v = at. Aceleração relativística

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Gravitação F = GM 1 M 2 /r 2. Aceleração clássica. v = at. Aceleração relativística Determinístico Sistema Real Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Gravitação F GM 1 M 2 /r 2 Causas Efeito Aceleração clássica v at Aceleração relativística

Leia mais

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da

Leia mais

Matemática E Extensivo V. 5

Matemática E Extensivo V. 5 Extensivo V Exercícios 0) a) / b) / c) / a) N(E) N(A), logo P(A) b) N(E) N(A), logo P(A) c) N(E) N(A), logo P(A) 0) a) 0 b) / % c) 9/0 90% d) /0 % 0) E a) N(E) 0 + + + 0 b) N(E) 0 N(A), logo P(A) 0, %

Leia mais

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M. Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com

Leia mais

1. (Meyer,2000) Suponha que o conjunto fundamental seja formado pelos inteiros positivos

1. (Meyer,2000) Suponha que o conjunto fundamental seja formado pelos inteiros positivos Universidade de São Paulo Escola Superior de Agricultura Luiz de Queiroz Disciplina: LCE0211-Estatística Geral Prof. Idemauro Antonio Rodrigues de Lara 4 a lista de exercícios 1. (Meyer,2000) Suponha que

Leia mais

2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2

2. Nas Figuras 1a a 1d, assinale a área correspondente ao evento indicado na legenda. Figura 1: Exercício 2 GET00116 Fundamentos de Estatística Aplicada Lista de exercícios Probabilidade Profa. Ana Maria Lima de Farias Capítulo 1 Probabilidade: Conceitos Básicos 1. Lançam-se três moedas. Enumere o espaço amostral

Leia mais

Física do Calor - 23ª Aula. Prof. Alvaro Vannucci

Física do Calor - 23ª Aula. Prof. Alvaro Vannucci Física do Calor - 23ª Aula Prof. Alvaro Vannucci Na última aula vimos exemplos de como efetuar a Permutação de um conjunto de n elementos envolvendo p situações (p estados) possíveis. Por exemplo, como

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Científica Matemática Probabilidades e Estatística Curso Engenharia do Ambiente º Semestre º Ficha n.º: Probabilidades e Variáveis Aleatórias. Lançam-se ao acaso moedas. a) Escreva o espaço de resultados

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

ANÁLISE COMBINATÓRIA

ANÁLISE COMBINATÓRIA ANÁLISE COMBINATÓRIA 1) (PUC) A soma das raízes da equação (x + 1)! = x 2 + x é (a) 0 (b) 1 (c) 2 (d) 3 (e) 4 2) (UFRGS) Um painel é formado por dois conjuntos de sete lâmpadas cada um, dispostos como

Leia mais

Probabilidades. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Probabilidades. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Probabilidades Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo 1 / 41 Noções Básicas Os métodos estatísticos para análise de dados estão associados

Leia mais

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico.

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico. Tipos de Modelo Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM 1 M 2 /r 2 Causas Efeito

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE

PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE PRINCIPAIS DISTRIBUIÇÕES DISCRETAS DE PROBABILIDADE 3.1 INTRODUÇÃO Muitas variáveis aleatórias associadas a experimentos aleatórios têm propriedades similares e, portanto, podem ser descritas através de

Leia mais

COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 O QUE É COMBINATÓRIA

COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 O QUE É COMBINATÓRIA Matemática Discreta Capítulo 2 SUMÁRIO COMBINATÓRIA ELEMENTAR BASEADO EM TOWNSEND (1987), CAP. 2 Newton José Vieira 23 de setembro de 2007 Problemas Básicos de Combinatória As Regras da Soma e do Produto

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO

Leia mais

Exercícios de Probabilidade

Exercícios de Probabilidade Exercícios de Probabilidade Fernando Loureiro 7 de Junho de 06 Exercícios Resolvidos. (ESGRANRIO/PETROBRAS 0) Um jogo consiste em lançar uma moeda honesta até obter duas caras consecutivas ou duas coroas

Leia mais

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três. 1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica

Leia mais

c) 17 b) 4 17 e) 17 21

c) 17 b) 4 17 e) 17 21 Probabilidade I Exercícios. Dois jogadores A e B vão lançar um par de dados. Eles combinam que se a soma dos números dos dados for 5, A ganha e se a soma for 8, B é quem ganha. Os dados são lançados. Sabe-se

Leia mais

Probabilidade Condicional. Prof.: Ademilson

Probabilidade Condicional. Prof.: Ademilson Probabilidade Condicional Prof.: Ademilson Operações com eventos Apresentam-se abaixo algumas propriedades decorrentes de complementação, união e interseção de eventos, úteis no estudo de probabilidade.

Leia mais

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M. Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com

Leia mais

3 a Lista de PE. Universidade de Brasília Departamento de Estatística

3 a Lista de PE. Universidade de Brasília Departamento de Estatística Universidade de Brasília Departamento de Estatística 3 a Lista de PE 1. Duas bolas são escolhidas aleatoriamente de uma urna contendo 8 bolas brancas, 4 pretas, e duas bolas laranjas. Suponha que um jogador

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.

Leia mais

Lista 3 - Introdução à Probabilidade e Estatística

Lista 3 - Introdução à Probabilidade e Estatística Lista - Introdução à Probabilidade e Estatística Probabilidade em Espaços Equiprováveis 1 Num evento científico temos 1 físicos e 11 matemáticos. Três deles serão escolhidos aleatoriamente para participar

Leia mais

!

! SEGUNDO ANO ANÁLISE COMBINATÓRIA 1) Uma empresa tem 4 executivos. De quantas formas podem ser escolhidos o presidente e o seu vice? São 4 executivos, mas só dois podem ser escolhidos, a ordem importa,

Leia mais

Probabilidade Parte 2. Iva Emanuelly P. Lima

Probabilidade Parte 2. Iva Emanuelly P. Lima Probabilidade Parte 2 Iva Emanuelly P. Lima Probabilidade Condicional É um segundo evento que ocorre depois que já tenha ocorrido o primeiro de um mesmo espaço amostral. É uma condição. Ou seja, a probabilidade

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

A B e A. Calcule as suas respectivas probabilidades.

A B e A. Calcule as suas respectivas probabilidades. UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS DEPTO. DE ESTATÍSTICA LISTA 2-BIOESTATÍSTICA II (CE020) Prof. Benito Olivares Aguilera 1 o Sem./17 1. Expresse em termos de operações entre eventos:

Leia mais

Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Probabilidade Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Experimento aleatório Definição. Qualquer experimento cujo resultado não pode

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística Probabilidade Disciplina: Cálculo das Probabilidades e Estatística I Prof. Tarciana Liberal Existem muitas situações que envolvem incertezas:

Leia mais

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência

Leia mais

Portal da OBMEP. Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE. Fração como Probabilidade. Sexto Ano do Ensino Fundamental

Portal da OBMEP. Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE. Fração como Probabilidade. Sexto Ano do Ensino Fundamental Material Teórico - Módulo de FRAÇÃO COMO PORCENTAGEM E COMO PROBABILIDADE Fração como Probabilidade Sexto Ano do Ensino Fundamental Prof. Francisco Bruno Holanda Prof. Antonio Caminha Muniz Neto 1 Introdução

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios ) (UFRGS/20) Observe a figura abaixo. Na figura, um triângulo equilátero está inscrito em um círculo, e um hexágono regular está circunscrito ao mesmo círculo. Quando se lança um

Leia mais

5) São quantos os números ímpares com três algarismos, que não possuem dígitos repetidos e que de trás para frente também são ímpares?

5) São quantos os números ímpares com três algarismos, que não possuem dígitos repetidos e que de trás para frente também são ímpares? ANÁLISE COMBINATÓRIA PRINCÍPIO FUNDAMENTAL DA CONTAGEM O princípio fundamental da contagem diz que um evento que ocorre em n situações independentes e sucessivas, tendo a primeira situação ocorrendo de

Leia mais

Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo

Probabilidade. Ricardo Ehlers Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Probabilidade Ricardo Ehlers ehlers@icmc.usp.br Departamento de Matemática Aplicada e Estatística Universidade de São Paulo Introdução Experimento aleatório Definição Qualquer experimento cujo resultado

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer

Leia mais

3 a Lista de PE Solução

3 a Lista de PE Solução Universidade de Brasília Departamento de Estatística 3 a Lista de PE Solução. Se X representa o ganho do jogador, então os possíveis valores para X são,, 0, e 4. Esses valores são, respectivamente, correspondentes

Leia mais

Exemplo 2: Considere um dado viciado em que as probabilidades P({1}) = P({3}) = P({5}) = k e P({2}) = P({4}) = P({6}) = 2k.

Exemplo 2: Considere um dado viciado em que as probabilidades P({1}) = P({3}) = P({5}) = k e P({2}) = P({4}) = P({6}) = 2k. Probabilidades Aulas 53 e 5 prof. Aguiar - 03 Aula 53 Probabilidades Exemplo : Considere um dado honesto: Os eventos elementares são {}, {}, {3}, {}, {5} e {6} A probabilidade de sair qualquer evento elementar

Leia mais

Matemática. Probabilidade Básica. Professor Dudan.

Matemática. Probabilidade Básica. Professor Dudan. Matemática Probabilidade Básica Professor Dudan www.acasadoconcurseiro.com.br Matemática PROBABILIDADE Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr.

Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. 1 Ciclo 3 Encontro 2 PROBABILIDADE Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Probabilidade 2 Texto: Módulo Introdução à Probabilidade O que é probabilidade? parte 1 de Fabrício Siqueira

Leia mais

TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES

TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO.º ANO COMPILAÇÃO TEMA COMBINATÓRIA E PROBABILIDADES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA COMBINATÓRIA E PROBABILIDADES Matemática A.º Ano

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

ESTATÍSTICA EXPLORATÓRIA

ESTATÍSTICA EXPLORATÓRIA ESTATÍSTICA EXPLORATÓRIA Prof Paulo Renato A. Firmino praf62@gmail.com Aulas 07-08 Probabilidade Apanhado Geral Seguimos nossas discussões sobre a Incerteza Decidir usualmente envolve incerteza Uma presa

Leia mais

Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan

Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan Matéria: Matemática Assunto: Probabilidade básica Prof. Dudan Matemática Probabilidade Denifinição 0 P 1 Eventos favoráveis Probabilidade = Total de eventos 1. Se a probabilidade de chover num dia de

Leia mais

Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema.

Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema. PROBABILIDADE CONDICIONAL E DISTRIBUIÇÃO BINOMINAL 1. PROBABILIDADE CONDICIONAL Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema. Suponha que um redator

Leia mais

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3

Leia mais

Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas. Probabilidades. Cristian Villegas

Escola Superior de Agricultura Luiz de Queiroz, Departamento de Ciências Exatas. Probabilidades. Cristian Villegas Probabilidades Cristian Villegas clobos@usp.br Setembro de 2013 Apostila de Estatística (Cristian Villegas) 1 Introdução Escola Superior de Agricultura "Luiz de Queiroz", Departamento de Ciências Exatas

Leia mais

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci Termo-Estatística (2013) 2ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair

Leia mais

No lançamento de uma moeda, a probabilidade de ocorrer cara ou coroa é a mesma. Como se calcula a probabilidade de determinado evento?

No lançamento de uma moeda, a probabilidade de ocorrer cara ou coroa é a mesma. Como se calcula a probabilidade de determinado evento? Probabilidade Introdução Dentro de certas condições, é possível prever a que temperatura o leite ferve. Esse tipo de experimento, cujo resultado é previsível, recebe o nome de determinístico. No entanto,

Leia mais

Matemática E Extensivo V. 5

Matemática E Extensivo V. 5 Extensivo V. Exercícios 0) Casos possíveis: {,,,,, } Casos favoráveis: {,, } Assim, a probabilidade é: 0) 70% P Casos possíveis: 7 + 0 possibilidades Casos favoráveis: 7 (7 bolas pretas) P 7 0,7 70% 0

Leia mais

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS

RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS CENTRO UNIVERSITÁRIO FRANCISCANO Curso de Administração Disciplina: Estatística I Professora: Stefane L. Gaffuri RESOLUÇÃO DAS ATIVIDADES E FORMALIZAÇÃO DOS CONCEITOS Sessão 1 Experimentos Aleatórios e

Leia mais

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL.

Estatística Aplicada. Prof. Carlos Alberto Stechhahn PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL. Estatística Aplicada Administração p(a) = n(a) / n(u) PARTE I ESPAÇO AMOSTRAL - EVENTOS PROBABILIDADE PROBABILIDADE CONDICIONAL Prof. Carlos Alberto Stechhahn 2014 1. Noções de Probabilidade Chama-se experimento

Leia mais