Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Unidade IV ESTATÍSTICA. Prof. Fernando Rodrigues"

Transcrição

1 Unidade IV ESTATÍSTICA Prof. Fernando Rodrigues

2 Análise combinatória Analise combinatória é a área da Matemática que trata dos problemas de contagem. Ela é utilizada para contarmos o número de eventos em uma dada situação. Por exemplo, se numa eleição para o Grêmio Estudantil de uma faculdade, existem três candidatos a presidente (A, B e C) e dois a vice-presidente (D e E), quais e quantos serão os possíveis resultados?

3 Análise combinatória

4 Análise combinatória Princípio da multiplicação: Se um acontecimento ocorrer por várias etapas sucessivas e independentes, sendo: p1 o número de possibilidades da 1a etapa, p2 o número de possibilidades da 2a etapa, pn o número de possibilidades da n etapa, então o número total de possibilidades do acontecimento ocorrer é: p1x p2 x... x pn

5 Análise combinatória Exemplo: Há dois caminhos ligando as vilas A e B e três outros ligando B a C. Para uma pessoa ir de A até C, terá as possibilidades: P(A B) = 2 P(B C) =3 Então: P(A C) = P(A B). P(B C) = 2. 3 = 6

6 Análise combinatória Exemplo: Considerando que uma pessoa tem: 2 bermudas (preta e cinza) e; 4 camisetas (branca, verde, amarela e roxa). De quantas maneiras diferentes ela poderá se vestir usando uma bermuda e uma camiseta?

7 Análise combinatória Bermuda Camiseta Resultado B PB P V PV A PA R PR 8 B CB V CV C A CA R CR 8 resultados possíveis

8 Análise combinatória Vamos estudar agora problemas de contagem relacionados a diferentes maneiras de agrupar elementos de um conjunto. Vamos considerar 3 maneiras de formar agrupamentos simples, de elementos distintos. Estas 3 maneiras são: Arranjos. Permutações. Combinações.

9 Análise combinatória Chamamos de arranjo dos elementos de um conjunto aos agrupamentos formados por grupos de elementos distintos retirados dos componentes do conjunto principal. Se um conjunto possui n elementos, formamos outros agrupamentos com k elementos distintos (k < n) escolhidos entre os n existentes. O conceito de Arranjo é empregado em problemas onde a ordem dos elementos é importante.

10 Análise combinatória Exemplo: Considerando um conjunto formado pelos elementos X: 1, 2, 3, 4, podemos formar novos agrupamentos com dois elementos cada um. (1,2) (1,3) (1,4) (2,1) (2,3) (2,4) (3,1) (3,2) (3,4) (4,1) (4,2) (4,3) Temos, portanto, um total de 12 novos agrupamentos diferentes.

11 Análise combinatória Cálculo do número de arranjos. Considerando um conjunto de n elementos distintos, podemos encontrar uma expressão para determinar o número de arranjos de elementos desse conjunto, tomados k a k, sendo k < n. Indicamos por: An,k lê-se: Arranjo de n elementos k a k. Calcula-se o número de arranjos pela expressão:

12 Análise combinatória Exemplo: Quatro competidores, A, B, C e D disputam uma corrida. Quantas são as possibilidades de chegada dos três primeiros colocados? n = 4 k = 3 n! 4! 4! A 4,3 = 24 (n k)! (4 3)! 1!

13 Análise combinatória Exemplo: Para a eleição dos dirigentes de um centro acadêmico se candidataram 8 estudantes. De quantas maneiras podemos escolher um presidente e um vice? n = 8 k = 2 8! 8! 8x7x6! A 8,2 = 8x7 56 (8 2)! 6! 6!

14 Interatividade Quatro times de futebol disputam as semifinais de um campeonato. Quantas são as possibilidades de resultado para campeão e vice-campeão? a) 4 b) 12 c) 24 d) 2 e) 48

15 Análise combinatória Permutações: Denomina-se Permutação Simples de n elementos, todas as sequências destes n elementos em novas ordenações. Neste caso apenas a ordem dos elementos é importante. Calcula-se o número de permutações possíveis para um conjunto de n elementos, pela fórmula: P n =n!

16 Análise combinatória Exemplo 1: Quantos anagramas podemos formar com a palavra BOM? Resp. P 3 =3!=6 = BOM BMO OBM OMB MOB MBO

17 Análise combinatória Exemplo 2: Se tivermos 5 pessoas, de quantas maneiras diferentes podemos colocá-las em 5 cadeiras? Resp. P 5 = 5! = 120 maneiras

18 Análise combinatória Combinações: Como vimos, o arranjo dos elementos de um conjunto de n elementos distintos são agrupamentos com k elementos do conjunto principal, onde k<n. Quando falamos de arranjos, os componentes de cada agrupamento, dependendo da posição que ocupam, modificam o grupo. Entretanto, quando falamos de combinações, não é importante a posição que cada elemento ocupa no agrupamento.

19 Análise combinatória Portanto, as combinações são utilizadas para se calcular o número de conjuntos que podemos formar, quando a ordem dos elementos nestes conjuntos não é importante. Por exemplo, se tivermos 20 alunos em uma sala e quisermos formar uma comissão de 5 alunos para tratar de um determinado assunto, poderemos calcular o número de comissões possíveis através das combinações, já que a ordem dos alunos nas comissões não é relevante.

20 Análise combinatória Cálculo do número de combinações: Se tivermos um conjunto com n elementos, podemos calcular o número de combinações possíveis de k elementos, através da fórmula: n! C n,k k!(n k)!

21 Análise combinatória Exemplo 1: Um baralho tem 52 cartas, e sorteamos aleatoriamente 4 cartas. Quantas são as possibilidades de sorteio das cartas? Resp. = C 52,4 52! 4!(52 4)! 52! 4!x48! 52x51x50x49x48! !x48!

22 Análise combinatória Exemplo 2: Qual é o número total de resultados possíveis para um sorteio da Mega Sena, sabendo-se que o resultado consiste em um conjunto de 6 números sorteados aleatoriamente dentre 60 números disponíveis? Resp. C 60,6

23 Análise combinatória Exemplo 2: C 60,6 = 60! 6!(60 6)! 60! 6!x54! C 60,6 = 60x59x58x57x56x55x54! 6!x54! C 60,6 = 60x59x58x57x56x Existem, portanto resultados possíveis.

24 Análise combinatória Conclusão: Tanto o arranjo quanto a combinação são agrupamentos de k elementos a partir de um conjunto de n elementos. A diferença é que, no arranjo, se mudarmos a ordem dos elementos de um agrupamento, teremos um outro agrupamento. Na combinação, ao mudarmos a ordem em que os elementos se apresentam, teremos o mesmo agrupamento.

25 Interatividade Quantos anagramas tem a palavra MITO? a) 120 b) 12 c) 24 d) 36 e) 720

26 Distribuições de probabilidade As distribuições de probabilidade são modelos estatísticos que descrevem as probabilidades dos diversos resultados de um determinado universo ou espaço amostral. Veremos dois casos de maior interesse: a distribuição binomial e a distribuição normal. Neste estudo, utilizaremos o conceito de variável aleatória. Uma variável aleatória é aquela cujo valor depende de fatores imponderáveis do acaso.

27 Distribuições de probabilidade Tipos de distribuição: Podemos classificar a distribuição de probabilidades de acordo com o caráter de sua variável. Distribuições discretas: Quando a variável aleatória em estudo é discreta, a distribuição de probabilidades correspondente também será discreta. A distribuição de probabilidades, nesse caso, será dada pela probabilidade de cada um dos valores possíveis específicos.

28 Distribuições de probabilidade Tipos de distribuição. Distribuições contínuas: Quando a variável aleatória em estudo é contínua, a distribuição de probabilidades correspondente também será contínua. Quando a variável é contínua, não tratamos mais de probabilidades referentes a valores individuais, mas sim referentes a intervalos de valores. A distribuição de probabilidades nesses casos nos dará a probabilidade de encontrar o valor da variável dentro de certo intervalo.

29 Distribuições de probabilidade Distribuição binomial. A distribuição binomial se aplica a situações que possuem as seguintes características: A variável aleatória é discreta. n eventos são independentes. Para cada evento, dois resultados possíveis e complementares (sucesso e insucesso). Probabilidade de sucesso (de ocorrer o evento escolhido): p. Probabilidade de insucesso (de não ocorrer o evento escolhido): q. q = 1 - p

30 Distribuições de probabilidade Distribuição binomial: Quando esses requisitos são atendidos, a distribuição binomial nos dá a maneira de calcular a probabilidade de que o evento escolhido ocorra um número p de vezes, sendo que essa quantidade poderá variar entre 0 e n. Para construir a distribuição binomial, tomemos como exemplo o jogo de n moedas. Podemos escolher como variável aleatória o número de faces cara obtidas, ao que chamaremos k.

31 Distribuições de probabilidade Distribuição binomial: O resultado face cara será considerado um sucesso, e sua probabilidade será p = 0,5. O resultado face coroa significa a não ocorrência de face cara, logo, o chamaremos de insucesso, com probabilidade q. Como os eventos são complementares, temos q = 1 - p e, portanto, q = 0,5.

32 Distribuições de probabilidade Distribuição binomial: Jogo de 1 moeda (n = 1). Como estamos considerando o jogo de somente uma moeda, os valores possíveis dessa variável serão k = 0ek= 1. Podemos construir a distribuição de probabilidades para a obtenção de face cara no jogo de uma moeda da seguinte forma:

33 Distribuições de probabilidade Distribuição binomial: Jogo de 1 moeda (n = 1) Probabilidade de nenhuma face cara: k = 0 P(0) = p, logo, P(0) = 0,5. Probabilidade de uma face cara: k = 1 P(1) = q, logo, P(1) = 0,5. Em resumo, teríamos o seguinte:

34 Distribuições de probabilidade Distribuição binomial: Jogo de 1 moeda (n = 1)

35 Distribuições de probabilidade Distribuição binomial: Da mesma maneira, se jogarmos 2 moedas (n = 2), teríamos: Para 2 moedas, os valores da variável escolhida serão k = 0, k = 1ek= 2. Como os eventos são independentes, visto que o fato de uma moeda cair com certa face para cima não interferirá na face que ficará para cima da outra moeda, então a probabilidade de um resultado específico para o conjunto será dada pelo produto das probabilidades de cada resultado específico.

36 Distribuições de probabilidade Distribuição binomial: Probabilidade de nenhuma face cara (k = 0): 2 insucessos: P = q.q = 0,5*0,5 = 0,25 Probabilidade de 1 face cara (k = 1): 1 sucesso e 1 insucesso: (cara, coroa ou coroa, cara) P = (p.q) +(q.p) = 0,25 + 0,25 = 0,5 Probabilidade de duas faces cara (k = 2): sucessos: P = p.p pp = 0,5*0,5, = 0,25.

37 Distribuições de probabilidade Distribuição binomial. Em resumo teríamos:

38 Interatividade Qual das características abaixo não se aplica à distribuição binomial? a) Variável aleatória discreta. b) N eventos independentes. c) Variável aleatória contínua. d) Para cada evento há 2 resultados possíveis. e) É um exemplo de distribuição discreta.

39 Distribuições de probabilidade Distribuição normal. A distribuição normal, também conhecida como distribuição gaussiana, é uma das mais importantes no estudo da estatística. Diversos fenômenos físicos e sociais seguem esta distribuição.

40 Distribuições de probabilidade Distribuição normal. A distribuição normal descreve situações que apresentam as seguintes características: Variável aleatória em questão é contínua. A probabilidade de ocorrência dos eventos possíveis depende somente da média e do desvio padrão do conjunto.

41 Distribuições de probabilidade Distribuição normal. Os fenômenos que se caracterizam por uma distribuição normal, possuem as seguintes características: Valor médio é o mais provável. Quanto mais longe da média, menos provável. O gráfico da distribuição tem um formato de sino.

42 Distribuições de probabilidade Distribuição normal. Assim como no exemplo para a distribuição uniforme, as probabilidades de se encontrar o valor da variável dentro de certo intervalo corresponderão à área do gráfico localizada no interior dos limites desse intervalo.

43 Distribuições de probabilidade Distribuição normal. Para calcular-se a probabilidade de um determinado evento que segue a distribuição normal, é preciso calcular a área sob a curva normal que representa este evento. Na prática utiliza-se uma curva normal padronizada e tabelas que mostram os valores das probabilidades desta curva. Para isto se utiliza, em lugar do valor x da variável, o valor z, que nos diz quanto acima ou abaixo da média está o valor da variável.

44 Distribuições de probabilidade Distribuição normal: O cálculo de z é dado por: Assim, se tivermos, por exemplo, um conjunto cuja média seja 50 e o desviopadrão seja igual a 10, um valor de x = 40 corresponderá a: z = (40-50)/10 = -1

45 Distribuições de probabilidade Distribuição normal: A partir deste valor calculado para a variável z, entra-se em uma tabela e verifica-se a probabilidade de ocorrência do valor de x correspondente. Na tabela citada há a informação sobre a área subentendida pela curva normal reduzida de 0 a z. Dado um valor de z, devemos procurar na tabela qual o valor da área que corresponde a ele da seguinte forma:

46 Distribuições de probabilidade Distribuição normal: Na primeira coluna da tabela, o valor de z é dado até sua primeira casa decimal. Na primeira linha da tabela colocam-se os valores referentes à segunda casa decimal. O valor da área em questão será aquele que esteja na linha e coluna correspondentes. Vejamos alguns exemplos: Área para z = 1,68

47 Distribuições de probabilidade Distribuição normal: Procura-se na tabela padronizada a linha cuja primeira coluna tenha o valor 1,6, reproduzida a seguir:

48 Distribuições de probabilidade Distribuição normal: Nessa linha, procure a coluna correspondente à segunda casa decimal, ou seja, a coluna indicada pelo 0,08. A área indicada na figura, compreendida pela fatia que vai do z = 0 ao z = 1,68 será, portanto, A = 0,4535. Este será o valor da probabilidade de ocorrência da variável x correspondente.

49 Interatividade A respeito da distribuição normal, está errado afirmar: a) Variável aleatória em questão é contínua. b) Probabilidade de ocorrência dos eventos possíveis depende somente da média e do desvio padrão do conjunto. c) Valor médio é o menos provável. d) Quanto mais longe da média, menos provável. e) O gráfico da distribuição tem um formato de sino.

50 ATÉ A PRÓXIMA!

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno

Unidade I ESTATÍSTICA APLICADA. Prof. Mauricio Fanno Unidade I ESTATÍSTICA APLICADA Prof. Mauricio Fanno Estatística indutiva Estatística descritiva Dados no passado ou no presente e em pequena quantidade, portanto, reais e coletáveis. Campo de trabalho:

Leia mais

PROBABILIDADE. Prof. Patricia Caldana

PROBABILIDADE. Prof. Patricia Caldana PROBABILIDADE Prof. Patricia Caldana Estudamos probabilidade com a intenção de prevermos as possibilidades de ocorrência de uma determinada situação ou fato. Para determinarmos a razão de probabilidade,

Leia mais

Breve revisão de Análise Combinatória

Breve revisão de Análise Combinatória 1. Princípio fundamental da contagem Breve revisão de Análise Combinatória Considere que certo procedimento pode ocorrer de duas maneiras diferentes, quais sejam: A 1ª maneira, ocorrendo de a modos distintos;

Leia mais

Cálculo Combinatório

Cálculo Combinatório Cálculo Combinatório Introdução Foi a necessidade de calcular o número de possibilidades existentes nos chamados jogos de azar que levou ao desenvolvimento da Análise Combinatória, parte da Matemática

Leia mais

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

UNITAU APOSTILA ANÁLISE COMBINATÓRIA PROF. CARLINHOS

UNITAU APOSTILA ANÁLISE COMBINATÓRIA PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ANÁLISE COMBINATÓRIA PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br/capitcar 1 ANÁLISE COMBINATÓRIA A Análise Combinatória

Leia mais

Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal

Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Probabilidade Tópicos Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Conjuntos Conjunto: Na matemática, um conjunto é uma coleção de elementos com características

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

Aula 3: Estudando Arranjos

Aula 3: Estudando Arranjos Aula 3: Estudando Arranjos No campeonato mundial de Fórmula 1 de 2012, participaram 25 pilotos, entre quais se destacaram o alemão Sebastian Vettel, que foi o campeão, o espanhol Fernando Alonso, que foi

Leia mais

Análise Combinatória e Probabilidade

Análise Combinatória e Probabilidade Análise Combinatória e Probabilidade E aí, beleza!? Vamos juntos dar uma olhada em algumas dicas importantes de análise combinatória e probabilidade? Análise Combinatória Considere a seguinte situação:

Leia mais

Aula 6 Revisão de análise combinatória

Aula 6 Revisão de análise combinatória Aula 6 Revisão de análise combinatória Conforme você verá na próxima aula, a definição clássica de probabilidade exige que saibamos contar o número de elementos de um conjunto. Em algumas situações, é

Leia mais

Lista 10 Análise Combinatória e Probabilidade

Lista 10 Análise Combinatória e Probabilidade Lista 10 Análise Combinatória e Probabilidade 1) Dada a palavra AMORECO, responda as seguintes questões: a) Quantos são seus anagramas? = 2520 b) Quantas são os anagramas que começam e terminam por consoante?.

Leia mais

Probabilidade: aula 2, 3 e 4

Probabilidade: aula 2, 3 e 4 Probabilidade: aula 2, 3 e 4 Regras de contagem e combinatória Permutação Simples: Exemplo: De quantas maneiras 5 pessoas podem viajar em um automóvel com 5 lugares, se apenas uma delas sabe dirigir? Atividade:

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17)

Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 2016/17) Tema 4- Modelos de probabilidade. (Versão: para o manual a partir de 016/17) 1- Modelos de probabilidade(136) 1.1) Introdução.(36) (Vídeo: 33) 1.) Fenómenos aleatórios(138) Experiência determinística-produz

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

HEP-5800 BIOESTATÍSTICA. Capitulo 2

HEP-5800 BIOESTATÍSTICA. Capitulo 2 HEP-5800 BIOESTATÍSTICA Capitulo 2 NOÇÕES DE PROBABILIDADE, DISTRIBUIÇÃO BINOMIAL, DISTRIBUIÇÃO NORMAL Nilza Nunes da Silva Regina T. I. Bernal MARÇO DE 2012 2 1. NOÇÕES DE PROBABILIDADE 1. DEFINIÇÃO Considere

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 2ª Parte: modelos probabilísticos para variáveis aleatórias contínuas, modelo uniforme, modelo exponencial, modelo normal 1 Distribuição de Probabilidades A distribuição

Leia mais

Ensino Médio. Fatorial

Ensino Médio. Fatorial As Permutações Comentários: As primeiras atividades matemáticas da humanidade estavam ligadas à contagem de objetos de um conjunto, enumerando seus elementos. As civilizações antigas, como egípcia, babilônia,

Leia mais

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES PROBABILIDADE E ESTATÍSTICA UNIDADE V - INTRODUÇÃO À TEORIA DAS PROBABILIDADES 0 1 INTRODUÇÃO A teoria das probabilidades é utilizada para determinar as chances de um experimento aleatório acontecer. 1.1

Leia mais

Capítulo4- Modelos de probabilidade.

Capítulo4- Modelos de probabilidade. Capítulo4- Modelos de probabilidade. 1- Modelos de probabilidade(110) 1.1) Introdução.(110) 1.) Fenómenos aleatórios(11) Experiência determinística-produz sempre o mesmo resultado desde que seja repetido

Leia mais

Aula 16 - Erivaldo. Probabilidade

Aula 16 - Erivaldo. Probabilidade Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar

Leia mais

Probabilidade e Estatística Preparação para P1

Probabilidade e Estatística Preparação para P1 robabilidade e Estatística reparação para rof.: Duarte ) Uma TV que valia R$ 00,00, entrou em promoção e sofreu uma redução de 0% em seu preço. Qual é o novo preço da TV? ) Um produto foi vendido por R$

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

Análise Combinatória

Análise Combinatória Introdução Análise combinatória PROBLEMAS DE CONTAGEM Princípio Fundamental da Contagem Exemplo: Um número de telefone é uma seqüência de 8 dígitos, mas o primeiro dígito deve ser diferente de 0 ou 1.

Leia mais

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci Termo-Estatística (2013) 2ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair

Leia mais

AULA 07 Distribuições Discretas de Probabilidade

AULA 07 Distribuições Discretas de Probabilidade 1 AULA 07 Distribuições Discretas de Probabilidade Ernesto F. L. Amaral 31 de agosto de 2010 Metodologia de Pesquisa (DCP 854B) Fonte: Triola, Mario F. 2008. Introdução à estatística. 10 ª ed. Rio de Janeiro:

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

RACIOCÍNIO LÓGICO. 04. Se dois dados, um azul e um branco, forem lançados, a probabilidade de sair 5 no azul ou 3 no branco é superior a 2/3.

RACIOCÍNIO LÓGICO. 04. Se dois dados, um azul e um branco, forem lançados, a probabilidade de sair 5 no azul ou 3 no branco é superior a 2/3. RACIOCÍNIO LÓGICO 01. Anagramas são agrupamentos de letras que são obtidos ao se mudar a ordem destas em uma palavra. Cada vez que se muda a ordem das letras, obtém-se um novo anagrama. A quantidade de

Leia mais

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico.

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico. Tipos de Modelo Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM 1 M 2 /r 2 Causas Efeito

Leia mais

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Aula 3 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2013

Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2013 Métodos Quantitativos para Ciência da Computação Experimental Jussara Almeida DCC-UFMG 2013 Revisão de Probabilidade e Estatística Concentrado em estatística aplicada Estatística apropriada para medições

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

Exercícios resolvidos sobre Teoremas de Probabilidade

Exercícios resolvidos sobre Teoremas de Probabilidade Exercícios resolvidos sobre Teoremas de Probabilidade Aqui você tem mais uma oportunidade de estudar os teoremas da probabilidade, por meio de um conjunto de exercícios resolvidos. Observe como as propriedades

Leia mais

Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 12 de Setembro de 2014

Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 12 de Setembro de 2014 Sumário 1 Análise Combinatória 1 1.1 Princípio Multiplicativo.............................. 1 1.1.1 Exercícios................................. 4 1.2 Permutação Simples................................

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 2011/12 Distribuição de probabilidades 12.º Ano Escola Secundária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ano Lectivo 0/ Distribuição de probabilidades.º Ano Nome: N.º: Turma:. Numa turma do.º ano, a distribuição dos alunos por idade e sexo

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer

Leia mais

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ

FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ FACULDADE DE TECNOLOGIA DE GUARATINGUETÁ ESTATÍSTICA II Nota de aula 1 Prof. MSc. Herivelto T Marcondes dos Santos Fevereiro /2009 1 Modelos de probabilidade 1.1 Variável aleatória Definição: Sejam ε um

Leia mais

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos

Leia mais

ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER

ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER ANÁLISE COMBINATÓRIA PROFESSOR JAIRO WEBER FATORIAL Chama-se fatorial de n ou n fatorial o número n!, tal que: - Para n=0: 0!=1 - Para n=1: 1!=1 - Para n=2: 2!=21=2 - Para n=3: 3!=321=6 - Para n=4: 4!=4321=24

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

Definição de Probabilidade

Definição de Probabilidade INTRODUÇÃO A TEORIA DAS PROBABILIDADES A teoria das probabilidade nada mais é do que o bom senso transformado em cálculo A probabilidade é uma medida da incerteza dos fenômenos. Traduz-se por um número

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes.

TE802 Processos Estocásticos em Engenharia. Informação sobre a disciplina Notes. Processos Estocásticos em Engenharia Conteúdo Notes. TE802 Processos Estocásticos em Engenharia Conceitos Básicos de Teoria de Probabilidade 7 de março de 2016 Informação sobre a disciplina Terças e Quintas feiras das 09:30 às 11:20 horas Professor: Evelio

Leia mais

Probabilidades. O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados.

Probabilidades. O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados. Probabilidades O cálculo de probabilidades teve a sua origem no estudo dos jogos de azar, principalmente nos jogos de dados. Quando lançamos um dado, os resultados possíveis são sempre um dos elementos

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

RACIOCÍNIO LÓGICO-MATEMÁTICO 20 AULAS

RACIOCÍNIO LÓGICO-MATEMÁTICO 20 AULAS RACIOCÍNIO LÓGICO-MATEMÁTICO 20 AULAS 1 Números inteiros, racionais e reais. 1.1 Problemas de contagem. 2 Sistema legal de medidas. 3 Razões e proporções; divisão proporcional. 3.1 Regras de três simples

Leia mais

Sequências Generalizando um pouco, podemos então dizer que sequências de elementos são grupos com elementos obedecendo a determinada ordem. Obteremos uma sequência diferente quando se altera a ordem. No

Leia mais

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e):

Adição de probabilidades. O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Adição de probabilidades O número de elementos da união dos conjuntos A e B n(aub) = n(a B) Dividindo os dois membros por n(e): Dois eventos A e B são ditos mutuamente exclusivos se, e somente se, A B

Leia mais

Matéria: Matemática Assunto: Princípios da Contagem Prof. Dudan

Matéria: Matemática Assunto: Princípios da Contagem Prof. Dudan Matéria: Matemática Assunto: Princípios da Contagem Prof. Dudan Matemática Princípio da Contagem Os primeiros passos da humanidade na matemática estavam ligados a necessidade de contagem de objetos de

Leia mais

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO. Matemática ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO (NO PERÍODO DE FÉRIAS ESCOLARES) ANO 2014/20 PROFESSOR (a) DISCIPLINA Matemática ALUNO (a) SÉRIE 2º ano 1. OBJETIVO

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova 1 de Probabilidade I Prof.: Fabiano F. T. dos Santos Goiânia, 15 de setembro de 2014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Professor Mauricio Lutz DISTRIBUIÇÃO NORMAL

Professor Mauricio Lutz DISTRIBUIÇÃO NORMAL 1 DISTRIBUIÇÃO NORMAL Entre as distribuições teóricas de variável contínua, uma das mais empregadas é a distribuição normal. O aspecto gráfico de uma distribuição normal é o da figura abaio. Para uma perfeita

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

Fatorial de um número natural

Fatorial de um número natural Fatorial de um número natural Exemplos: a) 6! 6. 6. 5. 4. 3. 2. 1 720 b) 4. 3! 4. 3. 2. 1 24 c) 7! 7. 6! 7. 6. 5. 4. 3. 2. 1 5040 d) 10. 9. 8. 7. 6. 5. 4. 3. 2. 1 3.628.800 e) 3! 3. 2. 1 6 Perceba que

Leia mais

Contagem. Próxima Aula: Prova

Contagem. Próxima Aula: Prova Contagem Próxima Aula: Prova Conteúdo Correção dos Exercícios Exercício 1 Em época de eleição para o grêmio estudantil do colégio, tiveram 12 candidatos aos cargos de presidente, vice-presidente e secretário.

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

Matemática 2 Prof. Heitor Achilles

Matemática 2 Prof. Heitor Achilles 2 ª SÉRIE EM ORIENTAÇÕES FINAIS Matemática 2 Prof. Heitor Achilles ORIENTAÇÃO DE ESTUDO CONTEÚDOS PARA A RECUPERAÇÃO FINAL COMBINATÓRIA: PFC, Permutações simples, Combinações simples, Permutação com elementos

Leia mais

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M. Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com

Leia mais

Elementos de Matemática

Elementos de Matemática Elementos de Matemática Exercícios de Análise Combinatória - Atividades de 2007 Versão compilada no dia 11 de Setembro de 2007. Departamento de Matemática - UEL Prof. Ulysses Sodré: ulysses(a)uel(pt)br

Leia mais

Técnicas de contagem 1 Introdução. 2 Sequências

Técnicas de contagem 1 Introdução. 2 Sequências 1 Introdução Muitos problemas em Probabilidades e Estatística consistem em estimar a incerteza associada a um evento ou acontecimento, o que implica frequentemente determinar o número de elementos associados

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos

Leia mais

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB

Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais. Prof. Hemílio Fernandes Depto. de Estatística - UFPB Curso de Farmácia Estatística Vital Aula 05 Comentários Adicionais Prof. Hemílio Fernandes Depto. de Estatística - UFPB Um pouco de Probabilidade Experimento Aleatório: procedimento que, ao ser repetido

Leia mais

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias

Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Ano: 2º - Ensino Médio Professor: Elias Matemática Atividades para Estudos Autônomos Data: 5 / 6 / 2017 Aluno(a): N o : Turma: 1) (Ufes)

Leia mais

ANÁLISE COMBINATÓRIA E PRINCÍPIO FUNDAMENTAL DA CONTAGEM

ANÁLISE COMBINATÓRIA E PRINCÍPIO FUNDAMENTAL DA CONTAGEM 1. (Fac. Albert Einstein - Medicin 2016) Suponha que nos Jogos Olímpicos de 2016 apenas um representante do Brasil faça parte do grupo de atletas que disputarão a final da prova de natação dos 100 metros

Leia mais

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três. 1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica

Leia mais

4. COMBINATÓRIA BÁSICA. Combinatória: ramo da matemática que trata de arranjos de objetos (configurações satisfazendo propriedades específicas).

4. COMBINATÓRIA BÁSICA. Combinatória: ramo da matemática que trata de arranjos de objetos (configurações satisfazendo propriedades específicas). Combinatória básica Introdução INTRODUÇÃO 4. COMBINATÓRIA BÁSICA Introdução Regra da soma e do produto Modelo de amostragem Modelo de distribuição Modelo de equação Identidades combinatórias Coeficientes

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos Mutuamente

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

10. Fatorial e Análise combinatória

10. Fatorial e Análise combinatória 10. Fatorial e Análise combinatória 1. Definição e propriedades básicas. Seja n um número natural, n 2. Então, designamos o produto 123... (n-1)n como, que se lê n fatorial. Dessa definição, deduzimos

Leia mais

AULA 6 MODELOS PROBABILÍSTICOS

AULA 6 MODELOS PROBABILÍSTICOS UNIVERSIDADE FEDERAL DA BAHIA ESCOLA POLITÉCNICA MEAU- MESTRADO EM ENGENHARIA AMBIENTAL URBANA ENG C 18 Métodos de Pesquisa Quantitativos e Qualitativos AULA 6 MODELOS PROBABILÍSTICOS Docente: Cira Souza

Leia mais

Distribuição Binomial e Normal

Distribuição Binomial e Normal Distribuição Binomial e Normal O que se pretende, neste módulo, é apresentar dois modelos teóricos de distribuição de probabilidade, aos quais um experimento aleatório estudado possa ser adaptado, o que

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

Probabilidade. Evento (E) é o acontecimento que deve ser analisado.

Probabilidade. Evento (E) é o acontecimento que deve ser analisado. Probabilidade Definição: Probabilidade é uma razão(divisão) entre a quantidade de eventos e a quantidade de amostras. Amostra ou espaço amostral é o conjunto formado por todos os elementos que estão incluídos

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber

5 Distribuição normal de probabilidade. Estatística Aplicada Larson Farber 5 Distribuição normal de probabilidade Estatística Aplicada Larson Farber Seção 5.1 Introdução às distribuições normais Propriedades de uma distribuição normal Suas média, mediana e moda são iguais. Tem

Leia mais

Curso: Ciência da Computação Turma: 4ª Série. Probabilidade e Estatística. Aula 2

Curso: Ciência da Computação Turma: 4ª Série. Probabilidade e Estatística. Aula 2 Curso: Ciência da Computação Turma: 4ª Série Aula 2 Análise Combinatória: Arranjo, Permutação, Combinação Simples e com Repetição Motivação Quantas ordenações são possíveis fazer com um baralho de 52 cartas?

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

Princípios de Modelagem Matemática Aula 09

Princípios de Modelagem Matemática Aula 09 Princípios de Modelagem Matemática Aula 09 Prof. José Geraldo DFM CEFET/MG 12 de maio de 2014 1 Modelos estatísticos e estimação de parâmetros A verificação de um modelo matemático demanda a realização

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais