Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Tamanho: px
Começar a partir da página:

Download "Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues"

Transcrição

1 Unidade III ESTATÍSTICA Prof. Fernando Rodrigues

2 Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto, essas medidas sozinhas não são suficientes para caracterizar totalmente a série de dados. Duas ou mais sequências numéricas podem, por exemplo ter um mesmo valor de média aritmética, e no entanto, serem bastante diferentes entre si.

3 Medidas de dispersão Vejamos, por exemplo, as duas séries abaixo, que são diferentes entre si: X: 3; 3; 3; 3; 3; 3; 3; 3; 3; 3 Y: 1; 1; 2; 2; 3; 3; 4; 4; 5; 5 Entretanto, se calcularmos as médias aritméticas das duas séries teremos: X = ( )/10 = 3 Y = ( )/10 = 3

4 Medidas de dispersão Torna-se necessário, então, para caracterizar melhor a sequência numérica, a utilização de outras medidas. Estas medidas mostrarão se os valores da série estão mais agrupados em torno da média ou mais dispersos em relação a essa média. Estas medidas são chamadas de Medidas de Variação ou Medidas de Dispersão.

5 Medidas de dispersão A primeira, e mais simples medida de variação é a Amplitude Total ou Intervalo. O Intervalo é a distância entre o maior e o menor valor da série de dados. Para calcular a Amplitude Total ou o tamanho do Intervalo de uma série de valores, basta subtrairmos o menor valor da série do maior. Vejamos alguns exemplos:

6 Medidas de dispersão Cálculo da Amplitude de uma sequência: a) Se tivermos uma sequência de dados brutos, ou ordenados (rol), basta identificar o maior e o menor valor e calcular sua diferença. Ex: A Amplitude da série: X: 2; 3; 3; 4; 7; 8; 10; 10; 12; 15; 15; 18 é igual a 18-2 = 16.

7 Medidas de dispersão b) Se os dados estiverem apresentados sob a forma de uma distribuição de frequências variável discreta, a Amplitude, ou o tamanho do Intervalo da série será a diferença entre o primeiro e o último elemento (Xi) da série. Ex: A Amplitude da série abaixo é: x i f i At = 6 2 = 4

8 Medidas de dispersão c) Se os dados estiverem apresentados sob a forma de uma distribuição de frequências variável contínua, a Amplitude da série será calculada de uma forma aproximada, uma vez que não conhecemos o maior e o menor valor da série. Utiliza-se, neste caso, o ponto médio da primeira classe como sendo o menor valor da série. Da mesma maneira, utiliza-se o ponto médio da última classe como sendo o maior valor da série.

9 Medidas de dispersão Exemplo: Calcule a Amplitude total da seguinte série: Classe Int. de Classe f i 1 2 I I I I O ponto médio da primeira classe é 3. O ponto médio da última classe é 9. A Amplitude total será: 9 3 = 6.

10 Medidas de dispersão A Amplitude ou Intervalo de uma série é uma medida de dispersão muito simples e fácil de ser calculada. Entretanto, ela depende apenas de dois valores da série (o maior e o menor). Assim, é possível modificar completamente a dispersão dos valores sem alterar a Amplitude da série, o que torna esta medida pouco sensível a estas mudanças. Em muitos casos, portanto, será necessário o uso de medidas de variação mais precisas.

11 Interatividade Qual das afirmações abaixo está correta? a) A média aritmética é uma medida suficiente para caracterizar uma sequência numérica. b) As medidas de tendência central fornecem todas as informações relevantes sobre uma série de dados. c) Duas sequências numéricas diferentes sempre terão médias aritméticas diferentes. d) As medidas de variação podem substituir as medidas de tendência central no estudo de uma série de dados. e) As medidas de variação mostram se os valores estão agrupados ou dispersos em relação à média.

12 Medidas de dispersão Variância e desvio padrão. As medidas de variação ou dispersão mais utilizadas na prática são a variância e o desvio padrão. A variância é simbolizada por S 2 ou pela letra grega σ 2. Calcula-se a variância através da fórmula: s Σ(x x) = n 11 2 i 2

13 Medidas de dispersão O desvio padrão, por sua vez, é simbolizado por S ou pela letra grega σ. O desvio padrão é a raiz quadrada positiva da variância. Portanto, o desvio padrão será: s = Σ(xi x) n 1 2

14 Medidas de dispersão Cálculo l da variância i e do desvio padrão: Exemplo 1: Calcule a variância e o desvio padrão da série X: 4; 5; 6; 5. Inicialmente calculamos a média aritmética da série: x = = = 5 4 4

15 Medidas de dispersão Calculamos, então, os quadrados das diferenças 2 ( xi x) (4-5) 2 = 1 (5 5) 2 = 0 (6 5) 2 = 1 (5 5) 2 = 0 A variância será: s Σ(x x) = n 1 2 i S 2 = = 2/3 = 0,667 3 O desvio padrão será = S = 0,816 2

16 Medidas de dispersão Exemplo 2 - Tabela de frequências - Variável discreta: No caso de os dados estarem agrupados em uma distribuição de frequência variável discreta, a fórmula de cálculo terá uma pequena modificação. s Σ(x x) = n 1 2 i 2.f i

17 Medidas de dispersão Exemplo 2. Calcule a variância e o desvio padrão da série: x i f i Somando a coluna f i, temos o número de elementos (n), que é igual a 20.

18 Medidas de dispersão Calculando a média aritmética pela fórmula: x = Σxi.fi n x i f i x i. f i A média será = 73/20 = 3,65.

19 Medidas de dispersão Desenvolvendo os cálculos teremos: f i 2 (xi x). fi 2 3 8, , , ,29 x i A somatória de 2 i fi = 18,52 (x x).

20 Medidas de dispersão O valor da variância, então será: s Σ(x x) = n 1 2 i.f S 2 = 18,52 = 0, O valor do desvio padrão é: S = 0,987 2 i

21 Medidas de dispersão Variável contínua: No caso de termos os dados agrupados em uma distribuição de frequências na forma de variável contínua, os cálculos serão bastante parecidos. A diferença entre este caso e o anterior é que, como agora, não temos todos os valores relacionados, mas classes de valores, utiliza-se o ponto médio de cada classe para efetuar os cálculos.

22 Interatividade A variância da série X: 1;2;3é: a) 1 b) 2 c) 3 d) 4 e) 5

23 Probabilidades Noções gerais de probabilidade: Utilizamos o conceito intuitivo de probabilidade em diversas situações de nossas vidas, diariamente. Antes de sair de casa, analisamos, por exemplo, a probabilidade de chover para decidir se levamos ou não o guardachuva. Utilizamos neste exemplo o conceito intuitivo de probabilidade para tomar nossa decisão.

24 Probabilidades As probabilidades dizem respeito a situações em que existe aleatoriedade. Ou seja, em que o resultado a ser obtido depende de fatores imponderáveis do acaso. Em estatística, quando falamos em um resultado, ele se expressa no valor de uma variável. Se o valor depende do acaso, a variável que expressa esse valor é chamada de variável aleatória.

25 Probabilidades Podemos chamar de variável aleatória, por exemplo, o resultado de um jogo de par ou ímpar, sendo que a variável resultado poderia assumir os valores par ou ímpar. Cada resultado de uma variável aleatória terá uma chance, maior ou menor, de ser observado. Estabelecer a magnitude dessas chances é o que se busca no cálculo de probabilidades.

26 Probabilidades Para determinar a probabilidade de que ocorra um determinado evento E como resultado de uma variável aleatória, precisamos analisar quantos são os resultados possíveis em geral e quantos são aqueles favoráveis ao evento E. A probabilidade de o evento E ocorrer, que será denotada por P(E), será a razão entre o número específico de eventos que são favoráveis a E, ao qual chamaremos n E, pelo número total t de eventos possíveis, ao qual chamaremos n tot.

27 Probabilidades O conjunto de todos os eventos possíveis também é chamado de espaço amostral. A fórmula para este cálculo será, então: O valor da probabilidade P será sempre um número entre 0 e 1. Vejamos porque:

28 Probabilidades A maior probabilidade possível está relacionada ao maior número possível de eventos favoráveis a E. O número de eventos favoráveis a E será, no máximo, igual ao número total de eventos possíveis. Dessa forma, ne será igual a n tot e a divisão de um pelo outro será igual a 1.

29 Probabilidades A menor probabilidade possível está relacionada ao menor número possível de eventos favoráveis a E. O número de eventos favoráveis a E será, no mínimo, zero, visto que uma contagem de eventos não pode ser negativa. Assim sendo, a menor probabilidade possível é zero.

30 Probabilidades É bastante comum falar de porcentagens utilizando a notação percentual. Por exemplo, uma probabilidade 0,6 seria descrita como uma probabilidade de 60%. Para chegarmos a este número, simplesmente multiplicamos o valor encontrado no cálculo da probabilidade por 100. Trata-se simplesmente de duas maneiras de escrever o mesmo valor.

31 Probabilidades Vejamos então como se calcula a probabilidade de ocorrência de um determinado evento: Exemplo: Numa festa de escola são realizados alguns sorteios de brindes entre os alunos, cujas idades estão apresentadas na tabela abaixo:

32 Probabilidades Um aluno será sorteado para ganhar o primeiro brinde. Qual é a probabilidade de ser um aluno de 8 anos? Resolução: N tot= 85 Número de eventos favoráveis: n 8 = 17 Teremos, então:

33 Probabilidades Efetuando-se esta divisão, chegamos ao resultado de 0,2 ou seja: P(8) = 0,2 ou 20% A probabilidade de o sorteado ser um aluno de 8 anos, neste exemplo, é de 20%.

34 Interatividade No lançamento de um dado, qual é a probabilidade de ser sorteada uma face de número par? a) 10% b) 20% c) 40% d) 50% e) 70%

35 Probabilidades Alguns cuidados na interpretação de uma probabilidade. O estudo das probabilidades é uma importante ferramenta matemática para tomarmos decisões em relação a eventos futuros, tomando por base o conhecimento adquirido em experiências passadas. Existem, entretanto, alguns cuidados que precisam ser tomados na interpretação de resultados de probabilidade para não se chegar a conclusões equivocadas.

36 Probabilidades Lembrar que a portabilidade dos resultados para as probabilidades calculadas a partir de certo conjunto de dados só vale se a situação descrita for similar àquela em questão. É comum que se utilizem estudos gerados em um país para analisar a economia de outro, ou produtos com diferentes especificações etc. Há vezes em que a utilização é válida, mas em outras não. Assim, busque ter um olhar crítico.

37 Probabilidades Quando a probabilidade de um evento é zero, isso não quer dizer obrigatoriamente que ele não ocorrerá. Quer dizer somente que entre os dados disponíveis não havia nenhum que correspondesse ao evento em questão. Temos, como exemplos de casos assim, todos os eventos historicamente novos ou aqueles que são extremamente raros. No entanto, tudo aquilo que é impossível terá, necessariamente, probabilidade nula.

38 Probabilidades Do mesmo modo que a probabilidade nula (zero) não quer dizer que algo seja totalmente impossível, também a probabilidade de valor 1 (ou 100%) não significa certeza absoluta de que algo acontecerá. Entram nessa categoria os eventos cuja não ocorrência é extremamente rara ou são aqueles que acabam não ocorrendo por causa de um evento imponderável e imprevisível. i Do mesmo modo, algo que seja certeza terá probabilidade igual a um.

39 Probabilidades Origem dos dados: Quando estudamos probabilidades, podemos analisar situações em que os valores conhecidos das variáveis são empíricos ou analíticos. Na sequência definiremos cada um deles. Os dados analíticos e os empíricos são tratados de maneira diferente. Vamos verificar essa distinção, mostrando como utilizar os dados de ambos os tipos.

40 Probabilidades Dados empíricos: São aqueles cujos valores são observados na prática. Fazem parte dessa classificação todos os dados oriundos de pesquisas de campo, como a idade das pessoas de certo grupo, os valores de preços de mercado etc. Para efeitos didáticos, os dados do tipo empírico utilizados não foram retirados da realidade, mas simulam valores que poderiam ter sido encontrados dessa maneira.

41 Probabilidades Dados analíticos: Os dados analíticos têm um caráter diferente, eles não precisam ser medidos diretamente, visto que a análise das características do sistema estudado já nos dá os valores possíveis da variável aleatória, bem como a proporção em que eles se encontram. Como exemplo dessa classe de dados temos os jogos de azar, como o jogo de uma moeda, o jogo de dados ou o sorteio de cartas, por exemplo.

42 Probabilidades Dados analíticos: Por exemplo, quando jogamos uma moeda, sabemos que haverá somente dois resultados possíveis: face cara ou face coroa. Em princípio, podemos assumir que a moeda é equilibrada e que a ocorrência de uma ou outra face dependerá somente do acaso e com igual proporção.

43 Probabilidades Dados analíticos: Assim, a própria análise do lançamento de uma moeda já nos dá a informação necessária para calcularmos as probabilidades de ocorrência de um evento relacionado: P (cara) = 1/2 = 0,5 = 50% P (coroa) =1/2 = 0,5 = 50%

44 Interatividade No lançamento simultâneo de 2 moedas, qual é a probabilidade de obtermos 2 caras? a) 1/4 b) 2/4 c) 3/4 d) 4/4 e) 0

45 ATÉ A PRÓXIMA!

Distribuição de frequências:

Distribuição de frequências: Distribuição de frequências: Uma distribuição de frequências é uma tabela que reúne o conjunto de dados conforme as frequências ou as repetições de seus valores. Esta tabela pode representar os dados em

Leia mais

Métodos Estatísticos Básicos

Métodos Estatísticos Básicos Aula 4 - Medidas de dispersão Departamento de Economia Universidade Federal de Pelotas (UFPel) Abril de 2014 Amplitude total Amplitude total: AT = X max X min. É a única medida de dispersão que não tem

Leia mais

Tópico 3. Estudo de Erros em Medidas

Tópico 3. Estudo de Erros em Medidas Tópico 3. Estudo de Erros em Medidas A medida de uma grandeza é obtida, em geral, através de uma experiência, na qual o grau de complexidade do processo de medir está relacionado com a grandeza em questão

Leia mais

Negócios II - Estatística -- Séries Estatísticas Slide 1 de 34

Negócios II - Estatística -- Séries Estatísticas Slide 1 de 34 Séries Estatísticas Introdução à Tabelas Estatísticas Definição de Séries Estatísticas Distribuição de Frequências Dados brutos dados em rol Limite de classes Amplitude total Número de classes amplitude

Leia mais

Estatística Indutiva

Estatística Indutiva Estatística Indutiva MÓDULO 7: INTERVALOS DE CONFIANÇA 7.1 Conceitos básicos 7.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

Probabilidade. Definições e Conceitos

Probabilidade. Definições e Conceitos Probabilidade Definições e Conceitos Definições Probabilidade Medida das incertezas relacionadas a um evento chances de ocorrência de um evento Exemplos: Probabilidade de jogar um dado e cair o número

Leia mais

Medidas de Dispersão 1

Medidas de Dispersão 1 Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Medidas de Dispersão 1 Introdução Uma breve reflexão sobre as medidas de tendência central permite-nos concluir que elas não

Leia mais

Estimando probabilidades

Estimando probabilidades A UA UL LA Estimando probabilidades Introdução Nas aulas anteriores estudamos o cálculo de probabilidades e aplicamos seu conceitos a vários exemplos. Assim, vimos também que nem sempre podemos calcular

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

Medidas Resumo. Medidas de Posição/ Medidas de Dispersão. A intenção desse trabalho é introduzir os conceitos de Medidas de posição e de dispersão.

Medidas Resumo. Medidas de Posição/ Medidas de Dispersão. A intenção desse trabalho é introduzir os conceitos de Medidas de posição e de dispersão. Medidas Resumo Medidas de Posição/ Medidas de Dispersão A intenção desse trabalho é introduzir os conceitos de Medidas de posição e de dispersão. Prof. MSc. Herivelto Marcondes Março/2009 1 Medidas Resumo

Leia mais

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO

SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO SEQUÊNCIA DIDÁTICA PODCAST ÁREA MATEMÁTICA - ENSINO MÉDIO Título do Podcast Área Segmento Duração Progressão Aritmética Matemática Ensino médio 5min03seg Habilidades: H15. Relacionar padrões e regularidades

Leia mais

O conceito de probabilidade

O conceito de probabilidade A UA UL LA O conceito de probabilidade Introdução Nesta aula daremos início ao estudo da probabilidades. Quando usamos probabilidades? Ouvimos falar desse assunto em situações como: a probabilidade de

Leia mais

Probabilidade. Luiz Carlos Terra

Probabilidade. Luiz Carlos Terra Luiz Carlos Terra Nesta aula, você conhecerá os conceitos básicos de probabilidade que é a base de toda inferência estatística, ou seja, a estimativa de parâmetros populacionais com base em dados amostrais.

Leia mais

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d

Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos. Pode ser de interesse apresentar esses dados através d UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DE POSIÇÃO E DISPERSÃO Departamento de Estatística Luiz Medeiros Vimos que é possível sintetizar os dados sob a forma de distribuições de frequência e gráficos.

Leia mais

Estudo heurístico de performance de estratégias de investimento simples baseadas na média móvel e desvio padrão no mercado ForEx

Estudo heurístico de performance de estratégias de investimento simples baseadas na média móvel e desvio padrão no mercado ForEx Estudo heurístico de performance de estratégias de investimento simples baseadas na média móvel e desvio padrão no mercado ForEx Lucas Roberto da Silva Centro de Automação, Gestão e Pesquisa em finanças

Leia mais

IFF FLUMINENSE CST EM MANUTENÇÃO INDUSTRIAL

IFF FLUMINENSE CST EM MANUTENÇÃO INDUSTRIAL IFF FLUMINENSE CST EM MANUTENÇÃO INDUSTRIAL Estatística e Probabilidade CH: 40 h/a Classificação de variáveis, Levantamento de Dados: Coleta; Apuração; Apresentação; e Análise de resultados. Séries Estatísticas.

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS

UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS UNIVERSIDADE FEDERAL DA PARAÍBA MEDIDAS DESCRITIVAS Departamento de Estatística Tarciana Liberal Vimos que é possível sintetizar os dados sob a forma de distribuições de freqüências e gráficos. Pode ser

Leia mais

22/02/2014. AEA Leitura e tratamento de dados estatísticos apoiado pela tecnologia da informação. Medidas Estatísticas. Medidas Estatísticas

22/02/2014. AEA Leitura e tratamento de dados estatísticos apoiado pela tecnologia da informação. Medidas Estatísticas. Medidas Estatísticas Universidade Estadual de Goiás Unidade Universitária de Ciências Socioeconômicas e Humanas de Anápolis AEA Leitura e tratamento de dados estatísticos apoiado pela tecnologia da informação Prof. Elisabete

Leia mais

ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II)

ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II) ENTENDENDO OS CONCEITOS DE RISCO E RETORNO - (Parte II)! Como calcular o retorno usando dados históricos?! Como calcular a variância e o desvio padrão?! A análise do retorno através da projeção de retornos

Leia mais

MATEMÁTICA FINANCEIRA

MATEMÁTICA FINANCEIRA MATEMÁTICA FINANCEIRA Progressão Aritmética e Geométrica Progressão Aritmética Uma sucessão de números na qual a diferença entre dois termos consecutivos é constante, é denominada progressão aritmética,

Leia mais

Estatística Básica MEDIDAS RESUMO

Estatística Básica MEDIDAS RESUMO Estatística Básica MEDIDAS RESUMO Renato Dourado Maia Instituto de Ciências Agrárias Universidade Federal de Minas Gerais Motivação Básica Se você estivesse num ponto de ônibus e alguém perguntasse sobre

Leia mais

Uma livraria vende a seguinte a quantidade de livros de literatura durante uma certa semana:

Uma livraria vende a seguinte a quantidade de livros de literatura durante uma certa semana: Medidas de Tendência Central. Depois de se fazer a coleta e a representação dos dados de uma pesquisa, é comum analisarmos as tendências que essa pesquisa revela. Assim, se a pesquisa envolve muitos dados,

Leia mais

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante.

Obviamente não poderíamos ter um número negativo de livros. Também não poderíamos imaginar alguém falando: Tenho 3,4231 livros na minha estante. Conjunto dos Números Naturais A noção de um número natural surge com a pura contagem de objetos. Ao contar, por exemplo, os livros de uma estante, temos como resultado um número do tipo: N = {0,1,2,3 }

Leia mais

- identificar operadores ortogonais e unitários e conhecer as suas propriedades;

- identificar operadores ortogonais e unitários e conhecer as suas propriedades; DISCIPLINA: ELEMENTOS DE MATEMÁTICA AVANÇADA UNIDADE 3: ÁLGEBRA LINEAR. OPERADORES OBJETIVOS: Ao final desta unidade você deverá: - identificar operadores ortogonais e unitários e conhecer as suas propriedades;

Leia mais

Estatística Aplicada ao Serviço Social

Estatística Aplicada ao Serviço Social Estatística Aplicada ao Serviço Social Módulo 7: Correlação e Regressão Linear Simples Introdução Coeficientes de Correlação entre duas Variáveis Coeficiente de Correlação Linear Introdução. Regressão

Leia mais

Medidas Estatísticas de Posição

Medidas Estatísticas de Posição Medidas Estatísticas de Posição 1 - Medidas de Tendência Central Denição medida de tendência central é um único valor que representa ou tipica um conjunto de valores. Nunca pode ser menor que o menor valor

Leia mais

Elementos de Estatística

Elementos de Estatística Elementos de Estatística Lupércio F. Bessegato & Marcel T. Vieira UFJF Departamento de Estatística 2013 Medidas Resumo Medidas Resumo Medidas que sintetizam informações contidas nas variáveis em um único

Leia mais

Unidade II ESTATÍSTICA. Prof. Celso Guidugli

Unidade II ESTATÍSTICA. Prof. Celso Guidugli Unidade II ESTATÍSTICA Prof. Celso Guidugli Medidas ou parâmetros estatísticos Valores que permitem uma imagem sintetizada do comportamento de uma amostra. Dividem-se em dois grandes grupos: medidas de

Leia mais

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO

AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO DEPARTAMENTO DE MATEMÁTICA E CIÊNCIAS EXPERIMENTAIS MATEMÁTICA 7.º ANO PLANIFICAÇÃO GLOBAL Múltiplos e divisores. Critérios de divisibilidade. - Escrever múltiplos

Leia mais

Introdução à Estatística Estatística Descritiva 22

Introdução à Estatística Estatística Descritiva 22 Introdução à Estatística Estatística Descritiva 22 As tabelas de frequências e os gráficos constituem processos de redução de dados, no entanto, é possível resumir de uma forma mais drástica esses dados

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA

UNIVERSIDADE FEDERAL DA PARAÍBA UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística Tarciana Liberal Quando se estuda uma massa de dados é de freqüente interesse resumir as informações de variáveis. Costuma-se, freqüentemente,

Leia mais

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal

aula DISTRIBUIÇÃO NORMAL - PARTE I META OBJETIVOS PRÉ-REQUISITOS Apresentar o conteúdo de distribuição normal DISTRIBUIÇÃO NORMAL - PARTE I 4 aula META Apresentar o conteúdo de distribuição normal OBJETIVOS Ao final desta aula, o aluno deverá: determinar a média e a variância para uma função contínua; padronizar

Leia mais

Aula 2. ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos

Aula 2. ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos Aula 2 ESTATÍSTICA E TEORIA DAS PROBABILIDADES Conceitos Básicos 1. DEFINIÇÕES FENÔMENO Toda modificação que se processa nos corpos pela ação de agentes físicos ou químicos. 2. Tudo o que pode ser percebido

Leia mais

Estatística Descritiva (I)

Estatística Descritiva (I) Estatística Descritiva (I) 1 O que é Estatística Origem relacionada com a coleta e construção de tabelas de dados para o governo. A situação evoluiu: a coleta de dados representa somente um dos aspectos

Leia mais

Módulo 4 Ajuste de Curvas

Módulo 4 Ajuste de Curvas Módulo 4 Ajuste de Curvas 4.1 Intr odução Em matemática e estatística aplicada existem muitas situações onde conhecemos uma tabela de pontos (x; y), com y obtido experimentalmente e deseja se obter uma

Leia mais

AT = Maior valor Menor valor

AT = Maior valor Menor valor UNIVERSIDADE FEDERAL DA PARAÍBA TABELAS E GRÁFICOS Departamento de Estatística Luiz Medeiros DISTRIBUIÇÃO DE FREQUÊNCIA Quando se estuda uma massa de dados é de frequente interesse resumir as informações

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

Plano da Apresentação. Medidas de localização central. Medidas de localização central. Média. Média. Exemplo nota média em Metodologias

Plano da Apresentação. Medidas de localização central. Medidas de localização central. Média. Média. Exemplo nota média em Metodologias Metodologia de Diagnóstico e Elaboração de Relatório FASHT Plano da Apresentação Mediana Moda Outras médias: a média geométrica Profª Cesaltina Pires cpires@uevora.pt Metodologias de Diagnóstico Profª

Leia mais

Probabilidade. Experiências aleatórias

Probabilidade. Experiências aleatórias Probabilidade Experiências aleatórias 1 Experiências aleatórias Acontecimento: Qualquer colecção de resultados de uma experiência. Acontecimento elementar: Um resultado que não pode ser simplificado ou

Leia mais

ESTATÍSTICA. na Contabilidade Parte 4. Medidas Estatísticas

ESTATÍSTICA. na Contabilidade Parte 4. Medidas Estatísticas ESTATÍSTICA na Contabilidade Parte 4 Luiz A. Bertolo Medidas Estatísticas A distribuição de frequências permite-nos descrever, de modo geral, os grupos de valores (classes) assumidos por uma variável.

Leia mais

Conceitos básicos: Variável Aleatória

Conceitos básicos: Variável Aleatória : Variável Aleatória Variável aleatória (v.a.) valor numérico que é resultado de uma eperiência aleatória. Podemos ter variáveis aleatórias contínuas ou discretas. Eemplo 1: Suponha que lança duas moedas

Leia mais

Medidas Estatísticas NILO FERNANDES VARELA

Medidas Estatísticas NILO FERNANDES VARELA Medidas Estatísticas NILO FERNANDES VARELA Tendência Central Medidas que orientam quanto aos valores centrais. Representam os fenômenos pelos seus valores médios, em torno dos quais tendem a se concentrar

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer

Leia mais

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem)

P. P. G. em Agricultura de Precisão DPADP0803: Geoestatística (Prof. Dr. Elódio Sebem) Amostragem: Em pesquisas científicas, quando se deseja conhecer características de uma população, é comum se observar apenas uma amostra de seus elementos e, a partir dos resultados dessa amostra, obter

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

Avaliação. Diagnóstico. Gerente Apuração de dados. Sistema integrado. Tudo que você precisa está a sua disposição no ambiente virtual.

Avaliação. Diagnóstico. Gerente Apuração de dados. Sistema integrado. Tudo que você precisa está a sua disposição no ambiente virtual. NÍVEL DE ENSINO: Graduação Tecnológica CARGA HORÁRIA: 40h PROFESSOR-AUTOR: Ricardo Saraiva Diniz DE DADOS ANÁLISE E INTERPRETAÇÃO APRESENTAÇÃO Desempenho Olá! Seja muito bem-vindo à disciplina Análise

Leia mais

Amostragem Objetivos - Identificar as situações em que se deve optar pela amostragem e pelo censo. - Compreender e relacionar AMOSTRA e POPULAÇÃO.

Amostragem Objetivos - Identificar as situações em que se deve optar pela amostragem e pelo censo. - Compreender e relacionar AMOSTRA e POPULAÇÃO. Amostragem Objetivos - Identificar as situações em que se deve optar pela amostragem e pelo censo. - Compreender e relacionar AMOSTRA e POPULAÇÃO. - Que é Amostragem Aleatória Simples. - Métodos para a

Leia mais

População e Amostra. População: O conjunto de todas as coisas que se pretende estudar. Representada por tudo o que está no interior do desenho.

População e Amostra. População: O conjunto de todas as coisas que se pretende estudar. Representada por tudo o que está no interior do desenho. População e Amostra De importância fundamental para toda a análise estatística é a relação entre amostra e população. Praticamente todas as técnicas a serem discutidas neste curso consistem de métodos

Leia mais

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação

Medidas de Dispersão. Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Medidas de Dispersão Introdução Amplitude Variância Desvio Padrão Coeficiente de Variação Introdução Estudo de medidas que mostram a dispersão dos dados em torno da tendência central Analisaremos as seguintes

Leia mais

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira

Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Agrupamento de Escolas de Águeda Escola Básica Fernando Caldeira Currículo da disciplina de Matemática - 7ºano Unidade 1 Números inteiros Propriedades da adição de números racionais Multiplicação de números

Leia mais

ANÁLISE DE RISCO E RETORNO DE INVESTIMENTO USO DAS MEDIDAS DE DISPERSÃO

ANÁLISE DE RISCO E RETORNO DE INVESTIMENTO USO DAS MEDIDAS DE DISPERSÃO ANÁLISE DE RISCO E RETORNO DE INVESTIMENTO USO DAS MEDIDAS DE DISPERSÃO Luiz Fernando Stringhini 1 Na tentativa de mostrar as possibilidades de uso das ferramentas da estatística dentro da contabilidade,

Leia mais

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia

Planejamento Anual. Componente Curricular: Matemática Ano: 7º ano Ano Letivo: Professor(s): Eni e Patrícia Planejamento Anual Componente Curricular: Matemática Ano: 7º ano Ano Letivo: 2016 Professor(s): Eni e Patrícia OBJETIVO GERAL Desenvolver e aprimorar estruturas cognitivas de interpretação, análise, síntese,

Leia mais

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos

Prof. Sérgio Carvalho Estatística. I Jornada de Especialização em Concursos DISTRIBUIÇÃO DE FREQÜÊNCIAS & INTERPOLAÇÃO LINEAR DA OGIVA 0. (AFRF-000) Utilize a tabela que se segue. Freqüências Acumuladas de Salários Anuais, em Milhares de Reais, da Cia. Alfa Classes de Salário

Leia mais

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof.

ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim. ICMS PE 2014: Resolução da prova de Estatística Prof. ICMS/PE 2014 Resolução da Prova de Estatística Professor Fábio Amorim 1 de 6 Pessoal, segue a resolução das questões de Estatística da prova realizada pela SEFAZ-PE, para o cargo de Auditor Fiscal do Tesouro

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 02 EQUAÇÕES Pense no seguinte problema: Uma mulher de 25 anos é casada com um homem 5 anos mais velho que ela. Qual é a soma das idades

Leia mais

INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão. Prof. Dr. Guanis de Barros Vilela Junior

INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão. Prof. Dr. Guanis de Barros Vilela Junior INTRODUÇÃO À ESTATÍSTICA: Medidas de Tendência Central e Medidas de Dispersão Prof. Dr. Guanis de Barros Vilela Junior Relembrando!!! Não é uma CIÊNCIA EXATA!!! É UMA CIÊNCIA PROBABILÍSTICA!!!!!!! Serve

Leia mais

Curso: Engenharia de Prod. Mecânica Engenharia Elétrica Estatística e Probabilidade Prof. Eng. Vicente Budzinski Notas de Aula

Curso: Engenharia de Prod. Mecânica Engenharia Elétrica Estatística e Probabilidade Prof. Eng. Vicente Budzinski Notas de Aula Curso: Engenharia de Prod. Mecânica Engenharia Elétrica Estatística e Probabilidade Prof. Eng. Vicente Budzinski Notas de Aula 1. SOMATÓRIO 1.1 Índices ou notação por índices O símbolo Xi (lê-se X índice

Leia mais

Tópicos em Gestão da Informação II

Tópicos em Gestão da Informação II Tópicos em Gestão da Informação II Aula 05 Variabilidade estatística Prof. Dalton Martins dmartins@gmail.com Gestão da Informação Faculdade de Informação e Comunicação Universidade Federal de Goiás Exercício

Leia mais

CE Estatística I

CE Estatística I CE 002 - Estatística I Agronomia - Turma B Professor Walmes Marques Zeviani Laboratório de Estatística e Geoinformação Departamento de Estatística Universidade Federal do Paraná 1º semestre de 2012 Zeviani,

Leia mais

Estatística descritiva básica: Medidas de tendência central

Estatística descritiva básica: Medidas de tendência central Estatística descritiva básica: Medidas de tendência central ACH2021 Tratamento e Análise de Dados e Informações Marcelo de Souza Lauretto marcelolauretto@usp.br www.each.usp.br/lauretto *Parte do conteúdo

Leia mais

Professora conteudista: Maria Ester Domingues de Oliveira. Revisor: Francisco Roberto Crisóstomo

Professora conteudista: Maria Ester Domingues de Oliveira. Revisor: Francisco Roberto Crisóstomo Estatística Básica Professora conteudista: Maria Ester Domingues de Oliveira Revisor: Francisco Roberto Crisóstomo Sumário Estatística Básica Unidade I 1 CICLO SEMPRE CRESCENTE...2 2 ESTATÍSTICA: CIÊNCIA

Leia mais

UM JOGO BINOMIAL 1. INTRODUÇÃO

UM JOGO BINOMIAL 1. INTRODUÇÃO 1. INTRODUÇÃO UM JOGO BINOMIAL São muitos os casos de aplicação, no cotidiano de cada um de nós, dos conceitos de probabilidade. Afinal, o mundo é probabilístico, não determinístico; a natureza acontece

Leia mais

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci Termo-Estatística (2013) 2ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair

Leia mais

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da

Leia mais

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine)

Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Revisão de distribuições de probabilidades contínuas (Capítulo 6 Levine) Statistics for Managers Using Microsoft Excel, 5e 2008 Pearson Prentice-Hall, Inc. Chap 6-1 Objetivos: Neste capítulo, você aprenderá:

Leia mais

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas

Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Conceitos básicos, probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais Alguns conceitos População: é o conjunto de todos

Leia mais

Noções de Amostragem

Noções de Amostragem Noções de Amostragem AMOSTRAGEM Amostragem: é a área da estatística que estuda técnicas e procedimentos para retirar e analisar uma amostra com o objetivo de fazer inferência a respeito da população de

Leia mais

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves

Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) Prof. Guilherme Neves Prova Resolvida Raciocínio Lógico Quantitativo e Estatística (ANAC/2016) 31- (ANAC 2016/ESAF) A negação da proposição se choveu, então o voo vai atrasar pode ser logicamente descrita por a) não choveu

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

Exercícios resolvidos sobre Teoremas de Probabilidade

Exercícios resolvidos sobre Teoremas de Probabilidade Exercícios resolvidos sobre Teoremas de Probabilidade Aqui você tem mais uma oportunidade de estudar os teoremas da probabilidade, por meio de um conjunto de exercícios resolvidos. Observe como as propriedades

Leia mais

Genética Básica. Genética Mendeliana

Genética Básica. Genética Mendeliana Genética Básica Genética Mendeliana Coordenador Victor Martin Quintana Flores Gregor Johann Mendel 22 Julho 1822-6 Janeiro 1884 Cruzamento Hibridização Híbrido Planta de ervilha Traços constantes Facilidades

Leia mais

CAPÍTULO 3 POPULAÇÃO E AMOSTRA

CAPÍTULO 3 POPULAÇÃO E AMOSTRA DEPARTAMENTO DE GEOCIÊNCIAS GCN 7901 ANÁLISE ESTATÍSTICA EM GEOCIÊNCIAS PROFESSOR: Dr. ALBERTO FRANKE CONTATO: alberto.franke@ufsc.br F: 3721 8595 CAPÍTULO 3 POPULAÇÃO E AMOSTRA As pesquisas de opinião

Leia mais

Estatística Descritiva (I)

Estatística Descritiva (I) Estatística Descritiva (I) O que é Estatística Para muitos, a Estatística não passa de conjuntos de tabelas de dados numéricos. Os estatísticos são as pessoas que coletam esses dados. A Estatística originou-se

Leia mais

Coeficiente de Assimetria

Coeficiente de Assimetria Coeficiente de Assimetria Rinaldo Artes Insper Nesta etapa do curso estudaremos medidas associadas à forma de uma distribuição de dados, em particular, os coeficientes de assimetria e curtose. Tais medidas

Leia mais

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES

MATRIZ DE REFERÊNCIA - SPAECE MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL TEMAS E SEUS DESCRITORES MATEMÁTICA 5 o ANO DO ENSINO FUNDAMENTAL I INTERAGINDO COM OS NÚMEROS E FUNÇÕES D1 Reconhecer e utilizar características do sistema de numeração decimal. Utilizar procedimentos de cálculo para obtenção

Leia mais

Fernando de Pol Mayer

Fernando de Pol Mayer Fernando de Pol Mayer Laboratório de Estatística e Geoinformação (LEG) Departamento de Estatística (DEST) Universidade Federal do Paraná (UFPR) Este conteúdo está disponível por meio da Licença Creative

Leia mais

MATEMÁTICA NÍVEL MÉDIO

MATEMÁTICA NÍVEL MÉDIO MATEMÁTICA NÍVEL MÉDIO 1. CONJUNTOS 1.1. Representação e relação: pertinência, inclusão e igualdade. 1.2. Operações: união, intercessão, diferença e complementar. 1.3. Conjuntos numéricos: Naturais, Inteiros,

Leia mais

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin Grupo de Neurofísica. ANOVA e MANOVA

UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin Grupo de Neurofísica. ANOVA e MANOVA UNIVERSIDADE ESTADUAL DE CAMPINAS Instituto de Física Gleb Wataghin Grupo de Neurofísica e M ANalysis Of Variance Permite determinar se as médias de 2 ou mais populações são iguais População: o grupo (universo)

Leia mais

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS

NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS NOÇÕES RÁPIDAS DE ESTATÍSTICA E TRATAMENTO DE DADOS Prof. Érica Polycarpo Bibliografia: Data reduction and error analysis for the physica sciences (Philip R. Bevington and D. Keith Robinson) A practical

Leia mais

HEP Bioestatística

HEP Bioestatística HEP 57800 Bioestatística DATA Aula CONTEÚDO PROGRAMÁTICO 05/03 Terça 1 Níveis de mensuração, variáveis, organização de dados, apresentação tabular 07/03 Quinta 2 Apresentação tabular e gráfica 12/03 Terça

Leia mais

Estatística Descritiva

Estatística Descritiva C E N T R O D E M A T E M Á T I C A, C O M P U T A Ç Ã O E C O G N I Ç Ã O UFABC Estatística Descritiva Centro de Matemática, Computação e Cognição March 17, 2013 Slide 1/52 1 Definições Básicas Estatística

Leia mais

1) Qual a probabilidade de obtermos face 5 no arremesso de um dado?

1) Qual a probabilidade de obtermos face 5 no arremesso de um dado? Porém sabemos que nem todas as características genéticas são desejáveis por produzirem fenótipos com baixa viabilidade ou produzirem deformações ou bloqueios em rotas importantes do metabolismo. Então,

Leia mais

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Luiz Medeiros Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja um

Leia mais

MEDIÇÃO NO LABORATÓRIO

MEDIÇÃO NO LABORATÓRIO MEDIÇÃO NO LABORATÓRIO Medição e medida de grandezas físicas Uma grandeza física é uma propriedade de um corpo ou uma característica de um fenómeno que pode ser medida. A medição é a operação pela qual

Leia mais

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado.

Se A =, o evento é impossível, por exemplo, obter 7 no lançamento de um dado. PROBABILIDADE Espaço amostral Espaço amostral é o conjunto universo U de todos os resultados possíveis de um experimento aleatório. O número de elementos desse conjunto é indicado por n(u). Exemplos: No

Leia mais

Estatística - aulasestdistrnormal.doc 13/10/05

Estatística - aulasestdistrnormal.doc 13/10/05 Distribuição Normal Introdução O pesquisador estuda variáveis. O estatístico diz que essas variáveis são aleatórias porque elas têm um componente que varia ao acaso. Por exemplo, a variabilidade dos pesos

Leia mais

Vamos calcular a média de cada empresa, somando receita de 2009, 2010 e 2011 e dividindo por 3.

Vamos calcular a média de cada empresa, somando receita de 2009, 2010 e 2011 e dividindo por 3. MATEMÁTICA MARCÃO Vamos calcular a média de cada empresa, somando receita de 2009, 2010 e 2011 e dividindo por 3. Média de V = (200+220+240)/3 = 220 Média de W = (200+230+200)/3 = 210 Média de X = (250+210+215)/3

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

ESTATÍSTICA E. Prof Paulo Renato A. Firmino. Aulas

ESTATÍSTICA E. Prof Paulo Renato A. Firmino. Aulas ESTATÍSTICA E Prof Paulo Renato A. Firmino praf62@gmail.com Aulas 05-06 Descritiva Medidas de Posição Mediana: É o valor que se localiza no centro de uma amostra ordenada Se o número de observações (n)

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

AMEI Escolar Matemática 8º Ano Estatística: Organização e Tratamento de Dados

AMEI Escolar Matemática 8º Ano Estatística: Organização e Tratamento de Dados AMEI Escolar Matemática 8º Ano Estatística: Organização e Tratamento de Dados Conteúdos desta unidade: Organização, representação e interpretação de dados; Medidas de tendência central; Medidas de localização.

Leia mais

MÓDULO 2 POTÊNCIA. Capítulos do módulo:

MÓDULO 2 POTÊNCIA. Capítulos do módulo: MÓDULO 2 POTÊNCIA Sabendo que as potências tem grande importância no mundo da lógica matemática, nosso curso terá por objetivo demonstrar onde podemos utilizar esses conceitos no nosso cotidiano e vida

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística TESTES DE HIPÓTESES (ou Testes de Significância) Estimação e Teste de Hipóteses Estimação e teste de hipóteses (ou significância) são os aspectos principais da Inferência Estatística

Leia mais

ESTATÍSTICA DESCRITIVA

ESTATÍSTICA DESCRITIVA ESTATÍSTICA DESCRITIVA O principal objectivo da ESTATÍSTICA DESCRITIVA é a redução de dados. A importância de que se revestem os métodos que visam exprimir a informação relevante contida numa grande massa

Leia mais