VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE"

Transcrição

1 VARIÁVEIS ALEATÓRIAS E DISTRIBUIÇÕES DE PROBABILIDADE.1 INTRODUÇÃO Admita que, de um lote de 10 peças, 3 das quais são defeituosas, peças são etraídas ao acaso, juntas (ou uma a uma, sem reposição). Estamos interessados no número de defeitos X nessa amostra de tamanho. Um espaço amostral para esse eperimento aleatório é : S = {(D, D), (D, ND), (ND, D), (ND, ND) } onde D = defeituosa e ND = não defeituosa. Assim, se ocorrer o evento {(D, D)}, teremos observado peças defeituosas na amostra, e X =. Fica, desse modo, estabelecida uma correspondência entre os elementos de S e os elementos de um conjunto numérico, como se vê no diagrama abaio : S ( D, D ) ( D, ND ) ( ND, D ) ( ND, ND ) X R 0 1 Note, então, que X é uma função real definida em S. Em símbolos : X : S s R X (s). VARIÁVEL ALEATÓRIA

2 ESTATÍSTICA Uma variável aleatória (v.a) é uma função real definida sobre os elementos de um espaço amostral S. * A variável aleatória X é dita DISCRETA se assume valores num conjunto finito ou infinito enumerável. * A variável aleatória X é dita CONTÍNUA se assume valores num conjunto infinito não enumerável (como um intervalo por eemplo). EXEMPLOS 1) A variável aleatória X, definida na introdução é discreta, pois pode assumir os valores 0, 1,. ) Uma lâmpada é fabricada e, em seguida, ensaiada quanto a sua duração de vida. Um espaço amostral para esse eperimento é S = ( t R / t 0 ). Se T é o tempo de vida da lâmpada, então T é a função (v.a.) Identidade, pois T(t) = t, para todo t S. T é uma v.a. contínua, pois assume valores no conjunto { t R / t 0 }. 3) Uma moeda é lançada até que a primeira cara ocorra. Um espaço amostral para esse eperimento é: S = { H, TH, TTH, TTTH,... }. Se X é a v.a. igual ao número de lançamentos necessários para obter a primeira cara, então X é discreta e assume valores no conjunto {1,, 3, 4,...}. 4) No eemplo acima, se X é definida como sendo 0 se T < 100 e 1 se T 100, então X é discreta pois assume valores no conjunto { 0, 1 }..3 FUNÇÃO DE PROBABILIDADE A função p() é uma função de probabilidade da v.a. X discreta se, para cada resultado possível, temos: ( 1 ) p() 0 ( ) p() = 1 (3) p() = P(X=) OBSERVAÇÃO : Aos pares (, p()) chamaremos de DISTRIBUIÇÃO DE PROBABILIDADE.

3 ESTATÍSTICA 3 _ EXEMPLO Para o mesmo eemplo visto na introdução, seja a v.a. X = número de peças defeituosas. Os valores possíveis para X são : 0, 1,. A função de probabilidade de X será então : p( 0 ) = P( X = 0 ) = P{(ND, ND)} = (7/10).(6/9) = 7/15. p( 1 ) = P( X = 1 ) = P{(D,ND) ou (ND,D)} = (3/10).(7/9) + (7/10)(3/9) = 7/15 p( ) = P( X = ) = P{(D,D)} = (3/10).(/9) = 1/15. Em forma de tabela podemos escrever : 0 1 p() 7/15 7/15 1/15 Observe que esta função possui as propriedades (1), () e (3) vistas acima. Podemos representar graficamente uma função de probabilidade simplesmente por pontos no plano cartesiano ou através do que se chama HISTOGRAMA DE PROBABILIDADE, que é um gráfico de barras. Cada barra tem o centro no ponto e altura igual a probabilidade de, ou seja, p(). Desta forma, cada retângulo tem área igual a p() e a área total abaio dos retângulos é igual a 1. Por eemplo : p() p() 7/15 7/15 1/ /15 0 1

4 4 ESTATÍSTICA.4 FUNÇÃO DENSIDADE DE PROBABILIDADE A função f() é uma função densidade de probabilidade para a v.a. X contínua, definida sobre o conjunto dos números reais R, se: ( 1 ) f() 0 + ( ) f() d = 1 ( 3 ) P(a < X < b) = f() d. a b OBSERVAÇÕES : 1) f() 0 para todo R, significa que o gráfico da função f está todo acima do eio. + ) f() d = 1, significa que a área total abaio da curva f() é igual a 1. 3) P(a < X < b) = f() d significa que probabilidades, agora, são iguais a áreas abaio da curva f(). a b 4) Note que P ( X = a ) = f() d = 0, ou seja, probabilidades pontuais são nulas. 5) Segue da observação 4 que: a a P(a < X < b) = P(a X< b) = P(a < X b) = P(a X b). EXEMPLO Seja a v.a. X contínua com função densidade de probabilidade dada por: f() = k, << 0, caso contrá rio a) Calcule o valor da constante k, que faz com que f() seja uma função densidade de probabilidade: Observe, inicialmente, que k > 0, pois f() deve ser disso, devemos ter que: 0 para todo real. Além f() d = f() d + f() d + f() d = k d = (1/ 3)k = 3k = 1.

5 ESTATÍSTICA 5 _ Daí, k = 1/3 e a função densidade de probabilidade poderá ser escrita como : f() = (1/ 3), < < 0, caso contrá rio Graficamente : f() 4/3 1/3 0 1 b) Calcule P( 0 < X < 1 ) : 1 P( 0< X< 1) = (1/ 3) d = 1/ FUNÇÃO DE DISTRIBUIÇÃO ACUMULADA A função de distribuição acumulada de uma v.a. X contínua com função densidade de probabilidade f() é dada por : F ( ) = PX ( ) = f(s) ds Segue imediatamente que : a) P( a < X b ) = F( b ) - F( a ) b) P( X > a) = 1 - P(X a) = 1 - F( a ) c) f( ) = F ( ), se a derivada eistir. d) F( ) = 1 e F( ) = 0 e) F() é não decrescente.

6 6 ESTATÍSTICA EXEMPLO Para uma função densidade de probabilidade definida no eemplo anterior, a função de distribuição acumulada F() é encontrada da seguinte forma: 1º ) Para valores de : F() = P(X ) = f(s) ds = 0 º ) Para valores de < < : 3 F() = P(X ) = f(s) ds = f(s) ds + f (s) ds = (1 / 3) s ds = (1 / 9) ( + 1) 3º ) Para valores de : F() = P(X ) = f(s) ds = f(s) ds + f (s) ds + f (s) ds = (1 / 3) s ds = 1 Assim, a função de distribuição acumulada da v.a. X é escrita como: 0, para F() = P( X ) = (1/9) ( 3 + 1), para < < 1, para Neste eemplo, podemos ainda calcular probabilidades para X usando a F() encontrada: P(X 0,5) = F(0,5) = (1/9) (0, ) = P(0 < X 1) = F(1) - F(0) = (1/9) ( )- (1/9) ( ) = P(X > 1,3) = 1 - P(X 1,3) = 1 - F(1,3) = 1 - (1/9) (1, ) =

7 ESTATÍSTICA 7 _.6 EXPECTÂNCIA E VARIANCIA DE UMA V.A..6.1 EXPECTÂNCIA (Esperança Matemática ou Média) DE UMA V.A.: A epectância de uma v.a. X é uma medida que posiciona o centro de uma distribuição de probabilidade e é definida por: µ= E(X) = p() se a v.a. X for discreta µ= EX ( ) = fd ( ) se a v.a. X for contínua Observações: 1) Note que no caso da v.a. discreta a epectância pode ser vista como uma média ponderada, onde os pesos são as probabilidades de cada ponto. ) No caso da v.a. contínua, a epectância coincide com o cálculo do valor da abcissa do centro de gravidade da área que fica definida pela função f(). É um ponto de equilíbrio que é calculado a partir da função densidade de probabilidade. 3) Podemos interpretar a epectância, também, como sendo uma média dos valores que a v.a. assume se imaginarmos o eperimento aleatório sendo repetido indefinidamente, e os valores de X sendo observados nas repetições. A função de probabilidade no caso discreto, ou a função densidade de probabilidade no caso contínuo refletem as freqüências relativas de ocorrência dos valores de X PROPRIEDADES DA EXPECTÂNCIA: As propriedades operatórias apresentadas a seguir são válidas para v.a. s discretas e v.a. s contínuas. 1ª ) Se a é uma constante, então: E(a) = a ª ) Se a e b são constantes, então: E( ax + b) = a E(X) + b

8 8 ESTATÍSTICA 3ª ) E(X ± Y) = E(X) ± E(Y) 4ª ) Se X e Y são duas v.a. s independentes, então E(XY) = E(X). E(Y) (Obs.: A definição de independência de duas v.a. s não foi apresentada. Entretanto, podemos pensar nesta independência de modo análogo à independência de dois eventos A e B.) EXEMPLO 1: Se uma moeda honesta for lançada duas vezes, qual a epectância do número de caras? (ou, em média, quantas caras teremos?) Seja X a v.a. igual ao número de vezes em que aparece cara. X assume os valores 0, 1 e e sua distribuição de probabilidade é dada por: 0 1 p() ¼ ½ ¼ µ= E(X) = p() = ( 01 ) / 4+ ( 11 ) / + ( 1 ) / 4= 1 Assim, podemos dizer que ao lançarmos uma moeda duas vezes, em média obteremos 1 cara. EXEMPLO : Seja X uma v.a. contínua como função densidade de probabilidade dada por: f() =, se 0 < < 1 0, para outros valores de µ= E( X) = f( ) d=. d= / 3 0 1

9 ESTATÍSTICA 9 _ f() µ=/ EXPECTÂNCIA DE UMA FUNÇÃO DE V.A.: Seja X uma v.a. e g(x) uma função qualquer de X. Então a epectância de g(x) é dada por: E [ g(x) ] = g( ) p( ), sexfor discreta g( ) f( ) d, se X for contínua.6. VARIANCIA DE UMA V.A.: A variancia de uma v.a. é uma medida de sua dispersão ou variabilidade em torno de sua média. O gráfico abaio apresenta um eemplo das distribuições de probabilidade de duas v.a. s X1 e X que possuem a mesma forma da distribuição e a mesma epectância. Observamos, então, que a diferença entre elas é a variabilidade que elas apresentam em torno de sua média. σ 1 σ > σ 1 σ µ = µ 1 Note que a v.a. X se apresenta mais dispersa (mais espalhada ) em torno da média do que a v.a. X1.

10 10 ESTATÍSTICA A variancia de uma v.a. é definida por: σ = V(X) = E [(X - µ)] = σ = V(X) = E [(X - µ)] = ( µ) p() se X for discreta µ ( ) f( ) d, se X for contínua Note que a variancia é a média dos desvios que a v.a. X apresenta em relação à sua média µ, elevados ao quadrado. Sendo assim, a variancia será sempre positiva e quanto maior a variabilidade da v.a., maior será a sua variancia. A raiz quadrada positiva da variancia é uma medida de dispersão chamada de DESVIO PADRÃO. Uma alternativa para o cálculo da variancia é dada pelo seguinte resultado: Teorema: σ = V(X) = E (X ) - µ De fato: σ = V(X) = E [(X - µ)] = E ( X - µ X + µ) = = E (X) - µ E(X) + E(µ) = = E(X) - µ PROPRIEDADES DA VARIANCIA: 1ª ) Se b é uma constante, então: V(b) = 0 ª ) Se X é uma v.a. e b é uma constante, então: V(X + b) = V(X)

11 ESTATÍSTICA 11 _ 3ª ) Se X é uma v.a. e a é uma constante, então: V(aX) = a V(X) 4ª ) Se X e Y são v.a. s independentes e a e b são constantes, então: V(aX + by) = a V(X) + b V(Y) e V(aX - by) = a V(X) + b V(Y) EXEMPLO 1 Considere o eemplo 1 da definição de epectância ( o lançamento de moedas). Sabemos que: σ = V(X) = E (X) - µ Devemos calcular, inicialmente, E(X): E(X) = (0) p(0) + (1) p(1) + () p() = 3/ Daí, V(X) = 3/ - 1 = 1/ EXEMPLO Considere o eemplo da definição de epectância. Da mesma forma que no eemplo anterior, vamos calcular inicialmente E(X): EX ( ) = fd ( ) = d= 1/ Daí σ = V(X) = E (X) - µ = 1 / - (/3) = 1/ DESIGUALDADE DE CHEBYSHEV O matemático russo Chebyshev observou que a probabilidade de que qualquer v.a. X caia dentro de k desvios padrões em torno da média é pelo menos (1-1/k). Isto é: P(µ - k σ < X < µ + k σ) 1-1/k

12 1 ESTATÍSTICA Note que para k = a desigualdade afirma que a v.a. X tem uma probabilidade de no mínimo 1 - (1/) = ¾ de cair entre dois desvios padrões da média, ou seja, ¾ ou mais observações de qualquer distribuição caem no intervalo µ ± σ. Por ser uma desigualdade que se aplica para qualquer distribuição, é um resultado fraco. Sabemos, por eemplo, que temos pelo menos ¾ de probabilidade de uma observação cair no intervalo µ ± σ, mas não sabemos eatamente quanto seria esta probabilidade realmente. Isto só pode ser calculado se soubermos qual a distribuição de probabilidade da v.a..7 DISTRIBUIÇÕES EMPÍRICAS Geralmente, em um eperimento aleatório envolvendo uma v.a. continua, a sua função densidade de probabilidade f() é desconhecida. Para que a escolha de f() seja razoável, deve-se fazer um julgamento prévio baseado em informações disponíveis. Dados estatísticos, gerados em grande escala, podem ser muito úteis ao estudar o comportamento da distribuição, se apresentados na forma de uma distribuição de freqüência relativa. Tal arranjo é obtido agrupando-se os dados em classes e determinando a proporção das medidas em cada uma das classes. EXEMPLO A vida de 40 baterias de carro foram medidas em anos e são dadas a seguir :, 4,1 3,5 4,5 3, 3,7 3,0,6 3,4 1,6 3,1 3,3 3,8 3,1 4,7 3,7,5 4,3 3,4 3,6,9 3,3 3,9 3,1 3,3 3,1 3,7 4,4 3, 4,1 1,9 3,4 4,7 3,8 3,,6 3,9 3,0 4, 3,5 Devemos decidir, primeiro, sobre o número de classes nas quais os dados serão agrupados. Isto é arbitrário e geralmente entre 5 e 0 classes, dependendo do número de observações obtidas. Vamos escolher 7 classes para o eemplo. O intervalo de classe deve ser tal que 7 intervalos acomodem todos os dados. Assim, sendo 4,7-1,6 a amplitude total, então, o tamanho de intervalo será : ( 4,7-1,6 ) / 7 = 0,443. Vamos aproimar para 0,5 e fazer todos os 7 intervalos do mesmo tamanho. Se começarmos com 1,5 para o limite inferior do primeiro intervalo, então a distribuição de freqüência será dada por :

13 ESTATÍSTICA 13 _ Classes Pto. Médio de Classe Freqüência ( f ) Freqüência Relativa 1,5 1,9 1,7 0,050,0,4, 1 0,05,5,9,7 4 0,100 3,0 3,4 3, 15 0,375 3,4 3,9 3,7 10 0,50 4,0 4,4 4, 5 0,15 4,4 4,9 4,7 3 0,075 TOTAL 40 1,000 Podemos, a partir daí, construir um histograma de freqüência relativa : 0,375 0,50 0,15 1,7,,7 3, 3,7 4, 4,7 Embora tenhamos estimado uma curva para f() não conhecem os ainda a sua equação. Entretanto é possível ajustar uma curva sobre estes dados e verificar se este ajuste é razoável e determinar até que ponto é aceitável.

1 EXERCÍCIOS PROPOSTOS SOBRE PROBABILIDADE

1 EXERCÍCIOS PROPOSTOS SOBRE PROBABILIDADE 1 EXERCÍCIOS PROPOSTOS SOBRE PROBABILIDADE 1) Dê um espaço amostral para cada um dos experimentos aleatórios: ( a ) Uma moeda é lançada. Observamos e registramos o resultado obtido. ( b ) Artigos produzidos

Leia mais

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada

Variável Aleatória. O conjunto de valores. Tipos de variáveis. Uma função X que associa a cada Variável Aleatória Uma função X que associa a cada Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ elemento de S (s S) um número real x X(s) é denominada variável aleatória. O

Leia mais

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB.

2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 2. EXERCÍCIOS PROPOSTOS SOBRE V.A. E DISTRIB.PROBAB. 1) Classifique as seguintes variáveis aleatórias como discretas ou contínuas. X : o número de acidentes de automóvel por ano na rodovia BR 116. Y :

Leia mais

Lucas Santana da Cunha de junho de 2017

Lucas Santana da Cunha de junho de 2017 VARIÁVEL ALEATÓRIA Lucas Santana da Cunha email: lscunha@uel.br http://www.uel.br/pessoal/lscunha/ Universidade Estadual de Londrina 19 de junho de 2017 Uma função que associa um número real aos resultados

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros

UNIVERSIDADE FEDERAL DA PARAÍBA. Variáveis Aleatórias. Departamento de Estatística Luiz Medeiros UNIVERSIDADE FEDERAL DA PARAÍBA Variáveis Aleatórias Departamento de Estatística Luiz Medeiros Introdução Como sabemos, características de interesse em diversas áreas estão sujeitas à variação; Essa variabilidade

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Variáveis Aleatórias Ao descrever um espaço

Leia mais

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal

Modelos Probabilísticos Teóricos Discretos e Contínuos. Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Modelos Probabilísticos Teóricos Discretos e Contínuos Bernoulli, Binomial, Poisson, Uniforme, Exponencial, Normal Distribuição de Probabilidades A distribuição de probabilidades de uma variável aleatória:

Leia mais

1 Variáveis Aleatórias

1 Variáveis Aleatórias Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 5 Professor: Carlos Sérgio UNIDADE 3 - VARIÁVEIS ALEATÓRIAS DISCRETAS (Notas de aula) 1 Variáveis

Leia mais

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua.

Conforme o conjunto de valores X(S) uma variável aleatória poderá ser discreta ou contínua. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali/ s KKK CKK KKC KCK CCK CKC KCC CCC S X X(s) R X(S) Uma função X que associa a cada elemento de S (s S) um número real X(s) é denominada

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Conceitos, Discretas, Contínuas, Propriedades Itens 5. e 6. BARBETTA, REIS e BORNIA Estatística para Cursos de Engenharia e Informática. Atlas, 004 Variável aleatória Uma variável

Leia mais

VARIÁVEIS ALEATÓRIAS

VARIÁVEIS ALEATÓRIAS UNIVERSIDADE FEDERAL DE JUIZ DE FORA INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA VARIÁVEIS ALEATÓRIAS Joaquim H Vianna Neto Relatório Técnico RTE-03/013 Relatório Técnico Série Ensino Variáveis

Leia mais

Cálculo das Probabilidades e Estatística I

Cálculo das Probabilidades e Estatística I Cálculo das Probabilidades e Estatística I Prof a. Juliana Freitas Pires Departamento de Estatística Universidade Federal da Paraíba - UFPB juliana@de.ufpb.br Distribuição Normal Motivação: Distribuição

Leia mais

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES

CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES CAPÍTULO 4 CONCEITOS BÁSICOS DE ESTATÍSTICA E PROBABILIDADES. INTRODUÇÃO - Conceito de população desconhecida π e proporção da amostra observada P. π P + pequeno erro Perguntas: - Qual é o pequeno erro?

Leia mais

Variáveis Aleatórias - VA

Variáveis Aleatórias - VA Variáveis Aleatórias - VA cc ck kc kk 0 1 2 1/4 1/2 Prof. Adriano Mendonça Souza, Dr. Departamento de Estatística - PPGEMQ / PPGEP - UFSM - Introdução Se entende por VA ou V. indicadoras uma lista de valores

Leia mais

Variáveis Aleatórias Discretas 1/1

Variáveis Aleatórias Discretas 1/1 Variáveis Aleatórias Discretas Professores Eduardo Zambon e Magnos Martinello UFES Universidade Federal do Espírito Santo DI Departamento de Informática CEUNES Centro Universitário Norte do Espírito Santo

Leia mais

Probabilidade e Modelos Probabilísticos

Probabilidade e Modelos Probabilísticos Probabilidade e Modelos Probabilísticos 1ª Parte: Conceitos básicos, variáveis aleatórias, modelos probabilísticos para variáveis aleatórias discretas, modelo binomial, modelo de Poisson 1 Probabilidade

Leia mais

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições

MOQ-12: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS. VA s e Distribuições Motivação: MOQ-2: PROBABILIDADES E PROCESSOS ESTOCÁSTICOS VA s e Distribuições Definimos anteriormente Espaço de Probabilidades como sendo a tripla (W,, P(.)), em que, dado um eperimento, W representa

Leia mais

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Variáveis Aleatórias. Departamento de Matemática Escola Superior de Tecnologia de Viseu Variáveis Aleatórias Departamento de Matemática Escola Superior de Tecnologia de Viseu Exemplo No lançamento de duas moedas ao ar, os resultados possíveis são: FF, FC, CF ou CC. No entanto, o nosso interesse

Leia mais

Fundamentos de Estatística

Fundamentos de Estatística Fundamentos de Estatística Clássica Workshop Análise de Incertezas e Validação Programa de Verão 2017 Marcio Borges 1 1LABORATÓRIO NACIONAL DE COMPUTAÇÃO CIENTÍFICA mrborges@lncc.br Petrópolis, 9 de Fevereiro

Leia mais

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues

Unidade III ESTATÍSTICA. Prof. Fernando Rodrigues Unidade III ESTATÍSTICA Prof. Fernando Rodrigues Medidas de dispersão Estudamos na unidade anterior as medidas de tendência central, que fornecem importantes informações sobre uma sequência numérica. Entretanto,

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

Distribuições Amostrais

Distribuições Amostrais Estatística II Antonio Roque Aula Distribuições Amostrais O problema central da inferência estatística é como fazer afirmações sobre os parâmetros de uma população a partir de estatísticas obtidas de amostras

Leia mais

Conceito de Estatística

Conceito de Estatística Conceito de Estatística Estatística Técnicas destinadas ao estudo quantitativo de fenômenos coletivos, observáveis. Unidade Estatística um fenômeno individual é uma unidade no conjunto que irá constituir

Leia mais

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008

Variável Aleatória. Gilson Barbosa Dourado 6 de agosto de 2008 Variável Aleatória Gilson Barbosa Dourado gdourado@uneb.br 6 de agosto de 2008 Denição de Variável Aleatória Considere um experimento E e seu espaço amostral Ω = {a 1, a 2,..., a n }. Variável aleatória

Leia mais

ESTATÍSTICA. x(s) W Domínio. Contradomínio

ESTATÍSTICA. x(s) W Domínio. Contradomínio Variáveis Aleatórias Variáveis Aleatórias são funções matemáticas que associam números reais aos resultados de um Espaço Amostral. Uma variável quantitativa geralmente agrega mais informação que uma qualitativa.

Leia mais

CAPÍTULO 5: VARIÁVEIS ALEATÓRIAS BIDIMENSIONAIS Todas as coisas aparecem e desaparecem por causa da concorrência de causas e condições. Nada nunca existe inteiramente só, tudo está em relação com todo

Leia mais

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano

PROBABILIDADE E ESTATÍSTICA. Profa. Dra. Yara de Souza Tadano PROBABILIDADE E ESTATÍSTICA Profa. Dra. Yara de Souza Tadano yaratadano@utfpr.edu.br Aula 7 11/2014 Variáveis Aleatórias Variáveis Aleatórias Probabilidade e Estatística 3/41 Variáveis Aleatórias Colete

Leia mais

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado.

Efeito. Causas. Determinístico. Sistema Real. Probabilístico. Experiência para o qual o. modelo probabilístico é adequado. Sistema Real Determinístico Probabilístico Causas Efeito X Causas Efeito Eperiência para o qual o modelo probabilístico é adequado. ❶ Não é possível prever um resultado particular, mas pode-se enumerar

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : Ω A, em que A R. Esquematicamente As variáveis aleatórias

Leia mais

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31

Probabilidade II. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Probabilidade II Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Desigualdades 02/14 1 / 31 Um teorema de grande importância e bastante utilidade em probabilidade

Leia mais

Intervalos de Confiança

Intervalos de Confiança Intervalos de Confiança INTERVALOS DE CONFIANÇA.1 Conceitos básicos.1.1 Parâmetro e estatística Parâmetro é a descrição numérica de uma característica da população. Estatística é a descrição numérica de

Leia mais

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad

Variáveis Aleatórias Contínuas e Distribuição de Probabilidad Variáveis Aleatórias Contínuas e Distribuição de Probabilidades - parte I 2012/02 1 Variáveis Aleatórias Contínuas 2 Distribuições de Probabilidade e Funções Densidades de Probabil 3 4 Objetivos Ao final

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Tarciana Liberal Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Tarciana Liberal Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja

Leia mais

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório?

Processos Estocásticos. Variáveis Aleatórias. Variáveis Aleatórias. Luiz Affonso Guedes. Como devemos descrever um experimento aleatório? Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Funções de Uma Variável Aleatória Funções de Várias Momentos e Estatística Condicional Teorema do Limite Central Processos Estocásticos

Leia mais

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto

Estatística. Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas. Professor Fernando Porto Estatística Capítulo 3 - Parte 1: Variáveis Aleatórias Discretas Professor Fernando Porto Lançam-se 3 moedas. Seja X o número de ocorrências da face cara. O espaço amostral do experimento é: W = {(c,c,c),(c,c,r),(c,r,c),(c,r,r),(r,c,c),(r,c,r),(r,r,c),(r,r,r)}

Leia mais

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB

Variáveis Aleatórias. Prof. Luiz Medeiros Departamento de Estatística - UFPB Variáveis Aleatórias Prof. Luiz Medeiros Departamento de Estatística - UFPB Introdução Ao descrever o espaço amostral de um experimento aleatório, não especificamos que um resultado individual seja um

Leia mais

Aproximação da binomial pela normal

Aproximação da binomial pela normal Aproximação da binomial pela normal 1 Objetivo Verificar como a distribuição normal pode ser utilizada para calcular, de forma aproximada, probabilidades associadas a uma variável aleatória com distribuição

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

É o conjunto de resultados de uma experiência aleatória. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas;

É o conjunto de resultados de uma experiência aleatória. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas; Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/famat/viali Eperiência na qual o resultado é incerto. E : Joga-se uma moeda quatro vezes e observa-se o número de caras e coroas; E : Joga-se uma

Leia mais

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança

Probabilidade e Estatística. Estimação de Parâmetros Intervalo de Confiança Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://páginapessoal.utfpr.edu.br/ngsilva Estimação de Parâmetros Intervalo de Confiança Introdução A inferência estatística é o processo

Leia mais

Conceitos básicos: Variável Aleatória

Conceitos básicos: Variável Aleatória : Variável Aleatória Variável aleatória (v.a.) valor numérico que é resultado de uma eperiência aleatória. Podemos ter variáveis aleatórias contínuas ou discretas. Eemplo 1: Suponha que lança duas moedas

Leia mais

Exemplos. Experimento Aleatório. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras;

Exemplos. Experimento Aleatório. E 1 : Joga-se uma moeda quatro vezes e observa-se o número de caras; Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Eperimento Aleatório Eperiência para o qual o modelo probabilístico é adequado. Eemplos E : Joga-se uma moeda quatro vezes e observa-se

Leia mais

Cap. 6 Variáveis aleatórias contínuas

Cap. 6 Variáveis aleatórias contínuas Estatística para Cursos de Engenharia e Informática Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia São Paulo: Atlas, 004 Cap. 6 Variáveis aleatórias contínuas APOIO: Fundação de Apoio

Leia mais

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL

VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL VARIÁVEL ALEATÓRIA e DISTRIBUIÇÃO BINOMIAL 1 Variável Aleatória Uma função X que associa a cada elemento w do espaço amostral W um valor x R é denominada uma variável aleatória. Experimento: jogar 1 dado

Leia mais

Cap. 8 - Variáveis Aleatórias

Cap. 8 - Variáveis Aleatórias Variáveis Aleatórias Discretas: A de Poisson e Outras ESQUEMA DO CAPÍTULO 8.1 A DISTRIBUIÇÃO DE POISSON 8.2 A DISTRIBUIÇÃO DE POISSON COMO APROXIMAÇÃO DA DISTRIBUIÇÃO BINOMIAL 8.3 O PROCESSO DE POISSON

Leia mais

Variáveis Aleatórias

Variáveis Aleatórias Variáveis Aleatórias Definição: Uma variável aleatória v.a. é uma função que associa elementos do espaço amostral a valores numéricos, ou seja, X : I, em que I. Esquematicamente: As variáveis aleatórias

Leia mais

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística

Capítulo 3. Introdução à Probabilidade E à Inferência Estatística Capítulo 3 Introdução à Probabilidade E à Inferência Estatística definições e propriedades: Propriedade 5: A probabilidade condicional reflete como a probabilidade de um evento pode mudar se soubermos

Leia mais

Introdução à probabilidade e estatística I

Introdução à probabilidade e estatística I Introdução à probabilidade e estatística I Variáveis Aleatórias Prof. Alexandre G Patriota Sala: 298A Email: patriota@ime.usp.br Site: www.ime.usp.br/ patriota Probabilidade Daqui por diante utilizaremos

Leia mais

2.1 Variáveis Aleatórias Discretas

2.1 Variáveis Aleatórias Discretas 4CCENDMMT02-P PROBABILIDADE E CÁLCULO DIFERENCIAL E INTEGRAL Girlan de Lira e Silva (1),José Gomes de Assis (3) Centro de Ciências Exatas e da Natureza /Departamento de Matemática /MONITORIA Resumo: Utilizamos

Leia mais

Momentos: Esperança e Variância. Introdução

Momentos: Esperança e Variância. Introdução Momentos: Esperança e Variância. Introdução Em uma relação determinística pode-se ter a seguinte relação: " + " = 0 Assim, m =, é a declividade e a e b são parâmetros. Sabendo os valores dos parâmetros

Leia mais

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística I Aula 8. Prof.: Patricia Maria Bortolon, D. Sc. Estatística I Aula 8 Prof.: Patricia Maria Bortolon, D. Sc. MODELOS PROBABILÍSTICOS MAIS COMUNS VARIÁVEIS ALEATÓRIAS CONTÍNUAS Lembram o que vimos sobre V.A. contínua na Aula 6? Definição: uma variável

Leia mais

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL

PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL PROBABILIDADES: VARIÁVEL ALEATÓRIA CONTÍNUA E DISTRIBUIÇÃO NORMAL Aula 6 META Estudar o comportamento e aplicação das Variáveis Aleatórias Contínuas, bem como da Distribuição Normal. OBJETIVOS Ao final

Leia mais

Variáveis aleatórias

Variáveis aleatórias Variáveis aleatórias Joaquim Neto joaquim.neto@ufjf.edu.br www.ufjf.br/joaquim_neto Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF

Leia mais

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES PROBABILIDADE E ESTATÍSTICA DISTRIBUIÇÕES DE PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Variável Aleatória

Leia mais

EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias

EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias EST029 Cálculo de Probabilidade I Cap. 6: Caracterização Adicional de Variáveis Aleatórias Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Motivação Suponha que tenhamos um experimento onde a probabilidade

Leia mais

Distribuições de Probabilidade

Distribuições de Probabilidade Distribuições de Probabilidade 7 6 5 4 3 2 1 0 Normal 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Temperatura do ar 20 18 16 14 12 10 8 6 4 2 0 Assimetrica Positiva 1 2 3 4 5 6 7 8 9 10 11 Exemplos: Precipitação

Leia mais

Adilson Cunha Rusteiko

Adilson Cunha Rusteiko Janeiro, 2015 Estatística , A Estatística Estatística: É a parte da matemática aplicada que fornece métodos para coleta, organização, descrição, análise e interpretação

Leia mais

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 8: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 28 de Agosto, 2013 Probabilidade: uma Introdução / Aula 8 1 Desigualdades de Markov e

Leia mais

3. Variáveis aleatórias

3. Variáveis aleatórias 3. Variáveis aleatórias Numa eperiência aleatória, independentemente de o seu espaço de resultados ser epresso numericamente, há interesse em considerar-se funções reais em Ω, denominadas por variáveis

Leia mais

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas.

Definição. Os valores assumidos pelos estimadores denomina-se estimativas pontuais ou simplesmente estimativas. 1. Inferência Estatística Inferência Estatística é o uso da informção (ou experiência ou história) para a redução da incerteza sobre o objeto em estudo. A informação pode ou não ser proveniente de um experimento

Leia mais

Uma estatística é uma característica da amostra. Ou seja, se

Uma estatística é uma característica da amostra. Ou seja, se Estatística Uma estatística é uma característica da amostra. Ou seja, se X 1,..., X n é uma amostra, T = função(x 1,..., X n é uma estatística. Exemplos X n = 1 n n i=1 X i = X 1+...+X n : a média amostral

Leia mais

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc.

Estatística II Aula 2. Prof.: Patricia Maria Bortolon, D. Sc. Estatística II Aula Prof.: Patricia Maria Bortolon, D. Sc. Distribuições Amostrais ... vocês lembram que: Antes de tudo... Estatística Parâmetro Amostra População E usamos estatíticas das amostras para

Leia mais

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva

Inferência Estatística: DEEST/UFOP Prof.: Spencer Barbosa da Silva Inferência Estatística: Prof.: Spencer Barbosa da Silva Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis

Leia mais

AULA 02 Distribuição de Probabilidade Normal

AULA 02 Distribuição de Probabilidade Normal 1 AULA 02 Distribuição de Probabilidade Normal Ernesto F. L. Amaral 20 de agosto de 2012 Faculdade de Filosofia e Ciências Humanas (FAFICH) Universidade Federal de Minas Gerais (UFMG) Fonte: Triola, Mario

Leia mais

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades

PRO 2271 ESTATÍSTICA I. 3. Distribuições de Probabilidades PRO71 ESTATÍSTICA 3.1 PRO 71 ESTATÍSTICA I 3. Distribuições de Probabilidades Variáveis Aleatórias Variáveis Aleatórias são valores numéricos que são atribuídos aos resultados de um eperimento aleatório.

Leia mais

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma:

Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: 46 VALOR ESPERADO CONDICIONADO Seja (X,Y) uma v.a. bidimensional contínua ou discreta. Define-se valor esperado condicionado de X para um dado Y igual a y da seguinte forma: Variável contínua E + ( X Y

Leia mais

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS

Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS Daniel Queiroz VARIÁVEIS ALEATÓRIAS DISCRETAS INTRODUÇÃO O que é uma variável aleatória? Um tipo de variável que depende do resultado aleatório de um experimento aleatório. Diz-se que um experimento é

Leia mais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais

EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais EST029 Cálculo de Probabilidade I Cap. 4: Variáveis Aleatórias Unidimensionais Prof. Clécio da Silva Ferreira Depto Estatística - UFJF Introdução Considere o experimento: Lançamento de uma moeda. Resultados

Leia mais

Aproximação da Distribuição Binomial pela Distribuição Normal

Aproximação da Distribuição Binomial pela Distribuição Normal Aproximação da Distribuição Binomial pela Distribuição Normal Uma das utilidades da distribuição normal é que ela pode ser usada para fornecer aproximações para algumas distribuições de probabilidade discretas.

Leia mais

Métodos Estatísticos

Métodos Estatísticos Métodos Estatísticos 5 - Distribuição Normal Referencia: Estatística Aplicada às Ciências Sociais, Cap. 7 Pedro Alberto Barbetta. Ed. UFSC, 5ª Edição, 2002. Distribuição de Probabilidades A distribuição

Leia mais

Probabilidade, distribuição normal e uso de tabelas padronizadas

Probabilidade, distribuição normal e uso de tabelas padronizadas Probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é probabilidade? Número de 0 até 1 que expressa a tendência de

Leia mais

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias

Aula de hoje. administração. São Paulo: Ática, 2007, Cap. 3. ! Tópicos. ! Referências. ! Distribuição de probabilidades! Variáveis aleatórias Aula de hoje! Tópicos! Distribuição de probabilidades! Variáveis aleatórias! Variáveis discretas! Variáveis contínuas! Distribuição binomial! Distribuição normal! Referências! Barrow, M. Estatística para

Leia mais

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE

ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE ALGUMAS DISTRIBUIÇÕES CONTÍNUAS DE PROBABILIDADE 4. 1 INTRODUÇÃO Serão apresentadas aqui algumas distribuições de probabilidade associadas a v.a. s contínuas. A mais importante delas é a distribuição Normal

Leia mais

Conteúdo Teórico: 04 Esperança

Conteúdo Teórico: 04 Esperança ACH2053 Introdução à Estatística Conteúdo Teórico: 04 Esperança Marcelo de Souza Lauretto Sistemas de Informação EACH www.each.usp.br/lauretto Referência: Morris DeGroot, Mark Schervish. Probability and

Leia mais

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade

Probabilidade. Variáveis Aleatórias Distribuição de Probabilidade Probabilidade Variáveis Aleatórias Distribuição de Probabilidade Variáveis Aleatórias Variável Aleatória Indica o valor correspondente ao resultado de um experimento A palavra aleatória indica que, em

Leia mais

Inferência Estatística:

Inferência Estatística: Inferência Estatística: Amostragem Estatística Descritiva Cálculo de Probabilidade Inferência Estatística Estimação Teste de Hipótese Pontual Por Intervalo Conceitos básicos Estimação É um processo que

Leia mais

6.3 Valor Médio de uma Variável Aleatória

6.3 Valor Médio de uma Variável Aleatória 6. 3 V A L O R M É D I O D E U M A V A R I Á V E L A L E A T Ó R I A 135 1. Considere uma urna contendo três bolas vermelhas e cinco pretas. Retire três bolas, sem reposição, e defina a v.a. X igual ao

Leia mais

I. Variáveis Aleatórias

I. Variáveis Aleatórias I. Variáveis Aleatórias Raciocínio Lógico e Estatística Olá, Pessoal! Tudo em paz? Como vão os estudos? Segue um pequeno artigo introdutório sobre Variáveis Aleatórias. I.1 Conceito Bem, se você ler a

Leia mais

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA

DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS DISTRIBUIÇÕES CONJUNTAS ROTEIRO DISTRIBUIÇÃO CONJUNTA ROTEIRO DISTRIBUIÇÕES DE PROBABILIDADE CONJUNTAS 1. Distribuições conjuntas 2. Independência 3. Confiabilidade 4. Combinações lineares de variáveis aleatórias 5. Referências DISTRIBUIÇÃO CONJUNTA Em muitos

Leia mais

Prof. Lorí Viali, Dr.

Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Tipos de Modelos Determinístico Sistema Real Probabilístico Modelo determinístico Causas Efeito Exemplos Gravitação F GM 1 M /r

Leia mais

Modelos discretos e contínuos

Modelos discretos e contínuos Modelos discretos e contínuos Joaquim Neto joaquim.neto@ufjf.edu.br Departamento de Estatística - ICE Universidade Federal de Juiz de Fora (UFJF) Versão 3.0 Joaquim Neto (UFJF) ICE - UFJF Versão 3.0 1

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

Estatística para Cursos de Engenharia e Informática

Estatística para Cursos de Engenharia e Informática Estatística para Cursos de Engenharia e Informática BARBETTA, Pedro Alberto REIS, Marcelo Menezes BORNIA, Antonio Cezar MUDANÇAS E CORREÇOES DA ª EDIÇÃO p. 03, após expressão 4.9: P( A B) = P( B A) p.

Leia mais

Distribuições Amostrais e Estimação Pontual de Parâmetros

Distribuições Amostrais e Estimação Pontual de Parâmetros Distribuições Amostrais e Estimação Pontual de Parâmetros - parte I 19 de Maio de 2011 Introdução Objetivos Ao final deste capítulo você deve ser capaz de: Entender estimação de parâmetros de uma distribuição

Leia mais

Amostragem Aleatória e Descrição de Dados - parte I

Amostragem Aleatória e Descrição de Dados - parte I Amostragem Aleatória e Descrição de Dados - parte I 2012/02 1 Amostra e População 2 3 4 Objetivos Ao final deste capítulo você deve ser capaz de: Calcular e interpretar as seguintes medidas de uma amostra:

Leia mais

Teoria da Probabilidade

Teoria da Probabilidade Teoria da Probabilidade Luis Henrique Assumpção Lolis 14 de fevereiro de 2014 Luis Henrique Assumpção Lolis Teoria da Probabilidade 1 Conteúdo 1 O Experimento Aleatório 2 Espaço de amostras 3 Álgebra dos

Leia mais

4. Distribuições de probabilidade e

4. Distribuições de probabilidade e 4. Distribuições de probabilidade e características Valor esperado de uma variável aleatória. Definição 4.1: Dada uma v.a. discreta (contínua) X com f.m.p. (f.d.p.) f X (), o valor esperado (ou valor médio

Leia mais

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja:

Nessa situação, a média dessa distribuição Normal (X ) é igual à média populacional, ou seja: Pessoal, trago a vocês a resolução da prova de Estatística do concurso para Auditor Fiscal aplicada pela FCC. Foram 10 questões de estatística! Não identifiquei possibilidade para recursos. Considero a

Leia mais

Probabilidade, distribuição normal e uso de tabelas padronizadas

Probabilidade, distribuição normal e uso de tabelas padronizadas Probabilidade, distribuição normal e uso de tabelas padronizadas Prof. Marcos Vinicius Pó Métodos Quantitativos para Ciências Sociais O que é probabilidade? Número de 0 até 1 que expressa a tendência de

Leia mais

Conceitos básicos de teoria da probabilidade

Conceitos básicos de teoria da probabilidade Conceitos básicos de teoria da probabilidade Experimento Aleatório: procedimento que, ao ser repetido sob as mesmas condições, pode fornecer resultados diferentes Exemplos:. Resultado no lançamento de

Leia mais

Distribuição de Probabilidade. Prof. Ademilson

Distribuição de Probabilidade. Prof. Ademilson Distribuição de Probabilidade Prof. Ademilson Distribuição de Probabilidade Em Estatística, uma distribuição de probabilidade descreve a chance que uma variável pode assumir ao longo de um espaço de valores.

Leia mais

Estatística

Estatística Estatística 1 2016.2 Sumário Capítulo 1 Conceitos Básicos... 3 MEDIDAS DE POSIÇÃO... 3 MEDIDAS DE DISPERSÃO... 5 EXERCÍCIOS CAPÍTULO 1... 8 Capítulo 2 Outliers e Padronização... 12 VALOR PADRONIZADO (Z)...

Leia mais

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr.

Experiência para o qual o modelo probabilístico é adequado. Efeito. Causas. Prof. Lorí Viali, Dr. Prof. Lorí Viali, Dr. viali@pucrs.br http://www.pucrs.br/~viali Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.ufrgs.br/~viali/ Determinístico Sistema Real Causas Efeito Probabilístico X Causas Efeito

Leia mais

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017

AULAS 6 e 7. ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 AULAS 6 e 7 ESPERANÇA, MOMENTOS E DISTRIBUIÇÕES DE PROBABILIDADES de VARIÁVEIS DISCRETAS 05/05/2017 Em aulas passadas vimos as funções de probabilidade de variáveis discretas e contínuas agora vamos ver

Leia mais

CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE PPGEP. Introdução. Introdução. Introdução UFRGS. Distribuições de Probabilidade

CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE PPGEP. Introdução. Introdução. Introdução UFRGS. Distribuições de Probabilidade Introdução CAPÍTULO 5 DISTRIBUIÇÕES DE PROBABILIDADE UFRGS O histograma é usado para apresentar dados amostrais etraídas de uma população. Por eemplo, os 50 valores de uma característica dimensional apresentados

Leia mais

Amostragem e distribuições por amostragem

Amostragem e distribuições por amostragem Amostragem e distribuições por amostragem Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Contabilidade e Administração População, amostra e inferência estatística

Leia mais