UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática"

Transcrição

1 UNIVERSIDADE FEDERAL DE MATO GROSSO Campus Universitário do Araguaia Instituto de Ciências Exatas e da Terra Curso: Licenciatura em Matemática 1 a Lista de Exercícios de Probabilidade e Estatística 1. Suponha que o conjunto universo seja formado pelos inteiros positivos de 1 a 10. Sejam A = {2,3,4}, B = {3,4,5} e C = {5,6,7}. Enumere os elementos dos seguintes conjuntos: a) A c B b) A c B c) [A c B c ] c e) [A (B C)] c d) [A (B C) c ] c 2. Suponha que o conjunto universo U seja dado por U = {x R; 0 x 2}. Sejam os conjuntos A e B definidos da forma seguinte: A = {x R;1/2 < x 1} e B = {x R;1/4 x < 3/2}. Descreva os seguintes conjuntos: a) (A B) c b) A B c c) (A B) c d) A c B 3. Prove que A B se, e somente se, A B = A. 4. Prove que A B se, e somente se, A B = B. 5. Prove que A c B c = B A. 6. Prove que A B = (A c B c ) c. 7. Prove que A B = A B c. 8. Prove que se A B =, então A B c. 9. Prove que se A B, então A (B A) = B. 10. Mostre que A B C se, e somente se, A B e A C. 11. Uma experiência envolve o arremesso de dois dados perfeitos e o registo dos números que saem. Descreva os elementos que compõem um espaço amostral. 12. Uma experiência consiste em arremessar uma moeda 3 vezes ao ar. Qual é um espaço amostral desta experiência? Que evento corresponde à experiência resultante em mais caras do que coroas? 13. Uma experiência consiste num lançamento de uma moeda até se obter uma coroa. Descreva os elementos que compõem o espaço de resultados. 14. Considere a experiência aleatória que consiste em lançar uma moeda até sairem duas caras consecutivas ou tiverem sido feitos 4 lançamentos. Descreva o espaço de resultados associado a esta experiência. 15. Sejam E, F, G três eventos. Deduza as expressões envolvendo E, F, G para os seguintes eventos: a) Somente o evento E ocorre; b) Os eventos E e G ocorrem mas o evento F não; c) Pelo menos um dos eventos ocorre; d) Exatamente um dos eventos ocorre;

2 e) Exatamente dois dos eventos ocorrem; f) Não mais de dois eventos ocorrem simultâneamente. 16. Do cardápio de uma festa constavam dez diferentes tipos de salgadinhos dos quais só quatro seriam servidos quentes. O garçom encarregado de arrumar a travessa e servi-la foi instruído para que a mesma contivesse sempre só 2 diferentes tipos de salgadinhos frios, e só 2 diferentes dos quentes. De quantos modos diferentes, teve o garçom a liberdade de selecionar os salgadinhos para compor a travessa, respeitando as instruções? a) 90 b) 21 c) 240 d) 38 e) De um grupo de estudos de vinte pessoas, onde só seis são médicos, deseja-se formar comissões de dez pessoas, sendo que todos os médicos devem ser incluídos em cada comissão. Determine o número de formas para elaboraras comissões. 18. Um feirante possui, em sua banca, maçãs, peras e laranjas em grande quantidade. Desejando atender melhor a sua clientela, o feirante resolveu empacotar todas as suas frutas, de modo que cada pacote contivesse exatamente 5 frutas. Quantos tipos de pacotes poderá o feirante oferecer, no máximo, à sua clientela? 19. O número de comissões diferentes, de 2 pessoas, que podemos formar com os n diretores de uma firma, é k. Se, no entanto, ao formar estas comissões, tivermos que indicar uma das pessoas para presidente e a outra para suplente podemos formar k + 3 comissões diferentes. Determine o valor de n. 20. Existem n maneiras de distriuir 7 moedas de valores diferentes entre duas pessoas. Excluindo-se a possibilidade de uma só receber todas as moedas, determine o valor de n. n! 21. O símbolo C n,k é definido por k!(n k)! para n 0 com 0! = 1. Estes números C n,k são inteiros e aparecem como coeficientes no desenvolvimento de (a+b) n. a) Mostre que C n,k 1 +C n,k = C n+1,p. b) Seja S = C n,0 +C n,1 + +C n,n. Calcule log 2 S. 22. Dentre os anagramas distintos que podemos formar com n letras, das quais somente duas são iguais, 120 apresentam estas duas letras iguais juntas. Determine o valor de n. n ( ) n 23. Mostre que ( 1) j = 0. j j=0 Sugestão: Use o teorema binomial. 24. a) Prove por argumentos combinatórios, que: ( ) ( ) n n k = (n k +1), sendo n,p N tais que n p 1. k p 1 Sugestão: Considere um grupo de n objetos distintos e escolha k desses objetos, considerando um deles como especial. b) Use o resultado do item a) para simplificar o somatório abaixo: n 1 i=0 (i+1) ( ) n i+1 ( n. i) 25. De um grupo de n pessoas, suponha que queiramos escolher um comitê de k pessoas, com k n, das quais uma delas será designada a presidente.

3 a) Mantendo ( o) foco primeiro na escolha do comitê e então na escolha do presidente, mostre n que há k escolhas possíveis. k b) Mantendo o foco primeiro na escolha dos membros do comitê que não serão ( escolhidos ) como n presidente e então na escolha do presidente, mostre que há (n k + 1) escolhas k 1 possíveis. c) Mantendo o foco primeiro na ( escolha ) do presidente e então na escolha dos demais membros n 1 do comitê, mostre que há n escolhas possíveis. k 1 d) Conclua das letras a), b) e c) que ( ) ( ) ( ) n n n 1 k = (n k +1) = n. k k 1 k 1 e) Use a definição fatorial de ( ) m para verificar a identidade mostrada na letra d). r 26. Das 10 alunas de uma classe, 3 têm olhos azuis. Se duas delas são escolhidas aleatoriamente, qual é a probabilidade de: a) ambas terem olhos azuis. b) nenhuma ter olhos azuis. c) pelo menos uma ter olhos azuis. 27. Duas cartas são retiradas aleatoriamente de um baralho com 52 cartas. Determine a probabilidade de: a) serem ambas de espadas. b) uma ser de espadas e a outra ser de copas. 28. Numa turma, 70% dos alunos praticam ginástica, 10% jogam futebol e 6% praticam ginástica e jogam futebol. Qual a probabilidade de um aluno selecionado ao acaso dessa turma, praticar ginástica ou jogar futebol? 29. Dois estudantes A e B do primeiro ano de um curso superior têm as probabilidades de se licenciar respectivamente iguais a 1/6 e 1/4. Utilizando as letras A e B para indicar os eventos Licencia-se o aluno A e Licencia-se o aluno B, represente, com a ajuda da álgebra de conjuntos, os eventos seguintes e calcule as respectivas probabilidades: a) Ambos se licenciam. b) Pelo menos um se licencia. c) Nem um nem outro se licencia. d) Somente um se licencia. 30. Tendo-se lançado dois dados perfeitos ao ar (dados sem defeitos), achar a probabilidade de que a soma dos pontos obtidos seja par e que se tenha obtido pelo menos um seis.

4 31. Mostre que, para quaisquer eventos A e B, tem-se P(A A B) P(A B). 32. Seja A B. Expresse as seguintes probabilidades da forma mais simples possível. a) P(A B) b) P(A B c ) c) P(B A) d) P(B A c ) 33. Sejam A e B dois eventos aleatórios. Mostre que: a) P(A B) P(A) P(A B) P(A)+P(B). b) P(A B c ) = P(A)[1 P(B A)], supondo P(A) 0 e P(B) 1. 1 P(B) c) P[(A B c ) (A c B)] = P(A)+P(B) 2P(A B). d) P(B) = P(A)P(B A) P(A)P(B A c )+P(B A c ), supondo 0 < P(A) < 1. e) max{0,p(a)+p(b) 1} P(A B) min{p(a),p(b)} 34. Mostre que, se P(A B) = 1, então P(B c A c ) = Sejam A, B e C três eventos aleatórios, com probabilidade não nula, definidos num espaço amostral Ω. Mostre que: P(A C B C) = P(A B C) = P(A B C) P(B C) 36. Verifique se são verdadeiras as afirmações (justifique sua resposta). a) Sendo A e B não-vazios, P(A B) é sempre positiva. b) Sendo P(A) = 3 4 e P(Bc ) = 2, A e B não podem ser disjuntos. 3 c) Sendo A e B independentes então P(A B) é sempre positiva. d) Não existe um evento A tal que P(A) P(A c ) = 3 4. e) Se P(A B) = 0 então P(A) P(B) = 0. f) Se P(A) = 1 4 e P(B) = 1 3 então P(A B) Demonstre que dois eventos com probabilidade positiva e disjuntos nunca são independentes. 38. Sejam A e B eventos aleatórios. a) Prove que se A e B são independentes, então: i) A c e B são independentes; ii) A e B c são independentes; iii) A c e B c são independentes; b) Prove que se P(B) 0, então P(A c B) = 1 P(A B). 39. Sabendo que P(A) = 2 3, P(B) = 1 2 e P(A B) = 1 3, determine: P(Ac ), P(A B), P(A c B c ), P(A c B), P(A B c ) e P(A c B c ). 40. Considere os eventos A, B e C em que P(A) = 1 4, P(B) = 3, A e C são mutuamente exclusivos 8 e P(A B) = 1 8. Calcule P(A B), P(Ac B) e P(C c A). 41. Sabendo que P(A) = 0.5 e que P(A B) = 0.6, determine P(B) se: a) A e B forem disjuntos.

5 b) A e B forem independentes. c) P(A B) = Qual a probabilidade de avaria do sistema de transmissão abaixo representado? Assuma que os diferente elementos têm a mesma probabilidade p de avariar e que eles avariam independentemente uns dos outros. O sistema funciona se a corrente puder entrar e sair, isto é, se existir pelo menos um canal de transmissão entre a entrada e a saída do circuito. 43. Selecionou-se aleatoriamente uma amostra de 50 alunos da Universidade Federal de Mato Grosso e as pesquisas feitas encontram-se representadas na seguinte tabela: Curso de Informática (B 1 ) Outros Cursos (B 2 ) Total Alunos sem computador (A 1 ) Alunos com computador (A 2 ) Total Escolhendo ao acaso um estudante da amostra, determine a probabilidade de: a) P(A 1 B 1 ) b) P(A 2 B 1 ) c) P(A 1 B 1 ) d) P(A 2 B 1 ) e) P(B 2 A 2 ) 44. Uma cadeia com três lojasa,b ec têm respectivamente 50, 75 e 100 empregados. A percentagem de mulheres a trabalhar em cada uma dessas lojas é 50, 60 e 70, respectivamente. No final de cada mês é nomeado o empregado do mês. Qual a probabilidade desse empregado trabalhar na loja C, sabendo que é mulher. 45. Numa fábrica de produção em série, existem três inspectores X, Y e Z, cada um deles responsável pela verificação de 20%, 30% e 50% dos artigos produzidos. A probabilidade do inspector X deixar passar um artigo defeituoso é 0,05; a probabilidade do inspector Y deixar passar um artigo defeituoso é 0,10 e a probabilidade do inspector Z cometer o mesmo erro é 0,15. Escolhase ao acaso um artigo que foi inspeccionado. a) Qual a probabilidade de que seja um artigo defeituoso? b) Sendo defeituoso, qual a probabilidade de ter sido X a inspeccioná-lo? c) Sendo defeituoso, qual a probabilidade de ter sido Z a inspeccioná-lo? 46. Num determinado jogo de azar, o objetivo é obter um seis no lançamento de um dado retirado ao acaso de uma urna onde existem três dados diferentes. Um desses dados tem três faces com o número seis; um outro dado é viciado, havendo a probabilidade de 2/6 de sair um seis; um terceiro dado é normal (não viciado). Qual a probabilidade de obter um seis neste jogo? 47. Uma bolsa contém moedas de prata e de cobre em igual número. Extraem-se ao acaso duas moedas. Calcule a probabilidade de: a) a segunda moeda extraída ser de prata, sabendo que a primeira foi de cobre. b) sair uma moeda de prata na segunda extracção. c) uma e só uma das moedas ser de prata. d) pelo menos uma das moedas ser de cobre. 48. Considere-se um cesto grande que contém 4 sacos, cada um com 25 bolbos de túlipas. Sabe-se que em 3 dos 4 sacos existem 5 bolbos para túlipas vermelhas e 20 para túlipas amarelas; o saco restante contém 15 bolbos para túlipas vermelhas e 10 para túlipas amarelas. Escolhe-se aleatoriamente um dos sacos e planta-se um bolbo retirado ao acaso do saco selecionado. Qual é a probabilidade de: a) se produzir uma túlipa vermelha?

6 b) se produzir uma túlipa amarela? c) sabendo que a túlipa produzida é vermelha, se ter escolhido o saco que continha 15 bolbos para túlipas vermelhas e 10 para túlipas amarelas. 49. Num centro de cálculo existem três impressoras A, B e C que imprimem a velocidades diferentes. A probabilidade de um ficheiro ser enviado para as impressoras A, B e C é respectivamente 0,6, 0,3 e 0,1. Ocasionalmente a impressora avaria-se e destrói a impressão. As impressoras A, B ou C avariam-se, respectivamente, com probabilidade 0,01, 0,05 e 0,04. A impressão de um ficheiro foi destruída! Qual a probabilidade de ter sido enviada para a impressora B?

Prof. Luiz Alexandre Peternelli

Prof. Luiz Alexandre Peternelli Exercícios propostos 1. Numa prova há 7 questões do tipo verdadeiro-falso ( V ou F ). Calcule a probabilidade de acertarmos todas as 7 questões se: a) Escolhermos aleatoriamente as 7 respostas. b) Escolhermos

Leia mais

1 Definição Clássica de Probabilidade

1 Definição Clássica de Probabilidade Centro de Ciências e Tecnologia Agroalimentar - Campus Pombal Disciplina: Estatística Básica - 2013 Aula 4 Professor: Carlos Sérgio UNIDADE 2 - Probabilidade: Definições (Notas de aula) 1 Definição Clássica

Leia mais

3 NOÇÕES DE PROBABILIDADE

3 NOÇÕES DE PROBABILIDADE 3 NOÇÕES DE PROILIDDE 3.1 Conjuntos Um conjunto pode ser considerado como uma coleção de objetos chamados elementos do conjunto. Em geral denota-se conjunto por letras maiúsculas,, C,... e a sua representação

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO

ESCOLA SUPERIOR DE TECNOLOGIA E GESTÃO Área Científica Matemática Probabilidades e Estatística Curso Engenharia do Ambiente º Semestre º Ficha n.º: Probabilidades e Variáveis Aleatórias. Lançam-se ao acaso moedas. a) Escreva o espaço de resultados

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Probabilidades e Estatística Curso Engenharia do Ambiente 2º Semestre 1º Ficha n.º1: Probabilidades e Variáveis Aleatórias 1. Lançam- ao acaso 2 moedas. a) Escreva o espaço de resultados

Leia mais

2. Lança-se ao acaso uma moeda 4 vezes e conta-se o número de faces obtidas. Escreva o espaço amostral da experiência.

2. Lança-se ao acaso uma moeda 4 vezes e conta-se o número de faces obtidas. Escreva o espaço amostral da experiência. Escola Superior de Tecnologia de Viseu Fundamentos de Estatística 2010/2011 Ficha nº 2 1. Lançam-se ao acaso 2 moedas. a) Escreva o espaço de resultados da experiência. b) Descreva os acontecimentos elementares.

Leia mais

3. Probabilidade P(A) =

3. Probabilidade P(A) = 7 3. Probabilidade Probabilidade é uma medida numérica da plausibilidade de que um evento ocorrerá. Assim, as probabilidades podem ser usadas como medidas do grau de incerteza e podem ser expressas de

Leia mais

Prof.Letícia Garcia Polac. 26 de setembro de 2017

Prof.Letícia Garcia Polac. 26 de setembro de 2017 Bioestatística Prof.Letícia Garcia Polac Universidade Federal de Uberlândia UFU-MG 26 de setembro de 2017 Sumário 1 2 Probabilidade Condicional e Independência Introdução Neste capítulo serão abordados

Leia mais

T o e r o ia a da P oba ba i b lida d de

T o e r o ia a da P oba ba i b lida d de Teoria da Probabilidade Prof. Joni Fusinato Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso cotidiano. Usa o princípio básico do aprendizado humano que

Leia mais

Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística. Probabilidades

Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística. Probabilidades Universidade Estadual de Londrina Centro de Ciências Exatas Departamento de Estatística Probabilidades Aluna(o): Aluna(o): Turma: Responsável: Prof. Silvano Cesar da Costa L O N D R I N A Estado do Paraná

Leia mais

Roteiro D. Nome do aluno: Número: Revisão. Combinações;

Roteiro D. Nome do aluno: Número: Revisão. Combinações; Faculdade Tecnológica de Carapicuíba Tecnologia em Logística Ênfase em Transportes Roteiro D Nome do aluno: Número: Periodo: Grupo: Revisão Tópicos Tarefa Pesquisar história do Fatorial e outros tipos

Leia mais

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015

ELEMENTOS DE PROBABILIDADE. Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Prof. Paulo Rafael Bösing 25/11/2015 ELEMENTOS DE PROBABILIDADE Def.: Um experimento é dito aleatório quando o seu resultado não for previsível antes de sua realização, ou seja,

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Propostas de resolução Exercícios de exames e testes intermédios 1. Como P (B) = 1 P ( B ) = P (B) P (A B) vem que P (B) = 1 0,7

Leia mais

Sumário. 2 Índice Remissivo 12

Sumário. 2 Índice Remissivo 12 i Sumário 1 Definições Básicas 1 1.1 Fundamentos de Probabilidade............................. 1 1.2 Noções de Probabilidade................................ 3 1.3 Espaços Amostrais Finitos...............................

Leia mais

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES

Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES Disciplina de Estatística Prof. Msc Quintiliano Siqueira Schroden Nomelini LISTA DE PROBABILIDADES 1) Determine a probabilidade de cada evento: a) Um nº par aparece no lançamento de um dado; b) Uma figura

Leia mais

Probabilidades. Carla Henriques e Nuno Bastos. Eng. do Ambiente. Departamento de Matemática Escola Superior de Tecnologia de Viseu

Probabilidades. Carla Henriques e Nuno Bastos. Eng. do Ambiente. Departamento de Matemática Escola Superior de Tecnologia de Viseu Probabilidades Carla Henriques e Nuno Bastos Departamento de Matemática Escola Superior de Tecnologia de Viseu Eng. do Ambiente Introdução Ao comprar acções, um investidor sabe que o ganho que vai obter

Leia mais

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três.

3. A probabilidade do evento de números pares. 4. O evento formado por número menor que três. 5. A probabilidade do evento número menor que três. 1 a Lista de Exercício - Estatística (Probabilidade) Profa. Ms. Ulcilea A. Severino Leal Algumas considerações importantes sobre a resolução dos exercícios. (i) Normas da língua culta, sequência lógica

Leia mais

Probabilidade Condicional (grupo 2)

Probabilidade Condicional (grupo 2) page 39 Capítulo 5 Probabilidade Condicional (grupo 2) Veremos a seguir exemplos de situações onde a probabilidade de um evento émodificadapelainformação de que um outro evento ocorreu, levando-nos a definir

Leia mais

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades

Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Bem Explicado Centro de Explicações Lda. Matemática 9º Ano Probabilidades Nome: Data: / / 1. Das seguintes experiências diz, justificando, quais são as aleatórias: 1.1. Deitar um berlinde num copo de água

Leia mais

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti

PROBABILIDADE. Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti Curso: Logística e Transportes Disciplina: Estatística Profa. Eliane Cabariti PROBABILIDADE Dizemos que a probabilidade é uma medida da quantidade de incerteza que existe em um determinado experimento.

Leia mais

Probabilidade e Estatística Probabilidade Condicional

Probabilidade e Estatística Probabilidade Condicional Introdução Probabilidade e Estatística Probabilidade Condicional Em algumas situações, a probabilidade de ocorrência de um certo evento pode ser afetada se tivermos alguma informação sobre a ocorrência

Leia mais

Aula 16 - Erivaldo. Probabilidade

Aula 16 - Erivaldo. Probabilidade Aula 16 - Erivaldo Probabilidade Probabilidade Experimento aleatório Experimento em que não pode-se afirmar com certeza o resultado final, mas sabe-se todos os seus possíveis resultados. Exemplos: 1) Lançar

Leia mais

1.4.2 Probabilidade condicional

1.4.2 Probabilidade condicional M. Eisencraft 1.4 Probabilidades condicionais e conjuntas 9 Portanto, P(A B) = P(A)+P(B) P(A B) (1.2) Para eventos mutuamente exclusivos, P(A B) = e P(A)+P(B) = P(A B). 1.4.2 Probabilidade condicional

Leia mais

Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução

Chama-se evento todo subconjunto de um espaço amostral. PROBABILIDADE. Introdução Introdução PROBABILIDADE Há certos fenômenos (ou experimentos) que, embora sejam repetidos muitas vezes e sob condições idênticas, não apresentam os mesmos resultados. Por exemplo, no lançamento de uma

Leia mais

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos:

Eisencraft e Loiola 2.1 Probabilidade 37. Para resolver problemas de probabilidades são necessários 3 passos: Eisencraft e Loiola 2.1 Probabilidade 37 Modelo matemático de experimentos Para resolver problemas de probabilidades são necessários 3 passos: a Estabelecimento do espaço das amostras b Definição dos eventos

Leia mais

TEORIA DAS PROBABILIDADES

TEORIA DAS PROBABILIDADES TEORIA DAS PROBABILIDADES 1.1 Introdução Ao estudarmos um fenômeno coletivo, verificamos a necessidade de descrever o próprio fenômeno e o modelo matemático associado ao mesmo, que permita explicá-lo da

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Probabilidade e Estatística Distribuições Discretas de Probabilidade Prof. Narciso Gonçalves da Silva www.pessoal.utfpr.edu.br/ngsilva Introdução Distribuições Discretas de Probabilidade Muitas variáveis

Leia mais

TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES

TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO.º ANO COMPILAÇÃO TEMA COMBINATÓRIA E PROBABILIDADES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA COMBINATÓRIA E PROBABILIDADES Matemática A.º Ano

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios. Os experimentos

Leia mais

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA

PROBABILIDADE. Numero de Resultados Desejado Numero de Resultados Possiveis EXERCÍCIOS DE AULA PROBABILIDADE São duas as questões pertinentes na resolução de um problema envolvendo probabilidades. Primeiro, é preciso quantificar o conjunto de todos os resultados possíveis, que será chamado de espaço

Leia mais

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO

ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO ESTATÍSTICA I LISTA DE EXERCÍCIOS 2 GABARITO 1. (Magalhães e Lima, pg 40) Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos: (a) Uma moeda é lançada duas vezes

Leia mais

Teoria das Probabilidades

Teoria das Probabilidades Capítulo 2 Teoria das Probabilidades 2.1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento

Leia mais

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache

PROBABILIDADE. Aula 2 Probabilidade Básica. Fernando Arbache PROBABILIDADE Aula 2 Probabilidade Básica Fernando Arbache Probabilidade Medida da incerteza associada aos resultados do experimento aleatório Deve fornecer a informação de quão verossímil é a ocorrência

Leia mais

PROBABILIDADE PROPRIEDADES E AXIOMAS

PROBABILIDADE PROPRIEDADES E AXIOMAS PROBABILIDADE ESPAÇO AMOSTRAL É o conjunto de todos os possíveis resultados de um experimento aleatório. A este conjunto de elementos denominamos de espaço amostral ou conjunto universo, simbolizado por

Leia mais

AULA 08 Probabilidade

AULA 08 Probabilidade Cursinho Pré-Vestibular da UFSCar São Carlos Matemática Professora Elvira e Monitores Ana Carolina e Bruno AULA 08 Conceitos e assuntos envolvidos: Espaço amostral Evento Combinação de eventos Espaço Amostral

Leia mais

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos

3. (Apostila 1 - ex.1.4) Defina um espaço amostral para cada um dos seguintes experimentos Primeira Lista de Exercícios Introdução à probabilidade e à estatística Prof Patrícia Lusié Assunto: Probabilidade. 1. (Apostila 1 - ex.1.1) Lançam-se três moedas. Enumerar o espaço amostral e os eventos

Leia mais

INTRODUÇÃO À PROBABILIDADE

INTRODUÇÃO À PROBABILIDADE INTRODUÇÃO À PROBABILIDADE Foto extraída em http://www.alea.pt Profª Maria Eliane Universidade Estadual de Santa Cruz USO DE PROBABILIDADES EM SITUAÇÕES DO COTIDIANO Escolhas pessoais Previsão do tempo

Leia mais

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Revisando - Análise combinatória

Leia mais

3.3. Diga qual é o número médio e a variância dos animais que sobrevivem?

3.3. Diga qual é o número médio e a variância dos animais que sobrevivem? 1. Um treinador de andebol tem à sua disposição 20 jogadores dos quais deve selecionar 10 para formar uma equipa para um jogo. 12 dos jogadores são atacantes e os restantes saõ defesas. 1.1. Se o selecionador

Leia mais

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva

Probabilidade. Probabilidade e Estatística. Prof. Dr. Narciso Gonçalves da Silva Probabilidade e Estatística Prof. Dr. Narciso Gonçalves da Silva http://paginapessoal.utfpr.edu.br/ngsilva Probabilidade Probabilidade Experimento Aleatório Um experimento é dito aleatório quando satisfaz

Leia mais

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES

PROBABILIDADE E ESTATÍSTICA PROBABILIDADES PROBABILIDADE E ESTATÍSTICA PROBABILIDADES Bruno Baierle Maurício Furigo Prof.ª Sheila Regina Oro (orientadora) Edital 06/2013 - Produção de Recursos Educacionais Digitais Revisando - Análise combinatória

Leia mais

Prof.: Joni Fusinato

Prof.: Joni Fusinato Introdução a Teoria da Probabilidade Prof.: Joni Fusinato joni.fusinato@ifsc.edu.br jfusinato@gmail.com Teoria da Probabilidade Consiste em utilizar a intuição humana para estudar os fenômenos do nosso

Leia mais

DEPARTAMENTO DE MATEMÁTICA

DEPARTAMENTO DE MATEMÁTICA FACULDADE DE CIÊNCIAS NATURAIS E MATEMÁTICA DEPARTAMENTO DE MATEMÁTICA Campus de Lhanguene, Av. de Moçambique, km 1, Tel: +258 21401078, Fax: +258 21401082, Maputo Cursos de Licenciatura em Ensino de Matemática

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aula passada Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos Mutuamente

Leia mais

Experiências Aleatórias. Espaço de Resultados. Acontecimentos

Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiências Aleatórias. Espaço de Resultados. Acontecimentos Experiência Aleatória É uma experiência em que: não se sabe exactamente o resultado que se virá a observar; conhece-se o universo dos resultados

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 38 ANÁLISE COMBINATÓRIA: COMBINAÇÕES SIMPLES

MATEMÁTICA - 2 o ANO MÓDULO 38 ANÁLISE COMBINATÓRIA: COMBINAÇÕES SIMPLES MATEMÁTICA - 2 o ANO MÓDULO 38 ANÁLISE COMBINATÓRIA: COMBINAÇÕES SIMPLES C = n, p p! n! ( n p )! Como pode cair no enem (UERJ) Sete diferentes figuras foram criadas para ilustrar, em grupos de quatro,

Leia mais

Noções sobre Probabilidade

Noções sobre Probabilidade Noções sobre Probabilidade Introdução Vimos anteriormente como apresentar dados em tabelas e gráficos, e também como calcular medidas que descrevem características específicas destes dados. Mas além de

Leia mais

Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal

Tópicos. Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Probabilidade Tópicos Conjuntos Fatorial Combinações Permutações Probabilidade Binômio de Newton triângulo de Pascal Conjuntos Conjunto: Na matemática, um conjunto é uma coleção de elementos com características

Leia mais

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal.

Estatística. Probabilidade. Conteúdo. Objetivos. Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Estatística Probabilidade Profa. Ivonete Melo de Carvalho Conteúdo Definições. Probabilidade: regras e aplicações. Distribuição Discreta e Distribuição Normal. Objetivos Utilizar a probabilidade como estimador

Leia mais

Q05. Ainda sobre os eventos A, B, C e D do exercício 03, quais são mutuamente exclusivos?

Q05. Ainda sobre os eventos A, B, C e D do exercício 03, quais são mutuamente exclusivos? LISTA BÁSICA POIA PROBABILIDADES A história da teoria das probabilidades teve início com os jogos de cartas, de dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo

Leia mais

CAPÍTULO 3 PROBABILIDADE

CAPÍTULO 3 PROBABILIDADE CAPÍTULO 3 PROBABILIDADE 1. Conceitos 1.1 Experimento determinístico Um experimento se diz determinístico quando repetido em mesmas condições conduz a resultados idênticos. Exemplo 1: De uma urna que contém

Leia mais

Estatística e Modelos Probabilísticos - COE241

Estatística e Modelos Probabilísticos - COE241 Estatística e Modelos Probabilísticos - COE241 Aulas passadas Motivação Exemplos de aplicação de probabilidade e estatística Informações do curso Aula de hoje Espaço amostral Álgebra de Eventos Eventos

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Considere um dado cúbico, com as faces numeradas de 1 a 6, e um saco que contém cinco bolas, indistinguíveis

Leia mais

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios.

Os experimentos que repetidos sob as mesmas condições produzem resultados geralmente diferentes serão chamados experimentos aleatórios. PROBABILIDADE Prof. Aurimenes A teoria das Probabilidades é o ramo da Matemática que cria, desenvolve e em geral pesquisa modelos que podem ser utilizados para estudar experimentos ou fenômenos aleatórios.

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos

MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos MATEMÁTICA A - 12o Ano Probabilidades - Teoremas e operações com conjuntos Exercícios de exames e testes intermédios 1. Seja Ω, conjunto finito, o espaço de resultados associado a uma certa experiência

Leia mais

1073/B - Introdução à Estatística Econômica

1073/B - Introdução à Estatística Econômica Lista de exercicios 2 Prof. Marcus Guimaraes 1073/B - Introdução à Estatística Econômica Ciências Econômicas 1) Suponha um espaço amostral S constituido de 4 elementos: S={a 1,a2,a3,a4}. Qual das funções

Leia mais

ESCOLA SUPERIOR DE TECNOLOGIA

ESCOLA SUPERIOR DE TECNOLOGIA Departamento Matemática Curso Engenharia Civil 1º Semestre 2º Folha Nº1 1. Ao dar ordem de compra de um computador é necessário especificar, em relação ao seu sistema, a memória (1, 2 ou 3Gb) e capacidade

Leia mais

2 Conceitos Básicos de Probabilidade

2 Conceitos Básicos de Probabilidade CE003 1 1 Introdução No capítulo anterior, foram mostrados alguns conceitos relacionados à estatística descritiva. Neste capítulo apresentamos a base teórica para o desenvolvimento de técnicas estatísticas

Leia mais

Estatística Empresarial. Fundamentos de Probabilidade

Estatística Empresarial. Fundamentos de Probabilidade Fundamentos de Probabilidade A probabilidade de chuva é de 90% A probabilidade de eu sair é de 5% Conceitos Básicos Conceitos Básicos 1. Experiência Aleatória (E) Processo de obtenção de uma observação

Leia mais

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico.

Tipos de Modelo. Exemplos. Modelo determinístico. Causas. Efeito. Exemplos. Modelo probabilístico. Causas. Efeito. Determinístico. Tipos de Modelo Sistema Real Determinístico Prof. Lorí Viali, Dr. viali@mat.ufrgs.br http://www.mat.ufrgs.br/~viali/ Probabilístico Modelo determinístico Exemplos Gravitação F GM 1 M 2 /r 2 Causas Efeito

Leia mais

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS

Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Cap. II EVENTOS MUTUAMENTE EXCLUSIVOS E EVENTOS NÃO- EXCLUSIVOS Dois ou mais eventos são mutuamente exclusivos, ou disjuntos, se os mesmos não podem ocorrer simultaneamente. Isto é, a ocorrência de um

Leia mais

Probabilidade e Estatística

Probabilidade e Estatística Aula 3 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3

Leia mais

Conteúdo: Aula 2. Probabilidade e Estatística. Professora: Rosa M. M. Leão

Conteúdo: Aula 2. Probabilidade e Estatística. Professora: Rosa M. M. Leão Aula 2 Professora: Rosa M. M. Leão Probabilidade e Estatística Conteúdo: 1.1 Por que estudar? 1.2 O que é? 1.3 População e Amostra 1.4 Um exemplo 1.5 Teoria da Probabilidade 1.6 Análise Combinatória 3

Leia mais

Aula 10 - Erivaldo. Probabilidade

Aula 10 - Erivaldo. Probabilidade Aula 10 - Erivaldo Probabilidade Experimento determinístico Dizemos que um experimento é determinístico quando repetido em condições semelhantes conduz a resultados idênticos. Experimento aleatório Dizemos

Leia mais

Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema.

Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema. PROBABILIDADE CONDICIONAL E DISTRIBUIÇÃO BINOMINAL 1. PROBABILIDADE CONDICIONAL Para iniciar o conceito do que é probabilidade condicional, vamos considerar o seguinte problema. Suponha que um redator

Leia mais

2 Um edifício possui 8 portas. De quantas formas uma pessoa poderá entrar no edifício e sair por uma porta diferente da que usou para entrar?

2 Um edifício possui 8 portas. De quantas formas uma pessoa poderá entrar no edifício e sair por uma porta diferente da que usou para entrar? UNIVERSIDDE FEDERL DE MTO GROSSO ampus Universitário do raguaia Instituto de iências Exatas e da Terra urso: Matemática Disciplina: Probabilidade e Estatística Professor: Renato Ferreira da ruz 1 a Lista

Leia mais

TESTE DE PROBABILIDADES E COMBINATÓRIA 12.º ANO

TESTE DE PROBABILIDADES E COMBINATÓRIA 12.º ANO TESTE DE PROBABILIDADES E COMBINATÓRIA 2.º ANO NOME: N.º: TURMA: ANO LETIVO: / AVALIAÇÃO: PROFESSOR: ENC. EDUCAÇÃO: DURAÇÃO DO TESTE: 90 MINUTOS O teste é constituído por dois grupos. O Grupo I é constituído

Leia mais

Ministério da Educação. Nome:... Número:

Ministério da Educação. Nome:... Número: Ministério da Educação Nome:...... Número: Unidade Lectiva de: Introdução às Probabilidades e Estatística Ano Lectivo de 2003/2004 Código1334 Teste Formativo Nº 2 1. Considere que na selecção de trabalhadores

Leia mais

Processos Estocásticos

Processos Estocásticos Processos Estocásticos Primeira Lista de Exercícios de junho de 0 Quantos códigos de quatro letras podem ser construídos usando-se as letras a, b, c, d, e, f se: a nenhuma letra puder ser repetida? b qualquer

Leia mais

3º trimestre Sala de estudos Data: 29/09/17 Ensino Médio 2º ano classe: Prof. Maurício Nome: nº

3º trimestre Sala de estudos Data: 29/09/17 Ensino Médio 2º ano classe: Prof. Maurício Nome: nº º trimestre Sala de estudos Data: 9/09/7 Ensino Médio º ano classe: Prof. Maurício Nome: nº. (Acafe 07) Uma prova consta de 7 questões de múltipla escolha, com 4 alternativas cada uma, e apenas uma correta.

Leia mais

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci

Termo-Estatística (2013) 2ª Aula. Prof. Alvaro Vannucci Termo-Estatística (2013) 2ª Aula Prof. Alvaro Vannucci Na Mecânica Estatística, será muito útil a utilização dos conceitos básicos de Análise Combinatória e Probabilidade. Por ex., uma garota vai sair

Leia mais

TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES

TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES FICHAS DE TRABALHO 12.º ANO COMPILAÇÃO TEMA 1 COMBINATÓRIA E PROBABILIDADES Site: http://www.mathsuccess.pt Facebook: https://www.facebook.com/mathsuccess TEMA 1 COMBINATÓRIA E PROBABILIDADES Matemática

Leia mais

Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico

Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle

Leia mais

Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico

Lista de Exercícios 1 Probabilidades Escola Politécnica, Ciclo Básico Lista de Exercícios 1 Probabilidades 0303200 Escola Politécnica, Ciclo Básico 1 o semestre 2017 1) Historicamente sabe-se que 10% dos artigos de uma firma são de segunda qualidade. Um inspetor de controle

Leia mais

Probabilidade Condicional e Independência

Probabilidade Condicional e Independência Meyer, P. L., Probabilidade: aplicações à Estatística, 2ª edição, Livros Técnicos e Científicos Editora, Rio de Janeiro, 1983. 1. A urna 1 contém x bolas brancas e y bolas vermelhas. A urna 2 contém z

Leia mais

Processos Estocásticos. Luiz Affonso Guedes

Processos Estocásticos. Luiz Affonso Guedes Processos Estocásticos Luiz Affonso Guedes Sumário Probabilidade Variáveis Aleatórias Funções de Uma Variável Aleatória Funções de Várias Variáveis Aleatórias Momentos e Estatística Condicional Teorema

Leia mais

Capítulo 2. Noções básicas de probabilidade

Capítulo 2. Noções básicas de probabilidade Probabilidades e Estatística Colectânea de Exercícios 2004/05 LEIC + LERCI + LEE Capítulo 2 Noções básicas de probabilidade Exercício 1.1 Admita que um lote contém peças pesando 5, 10, 15, 20 g e que existem

Leia mais

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade

UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística. Probabilidade UNIVERSIDADE FEDERAL DA PARAÍBA Departamento de Estatística Probabilidade Disciplina: Cálculo das Probabilidades e Estatística I Prof. Tarciana Liberal Existem muitas situações que envolvem incertezas:

Leia mais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais

MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais MATEMÁTICA A - 12o Ano Probabilidades - Noções gerais Exercícios de exames e testes intermédios 1. Uma pessoa lança um dado cúbico, com as faces numeradas de 1 a 6, e regista o número da face que ficou

Leia mais

Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr.

Ciclo 3 Encontro 2 PROBABILIDADE. Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. 1 Ciclo 3 Encontro 2 PROBABILIDADE Nível 3 PO: Márcio Reis 11º Programa de Iniciação Científica Jr. Probabilidade 2 Texto: Módulo Introdução à Probabilidade O que é probabilidade? parte 1 de Fabrício Siqueira

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES

LEIA ATENTAMENTE AS INSTRUÇÕES Matemática e suas Tecnologias CÓDIGO DA PROVA / SIMULADO Aluno(a): POMA - Matemática Questões Professores: Neydiwan PC 0-0 - 4 ª Série º Bimestre - N 0 / 06 / 06 LEIA ATENTAMENTE AS INSTRUÇÕES Este caderno

Leia mais

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES

LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES LISTA DE EXERCÍCIOS 1 ESTATÍSTICA E PROBABILIDADES 1- Ordene os dados indicando o 1º, 2º e 3º quartil 45, 56, 62, 67, 48, 51, 64, 71, 66, 52, 44, 58, 55, 61, 48, 50, 62, 51, 61, 55 2- Faça a análise da

Leia mais

Espaços Amostrais Finitos

Espaços Amostrais Finitos 2 ESQUEMA DO CAPÍTULO Espaços Amostrais Finitos 1.1 ESPAÇO AMOSTRAL FINITO 1.2 RESULTADOS IGUALMENTE VEROSSÍMEIS 1.3 MÉTODOS DE ENUMERAÇÃO UFMG-ICEx-EST-032/045 Cap. 2 - Espaços Amostrais Finitos 1 2.1

Leia mais

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S.

PROBABILIDADE. É o conjunto de todos os resultados possíveis de um experimento aleatório. A letra que representa o espaço amostral, é S. PROBABILIDADE A história da teoria das probabilidades, teve início com os jogos de cartas, dados e de roleta. Esse é o motivo da grande existência de exemplos de jogos de azar no estudo da probabilidade.

Leia mais

Exercícios resolvidos sobre Teoremas de Probabilidade

Exercícios resolvidos sobre Teoremas de Probabilidade Exercícios resolvidos sobre Teoremas de Probabilidade Aqui você tem mais uma oportunidade de estudar os teoremas da probabilidade, por meio de um conjunto de exercícios resolvidos. Observe como as propriedades

Leia mais

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M. Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com

Leia mais

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE

BANCO DE QUESTÕES TURMA PM-PE PROBABILIDADE 01. (UNICAMP 016) Uma moeda balanceada é lançada quatro vezes, obtendo-se cara exatamente três vezes. A probabilidade de que as caras tenham saído consecutivamente é igual a A) 1. B). 8 C) 1. D). 0. (UNESP

Leia mais

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves

PROBABILIDADE. ENEM 2016 Prof. Marcela Naves PROBABILIDADE ENEM 2016 Prof. Marcela Naves PROBABILIDADE NO ENEM As questões de probabilidade no Enem podem cobrar conceitos relacionados com probabilidade condicional e probabilidade de eventos simultâneos.

Leia mais

Probabilidades- Teoria Elementar

Probabilidades- Teoria Elementar Probabilidades- Teoria Elementar Experiência Aleatória Experiência aleatória é uma experiência em que: não se sabe exactamente o resultado que se virá a observar, mas conhece-se o universo dos resultados

Leia mais

Probabilidade e Estatística Preparação para P1

Probabilidade e Estatística Preparação para P1 robabilidade e Estatística reparação para rof.: Duarte ) Uma TV que valia R$ 00,00, entrou em promoção e sofreu uma redução de 0% em seu preço. Qual é o novo preço da TV? ) Um produto foi vendido por R$

Leia mais

INTRODUÇÃO ÀS PROBABILIDADES15

INTRODUÇÃO ÀS PROBABILIDADES15 INTRODUÇÃO ÀS PROBABILIDADES15 Vanderlei S. Bagnato 15.1 Introdução 15.2 Definição de Probabilidade 15.3 Adição de probabilidade 15.4 Multiplicação de probabilidades Referências Licenciatura em Ciências

Leia mais

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade

MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade MAT 461 Tópicos de Matemática II Aula 5: Resumo de Probabilidade Edson de Faria Departamento de Matemática IME-USP 26 de Agosto, 2013 Probabilidade: uma Introdução / Aula 5 1 Variáveis aleatórias Definição

Leia mais

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23

Probabilidade I. Departamento de Estatística. Universidade Federal da Paraíba. Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 I Departamento de Estatística Universidade Federal da Paraíba Prof. Tarciana Liberal (UFPB) Aula Probabilidade I 07/16 1 / 23 Probabilidade As definições de probabilidade apresentadas anteriormente podem

Leia mais

Universidade Federal de Goiás Instituto de Matemática e Estatística

Universidade Federal de Goiás Instituto de Matemática e Estatística Universidade Federal de Goiás Instituto de Matemática e Estatística Prova 1 de Probabilidade I Prof.: Fabiano F. T. dos Santos Goiânia, 15 de setembro de 2014 Aluno: Nota: Descreva seu raciocínio e desenvolva

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2013

Métodos Quantitativos para Ciência da Computação Experimental. Jussara Almeida DCC-UFMG 2013 Métodos Quantitativos para Ciência da Computação Experimental Jussara Almeida DCC-UFMG 2013 Revisão de Probabilidade e Estatística Concentrado em estatística aplicada Estatística apropriada para medições

Leia mais

Métodos Quantitativos para Ciência da Computação Experimental

Métodos Quantitativos para Ciência da Computação Experimental Métodos Quantitativos para Ciência da Computação Experimental -Aula #2a- Virgílio A. F. Almeida Março 2008 Departamento de Ciência da Computação Universidade Federal de Minas Gerais Revisão de Probabilidade

Leia mais

FICHA DE TRABALHO N. O 9

FICHA DE TRABALHO N. O 9 FICHA DE TRABALHO N. O 9 ASSUNTO: Modelos de probabilidade: probabilidade condicional 1. Sejam A e B dois acontecimentos tais que: P (A) = 0,3 e P (B ) = 0,7 Determine P (A B ), sabendo que: 1.1 Os acontecimentos

Leia mais

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE

QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE QUESTÕES DE CONCURSOS PÚBLICOS ENVOLVENDO PROBABILIDADE 1) Uma moeda não tendenciosa é lançada quatro vezes. A probabilidade de que sejam obtidas duas caras e duas coroas é: (A) 3/8 (B) ½ (C) 5/8 (D) 2/3

Leia mais

Probabilidade Condicional. Prof.: Ademilson

Probabilidade Condicional. Prof.: Ademilson Probabilidade Condicional Prof.: Ademilson Operações com eventos Apresentam-se abaixo algumas propriedades decorrentes de complementação, união e interseção de eventos, úteis no estudo de probabilidade.

Leia mais

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M.

Módulo de Introdução à Probabilidade. Ferramentas Básicas. 2 a série E.M. Módulo de Introdução à Probabilidade Ferramentas Básicas. a série E.M. Probabilidade Ferramentas Básicas Exercícios Introdutórios Exercício. Uma prova é composta por 5 questões de múltipla escolha com

Leia mais