Erivaldo. Polinômios

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Erivaldo. Polinômios"

Transcrição

1 Erivaldo Polinômios

2 Polinômio ou Função Polinomial Definição: P(x) = a o + a 1.x + a 2.x 2 + a 3.x a n.x n a o, a 1, a 2, a 3,..., a n : Números complexos Exemplos: 1) f(x) = x 2 + 3x 7 2) P(x) = 7x 6 + 3x 4 7x 2 5

3 Polinômios Variável, Grau, Coeficientes e Termo Independente Exemplos: 1) P(x) = 5x 3 + 9x 2 7x + 6 Variável: x Grau: 3º Coeficientes: 5, 9, - 7, 6 Termo Independente: 6 2) P(x) = 7x 5 + 2x 4 5x Variável: x Grau: 5º Coeficientes: 7, 2, 0, - 5, 0, 4 Termo Independente: 4

4 Polinômios Valor Numérico Exemplo: P(x) = x 3 + 3x 2 2x + 1 P(2) = (2) (2) 2 2.(2) + 1 P(2) = 17 P(0) = (0) (0) 2 2.(0) + 1 P(0) = 1 P(1) = (1) (1) 2 2.(1) + 1 P(0) = = 3 P(0) = termo independente P(1) = soma dos coeficientes

5 Polinômios Raiz P(x) = x 3 + 3x 2 + x 2 P(-2) = (-2) (-2) 2 + (-2) 2 P(-2) = P(-2) = 0-2 é raiz de P(x) α é raiz de P(x) se, e somente se, P(α) = 0

6 Polinômios Complete: Q(3) = 0 3 é raiz de Q(x) 4 é raiz de R(x) R(4) = 0 Soma dos coeficientes é nula P(1) = 0 1 é raiz de P(x)

7 Exemplo 01 Sendo P(x) = Q(x) + x 2 + x + 1 e sabendo que 2 é raiz de P(x) e 1 é raiz de Q(x), então P(1) Q(2) vale: Resolução: P(2) = 0 Q(1) = 0 P(x) = Q(x) + x 2 + x + 1 P(2) = Q(2) + (2) = Q(2) Q(2) = 7 P(1) Q(2) 3 ( 7) = 10 P(1) = Q(1) + (1) P(1) = P(1) = 3 Gabarito: 10

8 Polinômios Igualdade de Polinômos Dois polinômios são iguais se, e somente se, seus coeficientes forem ordenadamente iguais Exemplo: P(x) = 3x 3 + 5x 2 4x + 9 Q(x) = ax 3 + 2x 2 cx + 4x 3 + bx x + d Q(x) = ( a + 4 ).x 3 + ( b + 2 ).x 2 + ( 7 c ).x + ( d 5 ) a + 4 = 3 a = 1 b + 2 = 5 b = 3 P(x) = Q(x) 7 c = 4 c = 11 d 5 = 9 d = 14

9 Polinômios Polinômo Identicamente Nulo Um polinômio é nulo se, e somente se, seus coeficientes forem nulos Exemplo: Q(x) = ax 3 + 2x 2 cx + 4x 3 + bx x + d Q(x) = ( a + 4 ).x 3 + ( b + 2 ).x 2 + ( 7 c ).x + ( d 5 ) Q(x) é nulo a + 4 = 0 a = 4 b + 2 = 0 b = 2 7 c = 0 c = 7 d 5 = 0 d = 5

10 Polinômios Divisão Nomes: 1 : resto 2 : quociente 4 : divisor 9 : dividendo Prova real: 9 = P(x) D(x) R(x) Q(x) Nomes: R(x) : resto Q(x) : quociente D(x) : divisor P(x): dividendo Prova real: P(x) = D(x).Q(x) + R(x) Grau de Q(x): G Q = G P G D Grau de R(x): G R < G D G R = G D 1

11 Polinômios Exemplo: Grau de Q(x): x 6 x 4 R(x) Q(x) Grau de R(x): Maior Grau de R(x): G Q = G P G D G Q = 6 4 G Q = 2 G R < G D G R = G D 1 G R = 4 1 R(x) = ax 3 + bx 2 + cx + d Q(x) = ax 2 + bx + c

12 Exemplo 02 Encontre o quociente e o resto da divisão de P(x) = 2x 4 3x 3 + 2x 2 5x + 1 por D(x) = x 2 2x x 4 3x 3 + 2x 2 5x + 1 x 2 2x + 3 2x 4 + 4x 3 6x 2 2x 2 + x x 3 4x 2 5x x 3 + 2x 2 3x Q(x) = 2x 2 + x 2 0 2x 2 8x x 2 4x + 6 R(x) = 12x x + 7

13 Exemplo 03 Encontre o quociente e o resto da divisão de P(x) = 5x 3 + x 2 3x + 2 por D(x) = x 2 x x 3 + x 2 3x + 2 x 2 x + 2 5x 3 + 5x 2 10x 5x x 2 13x + 2 6x 2 + 6x 12 Q(x) = 5x x 10 R(x) = 7x 10

14 Exemplo 04 Encontre os valores de a e b para que o polinômio P(x) = x 3 3x 2 + ax + b seja divisível por D(x) = x 2 2x + 3. x 3 3x 2 + ax + b x 2 2x + 3 x 3 + 2x 2 3x 0 x 2 + (a 3)x + b + x 2 2x + 3 x 0 + (a 5)x + (b + 3) 1 Resto nulo R(x) = (a 5).x + (b + 3) zero a 5 = 0 a = 5 zero b + 3 = 0 b = 3

15 Exemplo 05 Encontre os valores de a e b para que o polinômio P(x) = x 3 3x 2 + ax + b quando dividido por D(x) = x 2 2x + 3 deixe resto 7 x 3 3x 2 + ax + b x 2 2x + 3 x 3 + 2x 2 3x 0 x 2 + (a 3)x + b + x 2 2x + 3 x 0 + (a 5)x + (b + 3) 1 R(x) = 0.x + 7 R(x) = (a 5).x + (b + 3) zero a 5 = 0 a = 5 sete b + 3 = 7 b = 4

16 Exemplo 06 Encontre o quociente e o resto da divisão de P(x) = x 3 4x 2 + 5x 7 por D(x) = x 2. Resolução: x 3 4x 2 + 5x 7 x 2 x 3 + 2x 2 x 2 2x x 2 + 5x + 2x 2 4x 0 + x 7 Q(x) = x 2 2x + 1 x + 2 R(x) = 5 0 5

17 Exemplo 07 Encontre o resto da divisão de P(x) = x 3 4x 2 + 5x 7 por D(x) = x 2. Resolução: Teorema do resto Q(x) = x 2 2x + 1 P(x) = x 3 4x 2 + 5x 7 D(x) = x 2 R(x) = 5 P( 2 ) = ( 2 ) 3 4( 2 ) 2 + 5( 2 ) 7 P(2) = P(2) = 5 R(x) = 5 Raiz: x 2 = 0 x = 2 P(raiz do divisor) = resto divisor de primeiro grau

18 Exemplo 08 Encontre o quociente e o resto da divisão de P(x) = x 3 4x 2 + 5x 7 por D(x) = x 2. Resolução: Briot - Ruffini P(x) = 1x 3 4x 2 + 5x 7 D(x) = x quociente Q(x) = x 2 2x + 1 resto R(x) = 5 divisor de primeiro grau Raiz: x 2 = 0 x = Q(x) = x 2 2x + 1 R(x) = x ó descer x 1

19 Exemplo 09 Encontre o quociente da divisão de P(x) = 4x 3 2x 2 + 2x 1 por D(x) = 2x 6. Resolução: Briott-Ruffini: Raiz do divisor: 2x 6 = 0 x = 3 : 2 Q(x) = 2x 2 + 5x + 16 R(x) = 95

20 Exemplo 10 (UDESC) A relação entre a e b, para que o polinômio P(x) = x 5 2x 4 + 4x 3 8x 2 + ax b tenha resto R(x) = 3, quando dividido por D(x) = x 2, é: a) 2a b = 3 b) 2a 2b = 3 c) 2a + b = 3 d) 2a + 2b = 3 e) a b = 0 Resolução: Raiz do divisor: x 2 = 0 x = 2 Resto da divisão: P(x) = x 5 2x 4 + 4x 3 8x 2 + ax b P(2) = (2) 5 2.(2) (2) 3 8.(2) 2 + a.(2) b Gabarito: a R = a b 3 = 2a b

21 Polinômio Complete: P(x) é divisível por (x 4) P( 4 ) = 0 P(x) dividido por (x 2) dá resto 7 P( 2 ) = 7 P(x) é divisível por (x + 5) P( -5 ) = 0 P(x) dividido por (x + 1) dá resto 3 P( -1 ) = 3

22 Polinômio Complete: P(x) é divisível por (x 3) e por (x + 1) P( 3 ) = 0 e P( -1) = 0 P(x) é divisível por (x 1).(x + 4) P( 1 ) = 0 e P( -4) = 0 P(x) é divisível por (x 2 5x + 6) P( 2 ) = 0 e P( 3 ) = 0 As raízes do divisor são raízes do dividendo quando o resto for zero (divisível) P(k) = 0 se, e somente se, P(x) é divisível por x k

23 Exemplo 11 Determine b e c de modo que o polinômio P(x) = x 4 + x 2 + bx + c seja divisível por (x 2), mas quando dividido por (x + 2) deixe resto 4. Resolução: P(x) dividido por (x 2) deixa resto zero P( 2 ) = 0 P(x) dividido por (x + 2) deixa resto quatro P( -2 ) = 4 P(x) = x 4 + x 2 + bx + c P(2) = 0 P(2) = (2) 4 + (2) 2 + b(2) + c = 0 2b + c = 20 P(-2) = 4 P(-2) = (-2) 4 + (-2) 2 + b(-2) + c = 4 2b + c = 16 b = -1 e c = -18

24 Exemplo 12 Determine a e b para que o polinômio P(x) = x 3 + ax 2 x + b seja divisível por D(x) = x 2 3x + 2. Resolução: Raízes do divisor: x 2 3x + 2 = 0 P(x) = x 3 + ax 2 x + b x 1 = 1 ou x 2 = 2 P(1) = 0 P(2) = 0 P(1) = 0 P(1) = (1) 3 + a(1) 2 (1) + b = 0 a + b = 0 P(2) = 0 P(2) = (2) 3 + a(2) 2 (2) + b = 0 4a + b = 6 a = -2 e b = 2

25 Exemplo 13 Determine a e b para que o polinômio P(x) = x 3 + 2x 2 + ax + b seja divisível por D(x) = x 2 4x + 4. Resolução: Raízes do divisor: x 2 4x + 4 = a b a + 8 2a + b + 16 x 1 = 2 ou x 2 = 2 2 é raiz dupla de P(x) a + 20 resto a + 20 = 0 a = 20 resto 2a + b + 16 = 0 2.(-20) + b + 16 = 0 b = 24

26 Exemplo 14 (PUC) O polinômio P(x) dividido por (x 1) dá resto 4 e dividido por (x 2) dá resto + 4. O resto da divisão de P(x) por (x 1).(x 2) é: Resolução: P(x) dividido por (x 1) deixa resto 4 P( 1 ) = 4 P(x) dividido por (x 2) deixa resto + 4 P( 2 ) = 4 P(x) (x 1).(x 2) R(x) Q(x) P(x) = (x 1).(x 2).Q(x) + (ax + b) Maior grau do resto: 1º R(x) = a.x + b

27 Exemplo 14 (PUC) O polinômio P(x) dividido por (x 1) dá resto 4 e dividido por (x 2) dá resto + 4. O resto da divisão de P(x) por (x 1).(x 2) é: Resolução: P( 1 ) = 4 P( 2 ) = 4 P(x) = (x 1).(x 2).Q(x) + (ax + b) P(1) = (1 1).(1 2).Q(1) + (a.1 + b) = 4 a + b = 4 zero P(2) = (2 1).(2 2).Q(2) + (a.2 + b) = 4 2a + b = 4 zero

28 Exemplo 14 (PUC) O polinômio P(x) dividido por (x 1) dá resto 4 e dividido por (x 2) dá resto + 4. O resto da divisão de P(x) por (x 1).(x 2) é: Resolução: P( 1 ) = 4 P( 2 ) = 4 P(x) = (x 1).(x 2).Q(x) + (ax + b) a + b = 4 2a + b = 4 a = 8 e b = 12 R(x) = a.x + b R(x) = 8x 12 Gabarito: e

29 Tópico 03 - Erivaldo FIM

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes

Leia mais

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n

Definição: Uma função de uma variável x é uma função polinomial complexa se pudermos escrevê-la na forma n POLINÔMIO I 1. DEFINIÇÃO Polinômios de uma variável são expressões que podem ser escritas como soma finita de monômios do tipo : a t k k onde k, a podem ser números reais ou números complexos. Exemplos:

Leia mais

Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2

Polinômios (B) 4 (C) 2 (D) 1 3 (E). 2 Polinômios. (ITA 2005) No desenvolvimento de (ax 2 2bx + c + ) 5 obtém-se um polinômio p(x) cujos coeficientes somam 32. Se 0 e são raízes de p(x), então a soma a + b + c é igual a (A) 2 (B) 4 (C) 2 (D)

Leia mais

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa

Projeto Jovem Nota 10 Polinômios Lista C Professor Marco Costa 1 1. (Fuvest 97) Suponha que o polinômio do 3 grau P(x) = x + x + mx + n, onde m e n são números reais, seja divisível por x - 1. a) Determine n em função de m. b) Determine m para que P(x) admita raiz

Leia mais

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição

Função polinomial. Pré-Cálculo. Função polinomial. Função polinomial: exemplos. Humberto José Bortolossi. Parte 6. Definição Pré-Cálculo Humberto José Bortolossi Departamento de Matemática Aplicada Universidade Federal Fluminense Função polinomial Parte 6 Parte 6 Pré-Cálculo 1 Parte 6 Pré-Cálculo 2 Função polinomial Função polinomial:

Leia mais

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, =

Matemática Básica. Fração geratriz e Sistema de numeração 1) 0, = ) 2, = Erivaldo UDESC Matemática Básica Fração geratriz e Sistema de numeração 1) 0,353535... = 35 99 2) 2,1343434... = 2134 21 99 0 Decimal (Indo-Arábico): 2107 = 2.10 3 + 1.10 2 + 0.10 1 + 7.10 0 Número de

Leia mais

3 + =. resp: A=5/4 e B=11/4

3 + =. resp: A=5/4 e B=11/4 ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI-UNITAU EXERCÍCIOS PARA ESTUDO DO EXAME FINAL - 3º ENSINO MÉDIO - PROF. CARLINHOS BONS ESTUDOS! ASSUNTO : POLINÔMIOS 1) Identifique as expressões abaixo que são

Leia mais

Visite : e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180

Visite :  e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180 ) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, então temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d) P(0) = e) N.D.A. ) (UFC) Seja P(x) um

Leia mais

Álgebra. Polinômios.

Álgebra. Polinômios. Polinômios 1) Diga qual é o grau dos polinômios a seguir: a) p(x) = x³ + x - 1 b) p(x) = x c) p(x) = x 7 - x² + 1 d) p(x) = 4 ) Discuta o grau dos polinômios em função de k R: a) p(x) = (k + 1)x² + x +

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios Primeira Lista de Exercícios disciplina: Introdução à Teoria dos Números (ITN) curso: Licenciatura em Matemática professores: Marnei L. Mandler, Viviane M. Beuter Primeiro semestre de 2012 1. Determine

Leia mais

Matemática. Questão 1. 3 a série do Ensino Médio Turma. 2 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO

Matemática. Questão 1. 3 a série do Ensino Médio Turma. 2 o Bimestre de 2016 Data / / Escola. Aluno RESOLUÇÃO: AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO EM AVALIAÇÃO DA APRENDIZAGEM EM PROCESSO Matemática 3 a série do Ensino Médio Turma GOVERNO DO ESTADO DE SÃO PAULO SECRETARIA DA EDUCAÇÃO 2 o Bimestre de 2016 Data / / Escola Aluno Questão 1 Dada a equação

Leia mais

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios

1 INTRODUÇÃO 3 PRODUTO 2 SOMA 4 DIVISÃO. 2.1 Diferença de polinômios. 4.1 Divisão Euclidiana. Matemática Polinômios Matemática Polinômios CAPÍTULO 02 OPERAÇÕES COM POLINÔMIOS 1 INTRODUÇÃO Como com qualquer outra função, podemos fazer operações de adição, subtração, multiplicação e divisão com polinômios. A soma e a

Leia mais

Exercícios de Aprofundamento 2015 Mat - Polinômios

Exercícios de Aprofundamento 2015 Mat - Polinômios Exercícios de Aprofundamento 05 Mat - Polinômios. (Espcex (Aman) 05) O polinômio (x) x x deixa resto r(x). Sabendo disso, o valor numérico de r( ) é a) 0. b) 4. c) 0. d) 4. e) 0. 5 f(x) x x x, uando dividido

Leia mais

Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2

Matemática 1 INTRODUÇÃO 1 TEOREMA DAS RAÍZES COMPLEXAS 3 TEOREMA DAS RAÍZES RACIONAIS 2 TEOREMA DAS RAÍZES IRRACIONAIS. Exercício Resolvido 2 Matemática Frente II CAPÍTULO 22 EQUAÇÕES POLINOMIAIS 1 INTRODUÇÃO Nos capítulos anteriores, durante o estudo de polinômios, já estudamos alguns teoremas que nos ajudam a encontrar as raízes de polinômios.

Leia mais

Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa

Projeto Jovem Nota 10 Polinômios Lista A Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufv 2000) Sabendo-se que o número complexo z=1+i é raiz do polinômio p(x)=2x +2x +x+a,calcule o valor de a. 2. (Ita 2003) Sejam a, b, c e d constantes reais. Sabendo que a divisão

Leia mais

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação

Polinômios. 02) Se. (x 1), então. f(x) (x 2) (x 1) 5ax 2b, com a e b reais, é divisível por a b 1. 04) As raízes da equação Polinômios 1. (Ufsc 015) Em relação à(s) proposição(ões) abaixo, é CORRETO afirmar ue: 01) Se o gráfico abaixo representa a função polinomial f, definida em por f(x) ax bx cx d, com a, b e c coeficientes

Leia mais

8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau

8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau 8. Calcular, para que o polinômio ( ) ( ) ( ) seja: a) do 3 grau b) do 2 grau c) 1 grau 9. Quais das seguintes funções são polinomiais? Justifique. a) ( ) b) ( ) c) ( ) d) ( ) e) ( ) 10. Sendo ( ), calcule:

Leia mais

Matemática E Extensivo V. 8

Matemática E Extensivo V. 8 Matemática E Extensivo V. 8 Resolva Aula 9 9.) D x + x 7x 6 = x = é raiz. Aula.) x + px + = Se + i é raiz, então i também é. 5 7 6 Soma = b a = p p = + i + i p = p = Q(x) = x + 5x + Resolvendo Q(x) =,

Leia mais

(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é:

(UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado do número complexo z = x + yi é: APOSTILAS (ENEM) VOLUME COMPLETO Exame Nacional de Ensino Médio (ENEM) 4 VOLUMES APOSTILAS IMPRESSAS E DIGITAIS Questão 1 (UCSAL) Sejam os números reais x e y tais que 12 - x + (4 + y)i = y + xi. O conjugado

Leia mais

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma:

Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: EQUAÇÕES POLINOMIAIS. EQUAÇÃO POLINOMIAL OU ALGÉBRICA Denominamos equação polinomial ou equação algébrica de grau n a toda equação da forma: p(x) = a n x n + a n x n +a n x n +... + a x + a 0 = 0 onde

Leia mais

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner

Cálculo Numérico / Métodos Numéricos. Solução de equações polinomiais Briot-Ruffini-Horner Cálculo Numérico / Métodos Numéricos Solução de equações polinomiais Briot-Ruffini-Horner Equações Polinomiais p = x + + a ( x) ao + a1 n x n Com a i R, i = 0,1,, n e a n 0 para garantir que o polinômio

Leia mais

Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que:

Polinômios. 2) (ITA-1962) Se x³+px+q é divisível por x²+ax+b e x²+rx+s, demonstrar que: Material by: Caio Guimarães Polinômios A seguir, apresento uma lista de vários exercícios propostos (com gabarito) sobre polinômios. Os exercícios são para complementar a vídeo-aula a respeito de polinômios

Leia mais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais

Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais Ficha de trabalho Decomposição e resolução de equações e inequações polinomiais 1. Verifique, recorrendo ao algoritmo da divisão, que: 6 4 0x 54x + 3x + é divisível por x 1.. De um modo geral, que relação

Leia mais

RREGUOJMatemática Régis Cortes. Matemática Régis Cor POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD

RREGUOJMatemática Régis Cortes. Matemática Régis Cor POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD POLINÔMIOS PROPRIEDADES E RELAÇÕES DE GIRARD 1 Propriedades importantes: P1 - Toda equação algébrica de grau n possui exatamente n raízes. Exemplo: a equação x 3 - x = 0 possui 3 raízes a saber: x = 0

Leia mais

DIVISÃO DE POLINÔMIOS

DIVISÃO DE POLINÔMIOS DIVISÃO DE POLINÔMIOS Prof. Patricia Caldana A divisão de polinômios estrutura-se em um algoritmo, podemos enuncia-lo como sendo: A divisão de um polinômio D(x) por um polinômio não nulo E(x), de modo

Leia mais

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é

Sendo o polinômio P(x), de grau quatro e divisível por Q(x) = x 3, o resto de sua divisão por D(x) = x 5 é Questão 01) O polinômio p(x) = x 3 + x 2 3ax 4a é divisível pelo polinômio q(x) = x 2 x 4. Qual o valor de a? a) a = 2 b) a = 1 c) a = 0 d) a = 1 e) a = 2 TEXTO: 1 Para fazer um estudo sobre certo polinômio

Leia mais

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x

Equação algébrica Equação polinomial ou algébrica é toda equação na forma anxn + an 1 xn 1 + an 2 xn a 2 x 2 + a 1 x + a 0, sendo x EQUAÇÃO POLINOMIAL Equação algébrica Equação polinomial ou algébrica é toda equação na forma a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a 1 x + a 0, sendo x C a incógnita e a n, a n 1,..., a

Leia mais

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução:

Resolução: P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i. Resolução: Resolução: EXERCÍCIOS 01. Calcule o valor numérico de P(x) = 2x 4 x 3 3x 2 + x + 5 para x = i. P(i) = 2. (i) 4 (i) 3 3(i) 2 + (i) + 5 = 2 + i + 3 + i + 5 = 10 + 2i 02. Dado o polinômio P(x) = x 3 + kx 2 2x + 5, determine

Leia mais

EQUAÇÕES POLINOMIAIS

EQUAÇÕES POLINOMIAIS EQUAÇÕES POLINOMIAIS Prof. Patricia Caldana Denominamos equações polinomiais ou algébricas, as equações da forma: P(x)=0, onde P(x) é um polinômio de grau n > 0. As raízes da equação algébrica, são as

Leia mais

ASSUNTO:POLINÔMIOS. a) Do 3º grau resp: m ±6 b) Do 2º grau resp: m=6 c) do 1 º grau m=-6

ASSUNTO:POLINÔMIOS. a) Do 3º grau resp: m ±6 b) Do 2º grau resp: m=6 c) do 1 º grau m=-6 ASSUNTO:POLINÔMIOS 1) Identifique as expressões abaixo que são polinômios: a) 3x 3-5x 2 +x-4 b) 5x -4 -x -2 +x-9 c) x 4-16 d)x 2 3 +2x+6 e) x 2 4 resp: a, c,d 2) Dado o polinômio P(x)= 2x 3-5x 2 +x-3.

Leia mais

Polinómios. Integração de Fracções Racionais

Polinómios. Integração de Fracções Racionais Polinómios. Integração de Fracções Racionais Escola Superior de Tecnologia e de Gestão, Instituto Politécnico de Bragança. Mário Abrantes 2016 1 / 17 Índice de Matérias 1. Polinómios Denição Factorização

Leia mais

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba Professor Gilmar Bornatto

Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba Professor Gilmar Bornatto Ministério da Educação UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ Campus Curitiba 1. Para fazer uma caixa sem tampa com um único pedaço de papelão, utilizou-se um retângulo de 16 cm de largura por 30 cm

Leia mais

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3

POLINÔMIOS. x 2x 5x 6 por x 1 x 2. 10 seja x x 3 POLINÔMIOS 1. (Ueg 01) A divisão do polinômio a) x b) x + c) x 6 d) x + 6 x x 5x 6 por x 1 x é igual a:. (Espcex (Aman) 01) Os polinômios A(x) e B(x) são tais que A x B x x x x 1. Sabendo-se que 1 é raiz

Leia mais

RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR

RACIOCÍNIO LÓGICO ÁLGEBRA LINEAR RACIOCÍNIO LÓGICO AULA 11 ÁLGEBRA LINEAR I - POLINÔMIOS POLINÔMIOS E EQUAÇÕES ALGÉBRICAS 1 Definição Seja C o conjunto dos números complexos ( números da forma a + bi, onde a e b são números reais e i

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. a) P() = ³ + 7. ² 7. P() = + 7 7

Leia mais

PLANO DE AULA POLINÔMIOS

PLANO DE AULA POLINÔMIOS Ministério da Educação Secretaria de Educação Profissional e Tecnológica Instituto Federal Catarinense - Campus avançado Sombrio Curso de Licenciatura em Matemática PLANO DE AULA POLINÔMIOS 1 Identificação

Leia mais

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho. Questões: Lista de eercícios: Polinômios e Equações Algébricas Problemas Gerais Prof ºFernandinho Questões: 0.(GV) Num polinômio P() do terceiro grau, o coeficiente de P() = 0, calcule o valor de P( ). é. Sabendo-se

Leia mais

Conteúdo. 2 Polinômios Introdução Operações... 13

Conteúdo. 2 Polinômios Introdução Operações... 13 Conteúdo 1 Conjunto dos números complexos 1 1.1 Introdução.......................................... 1 1.2 Operações (na forma algébrica).............................. 2 1.3 Conjugado..........................................

Leia mais

Matemática E Extensivo V. 7

Matemática E Extensivo V. 7 Matemática E Etensivo V. 7 Eercícios ) B ) A P() = ³ + a² + b é divisivel por. Pelo teorema do resto, = é raiz de P(). P() = ³ + a. ² + b a + b = Da mesma maneira, P() é divisível por. Pelo teorema do

Leia mais

. Determine os valores de P(1) e P(22).

. Determine os valores de P(1) e P(22). Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja

Leia mais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais

Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Aula 7 Lista de Exercícios de Raízes de Equações Polinomiais Parte 1 Exercícios do Livro A Matemática do Ensino Médio Volume 3. Autores: Elon Lages Lima, Paulo Cezar Pinto Carvalho, Eduardo Wagner, Augusto

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Funções polinomiais Logaritmo Aula 03 Funções Polinomiais Introdução: Polinômio Para a sucessão de termos comcom, um polinômio de grau n possui a seguinte forma : Ex : Funções

Leia mais

Apostila de Matemática 16 Polinômios

Apostila de Matemática 16 Polinômios Apostila de Matemática 16 Polinômios 1.0 Definições Expressão polinomial ou polinômio Expressão que obedece a esta forma: a n, a n-1, a n-2, a 2, a 1, a 0 Números complexos chamados de coeficientes. n

Leia mais

Nome: nº Professor(a): Série : Turma: Data: / /2012 Desconto Ortográfico: Nota: Bateria de Exercícios 3º ano Ensino Médio

Nome: nº Professor(a): Série : Turma: Data: / /2012 Desconto Ortográfico: Nota: Bateria de Exercícios 3º ano Ensino Médio Sem limite para crescer Nome: nº Professor(a): Série : Turma: Data: / /2012 Desconto Ortográfico: Nota: Bateria de Exercícios 3º ano Ensino Médio 1- Resolva a equação: 2- (EEM-SP) Resolva a equação: 3-

Leia mais

O DNA das equações algébricas

O DNA das equações algébricas Reforço escolar M ate mática O DNA das equações algébricas Dinâmica 3 3º Série 4º Bimestre DISCIPLINA SÉRIE CAMPO CONCEITO Aluno Matemática 3ª do Ensino Médio Algébrico-Simbólico Polinômios e Equações

Leia mais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais

4 de outubro de MAT140 - Cálculo I - Método de integração: Frações Parciais MAT140 - Cálculo I - Método de integração: Frações Parciais 4 de outubro de 2015 Iremos agora desenvolver técnicas para resolver integrais de funções racionais, conhecido como método de integração por

Leia mais

Pre-calculo 2013/2014

Pre-calculo 2013/2014 . Números reais, regras básicas de cálculo com fracções, expoentes e radicais Sumário: Número reais, regras básicas de cálculo com fracções, expoentes e radicais. Ler secções. e. do livro adoptado.. Pre-calculo

Leia mais

Exercícios de Aprofundamento Mat Polinômios e Matrizes

Exercícios de Aprofundamento Mat Polinômios e Matrizes . (Unicamp 05) Considere a matriz A A e A é invertível, então a) a e b. b) a e b 0. c) a 0 e b 0. d) a 0 e b. a 0 A, b onde a e b são números reais. Se. (Espcex (Aman) 05) O polinômio q(x) x x deixa resto

Leia mais

Diferenças finitas e o polinômio interpolador de Lagrange

Diferenças finitas e o polinômio interpolador de Lagrange Diferenças finitas e o polinômio interpolador de Lagrange Cícero Thiago B. Magalhães 19 de janeiro de 014 1 Diferenças finitas Seja P(x) um polinômio de grau m. Defina +1 P(n) = P(n +1) P(n), 1, com 1

Leia mais

O problema proposto possui alguma solução? Se sim, quantas e quais são elas?

O problema proposto possui alguma solução? Se sim, quantas e quais são elas? PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas

Leia mais

Soma dos coeficientes do polinômio: 3 x 4 7x 3-4x x + 5. Raízes de um polinômio: Aula 01 POLINÔMIOS E EQUAÇÕES POLINOMIAIS

Soma dos coeficientes do polinômio: 3 x 4 7x 3-4x x + 5. Raízes de um polinômio: Aula 01 POLINÔMIOS E EQUAÇÕES POLINOMIAIS Aula 01 POLINÔMIOS E EQUAÇÕES POLINOMIAIS do desenvolvimento do polinômio calculando o valor numérico P(1), ou seja, substituímos o x por 1 e resolvemos: Soma dos coeficientes do polinômio: Exemplo 3 Exemplo

Leia mais

1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo).

1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 1 a Lista de Exercícios de Álgebra II - MAT 231 1. Prove que (a+b) c = a c+b c para todo a, b, c em ZZ /mzz. (Explique cada passo). 2. Seja A um anel associativo. Dado a A, como você definiria a m, m IN?

Leia mais

XIX Semana Olímpica de Matemática. Nível 3. Polinômios em Z[x] Matheus Secco

XIX Semana Olímpica de Matemática. Nível 3. Polinômios em Z[x] Matheus Secco XIX Semana Olímpica de Matemática Nível 3 Polinômios em Z[x] Matheus Secco O projeto da XIX Semana Olímpica de Matemática foi patrocinado por: Polinômios em Z[x] N3 Professor Matheus Secco 1 Ferramentas

Leia mais

Matemática E Extensivo V. 6

Matemática E Extensivo V. 6 Etensivo V. 6 Eercícios ) a) P() é sempre igual à soma dos coeficientes de P(). b) P() é sempre igual ao termo independente de P(). c) P() é a raiz de P(), pois P() =. ) D a) P() = ³ + 7. ² 7. P() = +

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv O cursinho que mais aprova na fgv FGV economia a Fase 0/dezembro/00 MATEMÁTICA 0 Na parte sombreada da figura, as extremidades dos segmentos de reta paralelos ao eixo y são pontos das representações gráficas

Leia mais

Exercícios de Matemática Funções Função Polinomial

Exercícios de Matemática Funções Função Polinomial Exercícios de Matemática Funções Função Polinomial 5. (Unesp) A figura a seguir mostra o gráfico da função polinomial f(x)=ax +x +x,(a 0). 1. (Ufpe) Seja F(x) uma função real, na variável real x, definida

Leia mais

Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico

Fácil e Poderoso. Dinâmica 1. 3ª Série 4º Bimestre. DISCIPLINA Série CAMPO CONCEITO. Matemática 3ª do Ensino Médio Algébrico-Simbólico Fácil e Reforço escolar M ate mática Poderoso Dinâmica 1 3ª Série 4º Bimestre DISCIPLINA Série CAMPO CONCEITO Professor Matemática 3ª do Ensino Médio Algébrico-Simbólico DINÂMICA Fácil e poderoso. Polinômios

Leia mais

... GABARITO 2 NOME DO CANDIDATO: UEM Comissão Central do Vestibular Unificado

... GABARITO 2 NOME DO CANDIDATO: UEM Comissão Central do Vestibular Unificado N ọ DE ORDEM: NOME DO CANDIDATO: CADERNO DE QUESTÕES N ọ DE INSCRIÇÃO: INSTRUÇÕES I PARA A REALIZAÇÃO DA PROVA 1. Confira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME, que constam na etiqueta fixada

Leia mais

Polos Olímpicos de Treinamento. Aula 7. Curso de Álgebra - Nível 3. Miscelânea sobre raízes de polinômios II

Polos Olímpicos de Treinamento. Aula 7. Curso de Álgebra - Nível 3. Miscelânea sobre raízes de polinômios II Polos Olímpicos de Treinamento Curso de Álgebra - Nível 3 Prof. Cícero Thiago / Prof. Marcelo Aula 7 Miscelânea sobre raízes de polinômios II Definição : Seja P(x) = a n x n +a n x n +...+a x+a 0 um polinômio

Leia mais

Polinômios irredutíveis

Polinômios irredutíveis Polinômios irredutíveis Sérgio Tadao Martins 23 de janeiro de 2009 1 Introdução: polinômios em uma variável Um polinômio de grau n em uma variável x é uma expressão da forma p(x) = a 0 + a 1 x + a 2 x

Leia mais

Polos Olímpicos de Treinamento. Aula 10. Curso de Álgebra - Nível 3. Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas

Polos Olímpicos de Treinamento. Aula 10. Curso de Álgebra - Nível 3. Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas Polos Olímpicos de Treinamento Curso de Álgebra - Nível 3 Prof. Cícero Thiago / Prof. Marcelo Aula 10 Diferenças finitas e o polinômio interpolador de Lagrange. 1. Diferenças Finitas Seja P(x) um polinômio

Leia mais

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a).

Quando o polinômio divisor é da forma x + a, devemos substituir no polinômio P(x), x por a, visto que: x + a = x ( a). POLINÔMIOS II. TEOREMA DE D ALEMBERT O resto d divisão de um poliômio P(x) por x é igul P(). m m Sej, com efeito, P x x x..., um poliômio de x, ordedo segudo s potecis m m decrescetes de x. Desigemos o

Leia mais

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA

MÓDULO 17. Radiciações e Equações. Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA Ciências da Natureza, Matemática e suas Tecnologias MATEMÁTICA. Mostre que MÓDULO 7 Radiciações e Equações 3 + 8 5 + 3 8 5 é múltiplo de 4. 2. a) Escreva A + B como uma soma de radicais simples. b) Escreva

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Distribuição das 1.048 Questões do I T A 94 (8,97%) 104 (9,92%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais 23 (2, 101 (9,64%) Geo. Espacial Geo. Analítica Funções Conjuntos 31 (2,96%)

Leia mais

Fascículo 12 Unidades 37, 38, 39 e 40. 2ª Edição

Fascículo 12 Unidades 37, 38, 39 e 40. 2ª Edição 2ª Edição Fascículo 12 Unidades 37, 38, 39 e 40 GOVERNO DO ESTADO DO RIO DE JANEIRO Governador Sergio Cabral Vice-Governador Luiz Fernando de Souza Pezão SECRETARIA DE ESTADO DE CIÊNCIA E TECNOLOGIA Secretário

Leia mais

MATEMÁTICA POLINÔMIOS

MATEMÁTICA POLINÔMIOS MATEMÁTICA POLINÔMIOS 1. F.I.Anápolis-GO Seja o polinômio P(x) = x 3 + ax 2 ax + a. O valor de P(1) P(0) é: a) 1 b) a c) 2a d) 2 e) 1 2a 1 2. UFMS Considere o polinômio p(x) = x 3 + mx 20, onde m é um

Leia mais

Algoritmo da divisão em k[x] 2

Algoritmo da divisão em k[x] 2 AULA Algoritmo da divisão em k[x] 2 META: Introduzir um algoritmo de divisão para anéis de polinômios definidos sobre corpos. OBJETIVOS: Ao fim da aula os alunos deverão ser capazes de: Aplicar o algoritmo

Leia mais

x é igual a: 07. (Colégio Naval) No conjunto R dos números reais, qual será o 01. (PUC) O valor de m, de modo que a equação

x é igual a: 07. (Colégio Naval) No conjunto R dos números reais, qual será o 01. (PUC) O valor de m, de modo que a equação 0. (PUC) O valor de m, de modo que a equação 5 m m 0 b) c) d) 0. Quantos valores de satisfazem a equação a) b) c) d) 5 e) 0 Prof. Paulo Cesar Costa tenha uma das raízes igual a, é: ( ). 07. (Colégio Naval)

Leia mais

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL

PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL PARTE I EQUAÇÕES DE UMA VARIÁVEL REAL. Introdução Considere f uma função, não constante, de uma variável real ou complexa, a equação f(x) = 0 será denominada equação de uma incógnita. EXEMPLO e x + senx

Leia mais

CRITÉRIO DE EISENSTEIN. Marília Martins Cabral Orientador: Igor Lima

CRITÉRIO DE EISENSTEIN. Marília Martins Cabral Orientador: Igor Lima CRITÉRIO DE EISENSTEIN 1 Marília Martins Cabral Orientador: Igor Lima NOTAÇÕES a b a divide b. a b a não divide b x n a variável x elevado a potência n. a n coeficiente de x n 2 INTRODUÇÃO: POLINÔMIOS

Leia mais

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é:

2) Se z = (2 + i).(1 + i).i, então a) 3 i b) 1 3i c) 3 i d) 3 + i e) 3 + i. ,será dado por: quando x = i é: Aluno(a) Nº. Ano: º do Ensino Médio Exercícios para a Recuperação de MATEMÁTICA - Professores: Escossi e Luciano NÚMEROS COMPLEXOS 1) Calculando-se corretamente as raízes da função f(x) = x + 4x + 5, encontram-se

Leia mais

Diferenciais em Série de Potências

Diferenciais em Série de Potências Existência de Soluções de Equações Diferenciais em Série de Potências Reginaldo J. Santos Departamento de Matemática-ICEx Universidade Federal de Minas Gerais http://www.mat.ufmg.br/ regi 0 de julho de

Leia mais

MATEMÁTICA CADERNO 3 SEMIEXTENSIVO E FRENTE 1 ÁLGEBRA. n Módulo 9 Sistemas Lineares II

MATEMÁTICA CADERNO 3 SEMIEXTENSIVO E FRENTE 1 ÁLGEBRA. n Módulo 9 Sistemas Lineares II MATEMÁTICA CADERNO SEMIEXTENSIVO E Assim: A tem R$,, B tem R$ 8,, C tem R$ 9, e D tem R$ 6,. FRENTE ÁLGEBRA n Módulo 9 Sistemas Lineares II x + y + z = x + y + z = ) y + z = y + z = 6z = 8 z = ) x + y

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios Exercícios de Matemática Polinômios TEXTO PARA A PRÓXIMA QUESTÃO (Ufpe) Na(s) questão(ões) a seguir escreva nos parênteses a letra (V) se a afirmativa for verdadeira ou (F) se for falsa. 1. Na figura a

Leia mais

Resolução das Questões Discursivas

Resolução das Questões Discursivas COMISSÃO PERMANENTE DE SELEÇÃO COPESE PRÓ-REITORIA DE GRADUAÇÃO PROGRAD CONCURSO PISM III - TRIÊNIO 008-010 Prova de Matemática Resolução das Questões Discursivas São apresentadas abaixo possíveis soluções

Leia mais

TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas.

TÓPICOS DE MATEMÁTICA II. O Curso está dividido em três unidades, temos que concluir todas. TÓPICOS DE MATEMÁTICA II Roosevelt Imperiano da Silva Palavras iniciais Caros alunos, vamos iniciar o curso da disciplina Tópicos de Matemática II. Neste curso estudaremos os conjuntos numéricos e suas

Leia mais

MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PUBLICO DE ADMISSÃO AO COLÉGIO NA VAL / CP A CN-2012) MATEMÁTICA

MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PUBLICO DE ADMISSÃO AO COLÉGIO NA VAL / CP A CN-2012) MATEMÁTICA MARINHA DO BRASIL DIRETORIA DE ENSINO DA MARINHA (CONCURSO PUBLICO DE ADMISSÃO AO COLÉGIO NA VAL / CP A CN-2012) NAO ESTA AUTORIZADA A UTILIZAÇÃO DE MATERIAL EXTRA MATEMÁTICA 1) Para x = 2013, qual é o

Leia mais

Aula 27 - Álgebra II. x (m(x)), x 2 + x + (m(x)), x 2 + x (m(x)) operações deste corpo são as seguintes:

Aula 27 - Álgebra II. x (m(x)), x 2 + x + (m(x)), x 2 + x (m(x)) operações deste corpo são as seguintes: Já vimos maneiras de codificar mensagens de modo a que, no caso de ocorrerem alguns erros na sua transmissão, o receptor possa ser capaz de corrigir esses erros. Esses códigos, chamados códigos lineares

Leia mais

POLINÔMIOS EQUAÇÕES POLINOMIAIS

POLINÔMIOS EQUAÇÕES POLINOMIAIS POLINÔMIOS EQUAÇÕES POLINOMIAIS. DEFINIÇÃO. VALOR NUMÉRICO. POLINÔMIOS IDÊNTICOS 4. DIVISÃO DE POLINÔMIOS 4.. MÉTODO DA CHAVE 4.. BRIOT-RUFFINI DIVISÕES SUCESSIVAS 5. TEOREMA DO RESTO 6. DIVISIBILIDADE

Leia mais

Técnicas de. Integração

Técnicas de. Integração Técnicas de Capítulo 7 Integração TÉCNICAS DE INTEGRAÇÃO 7.4 Integração de Funções Racionais por Frações Parciais Nessa seção, vamos aprender como integrar funções racionais reduzindo-as a uma soma de

Leia mais

ROTEIRO DE RECUPERAÇÃO. Professor(a):Denise Capuchinho Nonato 2017

ROTEIRO DE RECUPERAÇÃO. Professor(a):Denise Capuchinho Nonato 2017 INSTITUTO EDUCACIONAL MANOEL PINHEIRO www.manoelpinheiro.com.br MATEMÁTICA ROTEIRO DE RECUPERAÇÃO Ensino Médio Etapa:2ª Série:1ª Tipo: U Professor(a):Denise Capuchinho Nonato 2017 Aluno(a): Nota: Caro

Leia mais

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática

Ministério da Educação Universidade Tecnológica Federal do Paraná Campus Curitiba Gerência de Ensino e Pesquisa Departamento Acadêmico de Matemática Miistério da Educação Uiversidade Tecológica Federal do Paraá Campus Curitiba Gerêcia de Esio e Pesquisa Departameto Acadêmico de Matemática Dispositivo Prático de Briot-Ruffii: Poliômios O Dispositivo

Leia mais

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016

POLINÕMIOS E EQUAÇÕES POLINOMIAIS 2016 POLINÕMIOS E EQUAÇÕES POLINOMIAIS 06. (Unicamp 06) Considere o polinômio cúbico p() a, onde a é um número real. a) No caso em que p() 0, determine os valores de para os quais a matriz A abaio não é invertível.

Leia mais

01. D e m o n s t r a r q u e s e. 02. Mostre que se a 1 a2

01. D e m o n s t r a r q u e s e. 02. Mostre que se a 1 a2 Série Professor(a) Aluno(a) Rumo ao ITA Marcelo Mendes Sede Turma Turno Data N / / Ensino Pré-Universitário TC Matemática Revisão de Álgebra OSG.: 85/0 Exercícios de Fixação 0. Encontre os valores das

Leia mais

Expressões Algébricas e Polinômios. 8 ano/e.f.

Expressões Algébricas e Polinômios. 8 ano/e.f. Módulo de Expressões Algébricas e Polinômios Expressões Algébricas e Polinômios. 8 ano/e.f. Determine: a) a expressão que representa a área do terreno. b) a área do terreno para x = 0m e y = 15m. Exercício

Leia mais

Coeficientes Reais. Jorge J. Delgado Maria Lúcia Torres Villela

Coeficientes Reais. Jorge J. Delgado Maria Lúcia Torres Villela Pré-Cálculo, Vol. 3: Polinômios com Coeficientes Reais Jorge J. Delgado Maria Lúcia Torres Villela IM-UFF 2007 2 Conteúdo 3 Polinômios com coeficientes reais 7 1. Polinômios e operações...................

Leia mais

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Patricia Figuereido de Sousa - Engenharia Civil

CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA Função do 1 Grau. Patricia Figuereido de Sousa - Engenharia Civil CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2016.2 Função do 1 Grau Patricia Figuereido de Sousa - Engenharia Civil Equações do primeiro grau Equação é toda sentença matemática aberta que exprime

Leia mais

Anéis quocientes k[x]/i

Anéis quocientes k[x]/i META: Determinar as possíveis estruturas definidas sobre o conjunto das classes residuais do quociente entre o anel de polinômios e seus ideais. OBJETIVOS: Ao final da aula o aluno deverá ser capaz de:

Leia mais

Revisão para a Bimestral 8º ano

Revisão para a Bimestral 8º ano Revisão para a Bimestral 8º ano 1- Quadrado da soma de dois termos Observe: (a + b)² = ( a + b). (a + b) = a² + ab+ ab + b² = a² + 2ab + b² Conclusão: (primeiro termo)² + 2.(primeiro termo). (segundo termo)

Leia mais

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco

MATEMÁTICA 1 MÓDULO 2. Divisibilidade. Professor Matheus Secco MATEMÁTICA 1 Professor Matheus Secco MÓDULO 2 Divisibilidade 1. DIVISIBILIDADE 1.1 DEFINIÇÃO: Dizemos que o inteiro a é divisível pelo inteiro b (ou ainda que a é múltiplo de b) se existe um inteiro c

Leia mais

NOME DO ALUNO N DISCIPLINA: Matemática DATA: 27/03/2012 CURSO: Ensino Médio ANO: º A / B

NOME DO ALUNO N DISCIPLINA: Matemática DATA: 27/03/2012 CURSO: Ensino Médio ANO: º A / B COLÉGIO ADVENTISTA DE SÃO JOSÉ DO RIO PRETO NOME DO ALUNO N DISCIPLINA: Matemática DATA: 7/0/01 CURSO: Ensino Médio ANO: º A / B BIMESTRE: 1º Complexos: PROFESSOR: Alexandre da Silva Bairrada 1i 1i 1.

Leia mais

Um polinômio com coeficientes racionais é uma escrita formal

Um polinômio com coeficientes racionais é uma escrita formal Polinômios. Um polinômio com coeficientes racionais é uma escrita formal P (X) = a i X i = a 0 + a 1 X + a 2 X 2 +... + a n X n onde a i Q para todo i {0, 1,..., n}. Isso nos dá uma função f : N Q definida

Leia mais

COLÉGIO MONS. JOVINIANO BARRETO

COLÉGIO MONS. JOVINIANO BARRETO GABARITO ª CHAMADA 3ª ETAPA MATEMÁTICA COLÉGIO MONS. JOVINIANO BARRETO 5 ANOS DE HISTÓRIA ENSINO E DISCIPLINA Rua Frei Vidal, 161 São João do Tauape/Fone/Fax: 37-195 www.jovinianobarreto.com.br º ANO Nº

Leia mais

Escola Superior de Tecnologia e Gestão de Mirandela Instituto Politécnico de Bragança. Licenciatura em Marketing. Unidade Curricular: Matemática

Escola Superior de Tecnologia e Gestão de Mirandela Instituto Politécnico de Bragança. Licenciatura em Marketing. Unidade Curricular: Matemática Escola Superior de Tecnologia e Gestão de Mirandela Instituto Politécnico de Bragança Licenciatura em Marketing Unidade Curricular: Matemática 2007 / 2008 1 Definir um conjunto Diz-se que um conjunto A

Leia mais

Profs. Alexandre Lima e Moraes Junior 1

Profs. Alexandre Lima e Moraes Junior  1 Raciocínio Lógico-Quantitativo para Traumatizados Aula 05 Aplicações da Álgebra Equações e Inequações Parte Conteúdo 5. Aplicações em Álgebra Parte... 5.6. Polinômios... 5.6.1. Equações de Terceiro Grau...

Leia mais

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner

Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner Determinação de raízes de polinômios: Método de Briot-Ruffini-Horner Marina Andretta/Franklina Toledo ICMC-USP 29 de outubro de 2012 Baseado no livro Cálculo Numérico, de Neide B. Franco Marina Andretta/Franklina

Leia mais

Gabarito da Prova de Matemática 2ª fase do Vestibular 2009

Gabarito da Prova de Matemática 2ª fase do Vestibular 2009 Gabarito da Prova de Matemática ª fase do Vestibular 009 Questão 01: (a) Enuncie o Teorema de Pitágoras Solução: Em todo triângulo retângulo, o quadrado da medida da hipotenusa é igual a soma dos quadrados

Leia mais

Lista de Exercícios de Matemática

Lista de Exercícios de Matemática Lista de Exercícios de Matemática Álgebra e Aritmética 01) (Epcar/2003) - De dois conjuntos A e B, sabe-se que: I) O número de elementos que pertencem a A B é 45; II) 40% desses elementos pertencem a ambos

Leia mais

Assunto: Conjuntos. Assunto: Funções DATA: 01/07/17

Assunto: Conjuntos. Assunto: Funções DATA: 01/07/17 DATA: 01/07/17 Assunto: Conjuntos 1) (UECE-2004.2) Das 1200 pessoas intrevistadas numa pesquisa eleitoral, 55% eram mulheres. Das mulheres, 35% eram casadas. O número de mulheres casadas participantes

Leia mais

max(x 2x + 2; 1+ x ) = 50, é igual a:

max(x 2x + 2; 1+ x ) = 50, é igual a: . (Ufpr 0) Durante o mês de dezembro, uma loja de cosméticos obteve um total de R$ 900,00 pelas vendas de um certo perfume. Com a chegada do mês de janeiro, a loja decidiu dar um desconto para estimular

Leia mais