ANÁLISE EXPLORATÓRIA DE DADOS

Tamanho: px
Começar a partir da página:

Download "ANÁLISE EXPLORATÓRIA DE DADOS"

Transcrição

1 CENTRO DE CIÊNCIAS EXATAS CCE DEPARTAMENTO DE ESTATÍSTICA Curso de Especalzação Lato Sensu em Estatístca ANÁLISE EXPLORATÓRIA DE DADOS Professor: Dr. Waldr Medr Londrna/Pr Março de 011

2 ÍNDICE ESTATÍSTICA INTRODUÇÃO... 1 ÁREAS DA ESTATÍSTICA....1 ESTATÍSTICA DESCRITIVA.... ESTATÍSTICA INFERENCIAL POPULAÇÃO E AMOSTRA POPULAÇÃO AMOSTRA VARIÁVEIS VARIÁVEIS QUALITATIVAS VARIÁVEIS QUANTITATIVAS DADOS DADOS BRUTOS ROL DISPOSITIVO - RAMO E FOLHAS REPRESENTAÇÃO TABULAR REPRESENTAÇÃO GRÁFICA Representação Gráfca para uma Varável Qualtatva Representação Gráfca para uma Varável Quanttatva Séres Conjugadas Dstrbução de Frequêncas LISTA 1 EXERCÍCIOS MEDIDAS ESTATÍSTICAS MEDIDAS TENDÊNCIA CENTRAL (POSIÇÃO) Méda Medana Conceto de resstênca de uma medda Moda MEDIDAS DE DISPERSÃO Ampltude Desvo Médo Varânca Desvo Padrão Erro Padrão Coefcente de Varação SEPARATRIZES: QUARTIS, DECIS E PERCENTIS ASSIMETRIA CURTOSE BOX PLOT MEDIDAS DE POSIÇÃO E DISPERSÃO DE UMA DISTRIBUIÇÃO DE FREQUÊNCIA Méda Medana Moda Separatrzes: Quarts, Decs e Percents... 47

3 6.7.5 Cálculo das Separatrzes Utlzando Proporções Desvo Médo Varânca Desvo Padrão Erro Padrão LISTA - EXERCÍCIOS TRANSFORMAÇÕES DE VARIÁVEIS MUDANÇA DE ORIGEM MUDANÇA DA UNIDADE ANÁLISE BIDIMENSIONAL INTRODUÇÃO VARIÁVEIS QUALITATIVAS ASSOCIAÇÃO ENTRE VARIÁVEIS QUALITATIVAS MEDIDAS DE ASSOCIAÇÃO ENTRE VARIÁVEIS QUALITATIVAS ASSOCIAÇÃO ENTRE VARIÁVEIS QUANTITATIVAS Coefcentes de assocação ou correlação ASSOCIAÇÃO ENTRE AS VARIÁVEIS QUALITATIVAS E QUANTITATIVAS LISTA 3 - EXERCÍCIOS REFERÊNCIAS BIBLIOGRAFIAS... 78

4 v

5 1 ESTATÍSTICA 1 INTRODUÇÃO Desde a Antgüdade város povos já regstravam o número de habtantes, de nascmento, de óbtos, fazam estmatvas das rquezas ndvdual e socal, dstrbuíam equtatvamente terras ao povo, cobravam mpostos e até realzavam nquértos quanttatvos por processos que, hoje, se chama de Estatístca. A palavra Estatístca vem de status, que sgnfca em latm Estado. Com essa palavra fazam-se as descrções e dados relatvos aos Estados, tornando a Estatístca um meo de admnstração para os governantes. Mas recentemente se passou a falar em estatístca em váras cêncas de todas as áreas do conhecmento humano, onde pode defnr a Estatístca como um conjunto de métodos e processos quanttatvos que servem para estudar e medr os fenômenos coletvos. Ao se estudar os fenômenos coletvos, o que nteressa são os fatos que envolvem os elementos desses fenômenos, como eles se relaconam e qual o seu comportamento. Para que tal estudo possa acontecer com toda a seredade que a cênca exge, é necessáro que o levantamento seja feto através de uma pesqusa centífca, sendo ela defnda como a realzação concreta de uma nvestgação planejada, desenvolvda e redgda de acordo com as normas de metodologa. A Estatístca é muto mas do que a smples construção de gráfcos e o cálculo de médas. As nformações numércas são obtdas com a fnaldade de acumular nformação para a tomada de decsão. Então, a estatístca pode ser vsta como um conjunto de técncas para planejar expermentos, obter dados e organzá-los, resumlos, analsá-los, nterpretá-los e deles extrar conclusões. A nformação de estatístca é apresentada constantemente no rádo e na televsão, como por exemplo, a coleta de dados sobre nascmentos e mortes, a avalação da efcênca de produtos comercas e a prevsão do tempo. As técncas clásscas da estatístca foram delneadas para serem as melhores possíves sob rgorosas suposções. Entretanto, a experênca tem forçado os estudosos a conhecer que as técncas clásscas comportam-se mal quando stuações prátcas não apresentam o deal descrto por tas suposções. O

6 desenvolvmento recente de métodos exploratóros robustos está aumentando a efcênca da análse estatístca. Os bons profssonas de estatístca têm sempre olhado com detalhes os dados antes de levantar suposções estatístcas e testes de hpóteses. Mas o uso ndscrmnado de pacotes estatístcos computaconas, sem o exame cudadoso dos dados profssonas da área, conduz, às vezes, a resultados aberrantes. A análse exploratóra de dados nos fornece um extenso repertóro de métodos para um estudo detalhado dos dados, antes de adaptá-los. Nessa abordagem, a fnaldade é obter dos dados a maor quantdade possível de nformação, que ndque modelos plausíves a serem utlzados numa fase posteror, a análse confrmatóra de dados ou nferênca estatístca. ÁREAS DA ESTATÍSTICA Se entender Estatístca como a Cênca dos Dados, será de grande vala o domíno que seu corpo de conhecmento pode oferecer. Prmeramente, como ponto de partda, pode-se dvdr a Estatístca em duas áreas: Descrtva Inferencal (Indutva) Obs. Alguns autores, como por exemplo, Marcos Nascmento Magalhães e Antono Carlos Pedroso de Lma, dzem que a estatístca, grosso modo, pode ser dvdda em três áreas: Estatístca descrtva; Probabldade e Inferênca estatístca..1 ESTATÍSTICA DESCRITIVA A Estatístca Descrtva se preocupa com a organzação, apresentação e sntetzação de dados. Utlzam gráfcos, tabelas e meddas descrtvas como ferramentas. Utlzada na etapa ncal da análse, destnada a obter nformações que ndcam possíves modelos a serem utlzados numa fase fnal que sera a chamada nferênca estatístca.

7 3. ESTATÍSTICA INFERENCIAL A Estatístca Inferencal postula um conjunto de técncas que permtem utlzar dados orundos de uma amostra para generalzações sobre a população. Consttu esse conjunto de técncas: a determnação do número de observações (tamanho da amostra); o esquema de seleção das undades observaconas; o cálculo das meddas estatístcas; a determnação da confança nas estmatvas; a sgnfcânca dos testes estatístcos; a precsão das estmatvas; dentre outras. Essa generalzação é feta a partr do processo de estmação das meddas estatístcas que podem ser calculadas, porém não sem antes se antecpar um grau de certeza de que a amostra esteja fornecendo os dados que seram de se esperar caso toda a população fosse estudada. Nesse caso, o ramo da matemátca que será utlzado para se avalar tal grau de certeza é a probabldade. Com ela teremos condções de mensurar a fdedgndade de cada nferênca feta com base na amostra. Antes de começar a estudar os métodos estatístcos que permtrá analsar dados, sejam eles qualtatvos ou quanttatvos, é mportante ntroduzr alguns concetos prelmnares a fm não apenas de dar nomes aos nstrumentos, mas também adequar e equalzar a termnologa a ser utlzada ao longo do curso. Na termnologa estatístca, o grande conjunto de dados que contém a característca que temos nteresse recebe o nome de população. Esse termo referese não somente a uma coleção de ndvíduos, mas também ao alvo sobre o qual resde nosso nteresse. Assm, nossa população pode ser tanto todos os habtantes de Londrna como todas as lâmpadas produzdas por uma fábrca em certo período de tempo. Algumas vezes podemos acessar toda a população para estudarmos característcas de nteresse, mas, em mutas stuações, tal procedmento não pode ser realzado. Em geral, razões econômcas são determnantes dessas stuações. Por exemplo, uma empresa, usualmente, não dspõe de verba sufcente para saber o que pensam todos os consumdores de seus produtos. Há anda razões étcas, quando, por exemplo, os expermentos de laboratóro que envolvem o uso de seres vvos. Além dsso, exstem casos em que a mpossbldade de se acessar toda a população de nteresse é ncontornável. Por exemplo, em um expermento para determnar o tempo de funconamento das lâmpadas produzdas por uma ndústra, não podemos observar toda a população de nteresse.

8 4 Tendo em vsta as dfculdades de váras naturezas para se observar todos os elementos da população, tomaremos alguns deles para formar um grupo a ser estudado. Este subconjunto da população, em geral com dmensão menor, é denomnado amostra. 3 POPULAÇÃO E AMOSTRA 3.1 POPULAÇÃO População é o conjunto consttuído por todos os ndvíduos que representam pelo menos uma característca comum, cujo comportamento nteressa analsar (nferr). Assm sendo, o objetvo das generalzações estatístcas está em dzer se algo acerca de dversas característcas da população estudada, com base em fatos conhecdos. 3. AMOSTRA Amostra pode ser defnda como um subconjunto, uma parte seleconada da totaldade de observações abrangdas pela população, através da qual se faz nferênca sobre as característcas da população. Uma amostra tem que ser representatva, a tomada de uma amostra bem como seu manuseo requer cudados especas para que os resultados não sejam dstorcdos. Parâmetro é uma medda numérca que descreve uma característca de uma população. São valores fxos, geralmente desconhecdos e usualmente representados por caracteres gregos. Por exemplo, µ (méda populaconal), p (proporção populaconal), σ (desvo-padrão populaconal), σ (varânca populaconal). Estatístca é uma estatístca numérca que descreve uma característca de uma amostra. Representada por caracteres latnos. Por exemplo, x (méda amostral), pˆ (proporção amostral), s (desvo-padrão amostral), s (varânca amostral). Undade Observável é a portadora da(s) característca(s), ou propredade(s), que se deseja nvestgar.

9 5 A seleção da amostra pode ser feta de váras maneras, dependendo, entre outros fatores, do grau de conhecmento que temos da população, da quantdade de recursos dsponíves a assm por dante. Cabe ressaltar que este tem será apresentado mas para frente. 4 VARIÁVEIS Ao se fazer um estudo estatístco de um determnado fato ou grupo, tem-se que consderar o tpo de varável. Pode ter varáves qualtatvas ou varáves quanttatvas. 4.1 VARIÁVEIS QUALITATIVAS Varáves qualtatvas são aquelas em que a varável assume valores em categoras, classes ou rótulos. São, portanto, por natureza, dados não numércos. Apesar de ser consderada de baxo nível de mensuração, do ponto de vsta da aplcação de nstrumental estatístco, a varável qualtatva oferece um vasto espectro de aplcação nas cêncas socas e do comportamento. Varáves qualtatvas denotam característcas ndvduas das undades sob análse, tas como sexo, estado cvl, naturaldade, raça, grau de nstrução, dentre outras, permtndo estratfcar as undades para serem analsadas de acordo com outras varáves. 4. VARIÁVEIS QUANTITATIVAS Varáves quanttatvas são aquelas expressas pelas varáves com níves de mensuração ntervalar ou de razão. Ou seja, são aqueles nas quas as varáves assumem valores numa escala métrca defnda por uma orgem e uma undade, por exemplo: dade, saláro, peso, etc. As varáves qualtatvas podem ser, também, classfcadas como nomnal e ordnal. Por outro lado, as varáves quanttatvas podem ser classfcadas como dscretas, quando assumem um número fnto de valores, ou contínuas, quando assume um número nfnto de valores, geralmente em ntervalos, como apresentam na Tabela 1.

10 6 Tabela 1: Classfcação das varáves qualtatvas e quanttatvas Varáves Tpos Descrção Exemplos Qualtatvas ou Categórcas Quanttatvas Nomnal Ordnal Dscretas Contínuas Não exste nenhuma ordenação Exste uma ordenação I, II, III Valor pertence a um conjunto enumerável Quando o valor pertence a um ntervalo real Cor dos olhos, sexo, estado cvl, tpo sangüíneo. Nível de escolardade, estágo da doença, colocação de concurso. Número de flhos por casal, quantdade de letos Meddas de altura e peso, taxa de glcose, nível de colesterol. Em algumas stuações podem-se atrbur valores numércos às váras qualdades ou atrbutos e depos proceder à análse como esta varável como se fosse quanttatva, desde que o procedmento seja passível de nterpretação. Uma vez obtdos os dados referentes às varáves qualtatvas, a tarefa segunte é representá-los através de uma tabela e de um gráfco. Posterormente, poderá ser útl calcular as frequêncas, smples, acumuladas e as relatvas. Para os dados quanttatvos, quando o número de observações cresce e os valores são dferencados entre s, há que se representá-los de modo resumdo. Para sso a melhor forma de representação tabular é através de dstrbuções de frequênca por classes de valores. Como exemplo: Suponha que um médco está nteressado em fazer um levantamento sobre algumas característcas de pacentes atenddos em sua clínca neurológca: sexo peso, tpo de tratamento, número de convulsões e classfcação da doença (leve, moderada e severa). Os dados podem ser organzados em uma tabela. Usualmente os ndvíduos são representados nas lnhas e as varáves nas colunas. Este formato é utlzado pela maora do programas computaconas. Note através da Tabela que cada ndvíduo é uma undade de observação na qual são fetas váras meddas e/ou anotados város atrbutos, referentes às varáves.

11 7 Tabela : Característcas de pacentes atenddos em uma clínca neurológca Pacente Sexo Peso Tpo de Tratamento N o de Convulsões Classfcação da Doença 1 M 89,8 A 1 Leve F 64, A 3 Severa 3 M 91,0 B Moderada 4 F 56,7 A 0 Moderada 5 F 48,5 B 1 Leve M 71,0 B 0 Severa 59 M 78,8 A Leve 60 F 71,0 B 3 Moderada Analse a tabela e classfque as varáves: Varáves qualtatvas nomnal: Sexo, Tpo de tratamento. Varáves qualtatvas ordnal: Classfcação da doença. Varáves quanttatvas dscreta: Número de convulsões Varáves quanttatvas contínua: Peso. Um outro exemplo: Um pesqusador está nteressado em fazer um levantamento sobre alguns aspectos socoeconômcos dos empregados da seção de orçamentos da Companha MB. Usando nformações obtdas do departamento pessoal, ele elaborou a Tabela 3. De modo geral, para cada elemento nvestgado numa pesqusa, tem-se assocado um (ou mas de um) resultado correspondendo à realzação de uma característca (ou característcas). Algumas varáves, como sexo, educação, estado cvl, apresentam como possíves realzações de qualdade (ou atrbuto) do ndvíduo pesqusado, ao passo que outras, como número de flhos, saláro, dade, apresentam como possíves realzações números resultantes de uma contagem ou mensuração. As varáves do prmero tpo são chamadas qualtatvas e as do segundo quanttatvas.

12 8 N o Tabela 3: Informações sobre estado cvl, grau de nstrução, número de flhos, saláro Estado Cvl mínmo, dade e procedênca de 36 empregados da seção de orçamentos da companha MB. Grau de Instrução N o de Flho s Saláro mínmo Idade Anos Meses Regão de Procedênca 1 Soltero Ensno fundamental 4, Interor Casado Ensno fundamental 1 4, Captal 3 Casado Ensno fundamental 5, Captal 4 Soltero Ensno médo 5, Outra 5 Soltero Ensno fundamental 6, Outra 6 Casado Ensno fundamental 0 6, Interor 7 Soltero Ensno fundamental 6, Interor 8 Soltero Ensno fundamental 7, Captal 9 Casado Ensno médo 1 7, Captal 10 Soltero Ensno médo 7, Outra 11 Casado Ensno médo 8, Interor 1 Soltero Ensno fundamental 8, Captal 13 Soltero Ensno médo 8, Outra 14 Casado Ensno fundamental 3 8,95 44 Outra 15 Casado Ensno médo 0 9, Interor 16 Soltero Ensno médo 9, Outra 17 Casado Ensno médo 1 9, Captal 18 Casado Ensno fundamental 9, Outra 19 Soltero Ensno superor 10, Interor 0 Soltero Ensno médo 10, Interor 1 Casado Ensno médo 1 11, Outra Soltero Ensno médo 11,59 34 Captal 3 Soltero Ensno fundamental 1, Outra 4 Casado Ensno superor 0 1, Outra 5 Casado Ensno médo 13,3 3 5 Interor 6 Casado Ensno médo 13, Outra 7 Soltero Ensno fundamental 13, Outra 8 Casado Ensno médo 0 14, Interor 9 Casado Ensno médo 5 14, Interor 30 Casado Ensno médo 15, Captal 31 Soltero Ensno superor 16, 31 5 Outra 3 Casado Ensno médo 1 16, Interor 33 Casado Ensno superor 3 17, Captal 34 Soltero Ensno superor 18, Captal 35 Casado Ensno médo 19, Captal 36 Casado Ensno superor 3 3,30 4 Interor Fonte: Dados hpotétcos

13 9 5 DADOS São as nformações nerentes às varáves que caracterzam os elementos que consttuem a população ou a amostra em estudo. Os dados obtdos em pesqusas devem ser analsados e nterpretados com o auxílo de métodos estatístcos. Na prmera etapa deve-se fazer uma análse descrtva que consste na organzação e descrção dos dados, na dentfcação de valores que representem o elemento típco e, na quantfcação da varabldade presente nos dados. 5.1 DADOS BRUTOS Qualquer pesqusa é baseada em levantamento ou coleta de dados. Os dados são obtdos dretamente da pesqusa, sem terem passados por nenhum processo de síntese ou análse. Por exemplo, os 50 valores, em decbés, de nível de ruído de tráfego em certo cruzamento estão apresentados a segur: 58,0 6,5 65,0 67,0 68,3 65,0 66,4 58,0 67,0 67,0 6,5 6,5 66,4 66,4 65,0 65,0 60, 60, 60, 60, 59,5 59,5 59,5 65,0 66,4 66,4 66,4 60, 6,5 67,0 67,0 67,0 70,1 70,1 71,9 70,1 67,0 66,4 66,4 68,3 68,3 68,3 65,0 65,0 6,5 6,5 65,0 65,0 68,3 71,9 Apesar de todos estes valores terem sdo obtdos em de nível de ruído de tráfego em certo cruzamento, nota-se uma grande varação nos resultados. Assm, os métodos estatístcos são fundamentas para o estudo de stuações em que a varabldade é nerente. A Estatístca Descrtva ajuda na percepção, avalação e quantfcação da varabldade em tabelas e gráfcos obtdos a partr de um conjunto de dados que sntetzem os valores, com o objetvo de se ter uma vsão global e clara da varação exstente nas varáves. 5. ROL A mão, ou com auxílo de computador, pode-se classfcar os dados x 1, x,...,x n em ordem crescente. Pode-se, pelo rol, verfcar de manera mas clara e rápda a composção do conjunto, dentfcando o maor e o menor valor além de alguns elementos que podem se repetr váras vezes, mostrando assm o comportamento dos dados.

14 DISPOSITIVO - RAMO E FOLHAS A mas comum estrutura de dados é um grupo de números. Até mesmo esta tão smples estrutura de dados pode ter característcas não faclmente dstnguíves por estudos dos números. O dspostvo ramo e folhas é uma técnca flexível e efcaz para começarmos a olhar um conjunto ou uma amostra de dados. Os dígtos mas sgnfcantes dos valores, por s própros, fazem muto trabalho de ordenação do grupo. Está técnca básca, mas versátl, é ntensamente usada, prncpalmente para comparar grupos e examnar cada característca, tas como: quanto o grupo está próxma da assmetra; como estão dstrbuídos os valores; se alguns valores estão dstancados dos demas; se exste concentração de dados; se exste lacunas nos dados. Aplcação do dspostvo ramo e folhas. Não exste uma regra fxa para construr o ramo e folhas, mas a déa básca é dvdr cada observação em duas partes: a prmera (o ramo) é colocada à esquerda de uma lnha vertcal, a segunda (a folha) é colocada à dreta. A Fgura 1 apresenta um dessa aplcação. Ramo Folha Frequênca Fgura 1 - Ramos e folhas para os depóstos bancáros Assm, o Rol dos 50 valores do nível de ruído de tráfego em certo cruzamento, faca:

15 11 58,0 58,0 59,5 59,5 59,5 60, 60, 60, 60, 60, 6,5 6,5 6,5 6,5 6,5 6,5 65,0 65,0 65,0 65,0 65,0 65,0 65,0 65,0 65,0 66,4 66,4 66,4 66,4 66,4 66,4 66,4 66,4 67,0 67,0 67,0 67,0 67,0 67,0 67,0 68,3 68,3 68,3 68,3 68,3 70,1 70,1 70,1 71,9 71,9 A apresentação dos dados pode ser de duas formas: Apresentação Tabular e apresentação Gráfca. 5.4 REPRESENTAÇÃO TABULAR Apresentação tabular numérca de dados é a representação das nformações por ntermédo de uma tabela. Uma tabela é uma manera bastante efcente de mostrar os dados levantados e que faclta a compreensão e nterpretação dos dados. Para organzar uma sére estatístca ou uma dstrbução de frequêncas, exstem algumas normas naconas dtadas pela Assocação Braslera de Normas Técncas (ABNT) as quas devem ser respetadas. Assm, toda tabela estatístca de conter: a) Elementos essencas Título ndca a natureza do fato estudado (o quê?), as varáves escolhdas na análse do fato (como?), o local (onde?) e a época (quando?). Corpo é o conjunto de lnhas e colunas que contém, respectvamente, as séres horzontas e vertcas de nformações. Cabeçalho desgna a natureza do conteúdo de cada coluna. Coluna ndcadora mostra a natureza do conteúdo de cada lnha. b) Elementos complementares (se necessáro) Fonte é o ndcatvo, no rodapé da tabela, da entdade responsável pela sua organzação ou fornecedora dos dados prmáros. Notas são colocadas no rodapé da tabela para esclarecmentos de ordem geral. c) Snas convenconas (hífen), quando o valor numérco é nulo;... (retcênca), quando não se dspõe de dado;

16 1? (ponto de nterrogação), quando há dúvdas quanto à exatdão do valor numérco; 0; 0,0; 0,00 (zero), quando o valor numérco é muto pequeno para ser expresso pela undade utlzada, respetando o número de casas decmas adotado; X (letra x), quando o dado for omtdo. d) Numerar as tabelas quando houver mas de uma. e) As tabelas devem ser fechadas acma e abaxo por lnha horzontal, não sendo fechadas à dreta e à esquerda por lnhas vertcas. É facultatvo o emprego de traços vertcas para separação de colunas no corpo da tabela. f) Os totas e subtotas devem ser destacados. g) Manter a unformdade do número de casas decmas. As tabelas podem ser classfcadas como undmensonal ou bdmensonal. A Tabela 4 é uma representação undmensonal, enquanto a Tabela 5 é bdmensonal. Tabela 4: Número e porcentagem de causas de morte de resdentes de Londrna, no período de 10 de agosto a 31 de dezembro de 008 CAUSAS DA MORTE N O % Doenças do ap. crculatóro 81 33,5 Neoplasas ,7 Causas externas 9 11,0 Doenças do ap. respratóro 87 10,4 Doenças das glând. endóc./transt. Imuntáros 56 6,7 Doenças do ap. dgestvo 54 6,4 Doenças e nfec. e parastáras 46 5,5 Afecções do per. Pernatal 6 3,1 Demas grupos 8 9,8 TOTAL ,0 FONTE: Núcleo de nformação em mortaldade PML

17 13 Tabela 5: Percentual de vendas do produto A, da Empresa WD, no mês de março de 008 FAIXA ETÁRIA REGIÃO < 1 ano 1 a 4 anos 5 a 19 anos 0 a 49 anos 50 anos ou + Centro 4,54 -,0 14,65 78,79 Norte 6,45 1,61,4 6,61 6,91 Sul 7,7 4,55 5,45,73 60,00 Leste 3,36-4,03 4,16 68,45 Oeste 4,57 1,14 3,43 18,9 7,57 Rural 15,71 4,9 4,8 14,9 61,43 LONDRINA 5,83 1,4 3,37 0,61 68,77 FONTE: Relatóro do mês de março do Departamento de vendas. 5.5 REPRESENTAÇÃO GRÁFICA A representação gráfca é usada para aumentar a legbldade do resultado de uma pesqusa. Os gráfcos devem ser auto-explcatvos e de fácl compreensão. Devem sempre ter um título, onde se destaca o fato, o local e o tempo. Ser construídos em uma escala que não desfgure os fatos ou as relações que se deseja destacar. Assm, a altura de um gráfco deve compreender entre 60% a 80% da largura Representação Gráfca para uma Varável Qualtatva Para esse tpo de varável os gráfcos mas utlzados são os de: colunas, barras, lnhas e de setores. Tabela 6: Densdade demográfca, segundo as Grandes Regões Brasl e Grandes Regões Densdade demográfca (hab/km ) Brasl Norte Nordeste Sudeste Sul Centro Oeste,3 4,0 34,4 86,3 47,8 8,6 Fonte: IBGE, Pesqusa Naconal por Amostra de Domcílo 008

18 14 No Brasl a densdade demográfca méda, em 008, é de,3 hab/km. Regão Norte, que possu 45,% da área total do País e 8,1% da população, tem apenas 4,0 hab/km Nessa regão, anda exstem grandes vazos espacas, em função da vastdão terrtoral e de grandes áreas ntocadas, como a ocupada pela floresta Amazônca. A Regão Sudeste, a mas evoluída economcamente do País, com 4% da população total, é a que tem a maor densdade com 86,3 hab/km A Regão Metropoltana de São Paulo, com 19,5 mlhões de pessoas, corresponde a 47,9% da população do estado, enquanto a Regão Metropoltana do Ro de Janero, com 11,5 mlhões de pessoas, contém 73,4% dos habtantes do Ro de Janero (Tabela 6). a) Gráfco de Colunas Os gráfcos de colunas (Fgura ) ou barras (Fgura 3) consstem em construr retângulos, em que uma das dmensões é proporcona à magntude a ser representada, sendo a outra arbtrára, porém gual para todas as colunas (ou barras). Essas colunas (ou barras) são dspostas paralelamente umas às outras, vertcalmente (ou horzontalmente), sto é: Densdade demográfca (hab/km) ,3 4,0 34,4 86,3 47,8 Brasl Norte Nordeste Sudeste Sul Centro Oeste Brasl e Grandes Regões 8,6 Fgura Densdade demográfca, Brasl e as Grandes Regões - 008

19 15 b) Gráfco de Barras Centro Oeste 8,6 Brasl e Grandes Regões Sul Sudeste Nordeste Norte 4,0 34,4 47,8 86,3 Brasl, Densdade demográfca (hab/km) Fgura 3 Densdade demográfca, Brasl e as Grandes Regões c) Gráfco de Lnhas (Fgura 4) Densdade demográfca (hab/km) ,3 4,0 34,4 86,3 47,8 Brasl Norte Nordeste Sudeste Sul Centro Oeste Brasl e Grandes Regões 8,6 Fgura 4 Densdade demográfca, Brasl e as Grandes Regões, 008 Obs. O gráfco de lnha acma não é adequado para o exemplo d) Gráfco de Setores O gráfco de setores (Fgura 5) destna-se representar a composção, usualmente em porcentagem, de partes de um todo. Consste num círculo de rao arbtráro, representando o todo, dvdndo em setores, que correspondem às partes de manera proporconal.

20 16 CO-8,6 S-47,8 SU-86,3 B-,3 N-4,0 NE-34,4 Brasl Norte Nordeste Sudeste Sul Centro Oeste Fgura 5 Densdade demográfca, Brasl e as Grandes Regões Representação Gráfca para uma Varável Quanttatva Gráfcos referentes a varáves quanttatvas (dscretas ou contínuas) mas utlzados são os de: colunas (Fgura 6) e barras (Fgura 7). Tabela 7: As taxas mensas, em porcentagem, da Poupança, no período de janero a dezembro de 005 Meses Taxa (%) Janero Feverero Março Abrl Mao Junho Julho Agosto Setembro Outubro Novembro Dezembro Fonte: Caxa Econômca Federal 0,715 0,69 0,675 0,734 0,737 0,739 0,774 0,808 0,771 0,733 0,711 0,714

21 17 a) Gráfco de colunas 0,85 0,80 Taxa (%) 0,75 0,70 0,65 0,60 Jan Fev Mar Abr Ma Jun Jul Ago Set Out Nov Dez Meses Fgura 6 Taxa de juros em porcentagem da caderneta de Poupança de janero a dezembro de 005 c) Gráfco de lnhas Taxas (%) 0,85 0,80 0,75 0,70 0,65 0,715 0,69 0,675 0,734 0,737 0,739 0,774 0,808 0,771 0,733 0,711 0,714 0,60 Jan Fev Mar Abr Ma Jun Jul Ago Set Out Nov Dez Meses Fgura 7 Taxa de juros em porcentagem da caderneta de Poupança de janero a dezembro de Séres Conjugadas Mutas vezes tem-se a necessdade de apresentar, em uma únca tabela, a varação de valores de mas de uma varável, sto é, fazer uma conjunção de duas ou mas séres. Conjugando duas séres em uma únca tabela, obtém-se uma tabela de dupla entrada (horzontal e vertcal). A Tabela 8 apresenta a méda de anos de estudo, no Brasl e nas Regões: Sudeste e Nordeste, no período de 00 a 008

22 18 Tabela 8: Méda de anos de estudo, no Brasl e nas Regões, Sudeste e Nordeste, no período de 00 a 008 Brasl e Regões Anos Sudeste 7, 7,4 7,6 7,7 7,9 7,9 8,1 Brasl 6,5 6,7 6,8 7,0 7, 7,3 7,4 Nordeste 5,1 5,3 5,5 5,6 5,8 6,0 6, Fonte: IBGE, Pesqusa Naconal por Amostra de Domcílo 008 A educação básca no País é formada por dos cclos fundamental e médo que correspondem a 11 anos de estudo completos. Os dados sobre os níves de escolarzação da população revelam melhoras, se comparados àqueles da década anteror, porém são anda nsufcentes e não compatíves com o nível de desenvolvmento econômco do País. Basta observar a escolardade méda da população. Em 008, o braslero de 15 anos ou mas de dade tnha, em méda, 7,4 anos de estudo. Na Regão Sudeste, essa méda atngu 8,1 anos, enquanto na Regão Nordeste apenas 6, anos. Os com os gráfcos, de lnhas (fgura 8) e de colunas múltplas (fgura 9) mostram esta stuação. a) Gráfco de Lnhas (Fgura 8) 9 Médas de estudos (anos) 7 5 7, 6,5 5,1 7,4 7,6 7,7 6,7 6,8 7,0 5,3 5,5 5,6 7,9 7,9 8,1 7, 7,3 7,4 6, 6,0 5, Sudeste Brasl Nordeste Fgura 8 Médas de estudo no Brasl e nas Regões: Sudeste e Nordeste, no período de 00 a 008

23 19 b) Gráfco de Colunas Múltplas (Fgura 9) 9 Médas de estudos (anos) 7 5 SU B NE SU B NE SU B NE SU B NE SU B NE SU B NE SU B NE Sudeste Brasl Nordeste Fgura 9 Médas de estudo no Brasl e nas Regões: Sudeste e Nordeste, no período de 00 a 008 O gráfco de colunas múltplas é útl quando se quer fazer estudo comparatvo Dstrbução de Frequêncas Quando se estuda uma varável, o maor nteresse do pesqusador é conhecer o comportamento dessa varável, analsando a ocorrênca de suas possíves realzações. Consderando-se a varável qualtatva a ser estudada, como por exemplo, grau de nstrução (Tabela 3), será observada e estudada muto mas faclmente quando se dspõem os ensnos: Fundamental, Médo e Superor em uma coluna e coloca-se, ao lado de cada ensno, o número de vezes que aparece repetdo. Assm, a Tabela 9 apresenta a dstrbução de frequêncas da varável grau de nstrução. Tabela 9: Frequêncas e porcentagens dos 36 empregados da seção de orçamentos da Companha MB segundo o grau de nstrução Grau de Instrução Frequênca (n ) Proporção (f ) Porcentagem (%) Fundamental Médo Superor ,3333 0,5000 0, ,33 50,00 16,67 Total 36 1, ,00

24 0 Fonte: Tabela 3 Através da Tabela 9 da segunda coluna, nota-se que dos 36 empregados da Companha MB, 1 têm o ensno fundamental, 18 o ensno médo e 6 possu curso superor. Uma medda bastante útl na nterpretação de tabelas de frequêncas é a proporção (ou a porcentagem) de cada realzação em relação ao total. Assm 6/36 = 0,1667 (16,67%) dos empregados da Companha MB (seção de orçamento) têm nstrução superor. As proporções são muto útes quando se quer comparar resultados de duas pesqusas dstntas. Por exemplo, suponha-se que se quera comparar a varável grau de nstrução para os empregados da seção de orçamentos com a mesma varável para todos os empregados da Companha MB. Supondo que a empresa tenha.000 empregados e que a dstrbução de frequêncas seja a Tabela 10. Tabela 10: Frequêncas e porcentagens dos.000 empregados da Companha MB segundo o grau de nstrução Grau de Instrução Frequênca (n ) Proporção (f ) Porcentagem (%) Fundamental Médo Superor ,350 0,5100 0,1650 3,50 51,00 16,50 Total.000 1, ,00 Fonte: dados hpotétcos Importante: Não pode comparar dretamente as colunas das frequêncas das Tabelas 9 e 10, pos os totas de empregados são dferentes nos dos casos. Mas as colunas das porcentagens são comparáves, já que as frequêncas foram reduzdas a um mesmo total. (no caso 100). Gráfcos para varáves qualtatvas O gráfco de colunas múltplas (Fgura 10) segundo a varável qualtatva, grau de nstrução das Tabelas 9 e 10, fca:

25 porcentagem (%) Orçamento Companha 0 Fundamental Médo Superor Grau de nstrução Fgura 10 Grau de nstrução dos funconáros da Seção de Orçamento e da Companha MB Já o gráfco de lnhas (Fgura 11) referente a varável, grau de nstrução das Tabelas 9 e 10, fca: porcentagem (%) Orçamento Companha 0 Fundamental Médo Superor Grau de nstrução Fgura 11 Grau de nstrução dos funconáros da Seção de Orçamento e da Companha MB Gráfcos para varáves quanttatvas Consderando-se, agora, a varável quanttatva dscreta a ser estudada, número de flhos dos empregados casados da seção de orçamentos da Companha MB (Tabela 3). A Tabela 11 apresenta a dstrbução de frequêncas e as porcentagens desta varável.

26 Tabela 11: Frequêncas e porcentagens dos empregados da seção de orçamentos da Companha MB, segundo o número de flhos N o de Flhos Frequênca (n ) Porcentagem (%) Total Fonte: Tabela 3 O gráfco de colunas (Fgura 1) da varável quanttatva do número de flhos dos empregados casados da seção de orçamentos da Companha MB da Tabela 11, é representado da segunte forma: 8 6 Frequênca Número de flhos Fgura 1 Número de flhos dos empregados dos casados da seção de orçamento da Companha A construção de tabelas de frequêncas para varáves contínuas necessta de certo cudado. Por exemplo, a construção da tabela de frequêncas para a varável saláro (Tabela 3) usando o mesmo procedmento anteror, não resumrá as 36 observações num grupo menor, pos não exstem observações guas. A solução empregada é agrupar os dados por faxas de saláro. A Tabela 1 dá a dstrbução de frequêncas dos saláros dos 36 empregados da seção de orçamentos da Companha MB por faxa de saláros.

27 3 Tabela 1: Frequêncas e porcentagens dos 36 empregados da seção de orçamentos da Companha MB por faxa de saláro Classe de Saláros Frequênca (n ) Porcentagem (%) 4, ,00 8, ,00 1, ,00 16, ,00 0, , ,78 33,33, 13,89,78 Total ,00 Fonte: Tabela 3 Procedendo-se desse modo, ao resumr os dados referentes a uma varável contínua, perde-se alguma nformação. Por exemplo, não se sabe quas são os oto saláros da classe de 1 a 16, a não ser que se nvestga a tabela orgnal (tabela 3). Sem perda de muta precsão, pode-se supor que todos os oto saláros daquela classe fossem guas ao ponto médo da referda classe, sto é, 14. A dstrbução de frequêncas é mportante quando exste uma grande quantdade de dados. A fnaldade em agrupar os dados é facltar a vsualzação e também os cálculos deles, porém, a determnação das meddas de posção e de dspersão para uma varável quanttatva contínua, através de sua dstrbução de frequêncas, exge aproxmações, já que perde a nformação dos valores observados. Não há um modo únco par se construr uma tabela de frequênca por classe de valores. A escolha dos ntervalos é arbtrára e a famlardade do pesqusador com os dados é que lhe ndcará quantas classes (ntervalos) devem ser usadas. Entretanto, deve-se observar que, com um pequeno número de classes, perde-se nformação, e com um número grande de classes, o objetvo de resumr os dados fca prejudcado. Estes dos extremos têm a ver, também, com o grau de suavdade da representação gráfca dos dados. Normalmente, sugere-se o uso de 5 a 15 classes com a mesma ampltude. As classes não precsam ter ampltude constante, mas por uma questão de smplfcação da construção da representação gráfca, geralmente são classes com

28 4 ntervalos constantes. Por outro lado, exstem técncas para construção de tabelas de dstrbução de frequêncas para ntervalos contínuos (dados agrupados). Etapas para a construção de tabelas de frequênca para dados agrupados: 1) O cálculo da ampltude total dos dados é a dferença entre o maor e o menor valor da sére, sto é: At = n o do maor n o do menor ) Não exstndo um crtéro rígdo para estabelecer o número deal de ntervalos, sugere-se que não se utlze menos de 5 e não mas de 15 ntervalos. A experênca tem demonstrado que se pode fxar o número de ntervalo como: K = n ou K = 1+ 3,3.log n, para uma amostra de tamanho n 3) O ntervalo das classes (ampltude de classes) pode ser feto dvdndo-se a ampltude total pelo número de classes, sto é: a C = At K Assm, pode construr os ntervalos partndo do menor valor do conjunto e somando a ampltude calculada (a C ), o que permte determnar os lmtes dos ntervalos. Aplcação: A Tabela 13 apresenta uma dstrbução de frequênca usando as técncas de construção dos 50 valores, em decbés, de nível de ruído de tráfego em certo cruzamento estão apresentados a segur: Cálculo: At = X max X mn = 71,9 58,0 = 13,9 k = n = 50 7 a C = K At 13,9 = = 7

29 5 Tabela 13: Nível de ruído, em decbés, de tráfego em certo cruzamento Nível de ruído (em db) Quantdade ( f ) Ponto médo ( x ) Freq. Acum. ( F ac ) ( f x. ) ( x. f ) 58, , ,0 -- 6, , , , , , , , , ,0 -- 7, Total Os resultados referentes a varáves contínuas frequentemente são organzados em tabelas de dstrbuções de frequêncas por ntervalos. Três tpos de gráfcos geralmente são utlzados neste caso: hstograma, polígono de frequênca e ogvas. a) Hstograma (Fgura 13) é a representação gráfca de uma dstrbução de frequênca por meo de retângulos justapostos, contendo as classes de valores na abscssa e as frequêncas, absolutas ou relatvas, nas ordenadas, centradas nos pontos médos Quantdade Nível de ruído (db) Fgura 13 Nível de ruído (db) em certo cruzamento Através da fgura, pode-se dzer que 10 níves de ruído foram nferores a 6 decbés, ou 5 níves de ruído foram guas ou superores a 70 decbés.

30 6 b) Polígono de frequêncas (Fgura 14) é a representação gráfca de uma dstrbução de frequênca, contendo os pontos médos de cada classe na abscssa e as frequêncas, absolutas ou relatvas, nas ordenadas Frequênca Nível de ruído (db) Fgura 14 Nível de ruído (db) em certo cruzamento O gráfco de uma dstrbução cumulatvo é chamado de ogva (Fgura 15). Os valores dos dados são mostrados no exo horzontal e as frequêncas cumulatvas são apresentadas no exo vertcal. 60 Frequênca x Nível de ruído (db) Fgura 15 Nível de ruído (db) acumulado em certo cruzamento As frequêncas nesse exemplo foram acumuladas de modo crescente. Há casos, no entanto, que a acumulação das frequêncas é feta de modo decrescente. Este gráfco pose ser usado para fornecer nformações adconas. Por exemplo, para saber qual o nível de ruído x tal que 30 das quantdades (frequêncas) atngem menos do que x, basta procurar o ponto (x, 30) na curva. Observando as lnhas pontlhadas no gráfco, nota-se que a solução é aproxmadamente 67 decbés.

31 7 5.6 LISTA 1 EXERCÍCIOS 1) Ao nascer, os bebês são pesados e meddos, para se saber se estão dentro das tabelas de peso e altura esperados. Estas duas varáves são: a) qualtatvas b) ambas dscretas c) ambas contínuas d) contínua e dscreta, respectvamente e) dscreta e contínua, respectvamente ) A dstrbução abaxo ndca o número de acdentes ocorrdos em uma empresa com 70 funconáros. (dados fctícos). N o de acdentes N o de funconáros Determne: a) o número de funconáros que não sofreram acdente; b) o número de funconáros que sofreram pelo menos 4 acdentes; c) o número de funconáros que sofreram 1 < acdentes 4; d) o número de funconáros que sofreram no mínmo 3 e no máxmo 5 acdentes; e) a porcentagem dos funconáros que sofreram no mínmo 5 acdentes; f) a porcentagem dos funconáros que sofreram entre e 4 acdentes; g) gráfcos de colunas e de barras. 3) Os depóstos bancáros da Empresa AKI-SE-TRABALHA, em mlhares de Reas, Fev/Mar, 005: 3,7 1,6,5 3,0 3,9 1,9 3,8 1,5 1,1 1,8 1,4,7,1 3,3 3,,3,3,4 0,8 3,1 1,8 1,0,0,0,9 3, 1,9 1,6,9,0 1,0,7 3,0 1,3 1,5 4,,4,1 1,3,7,1,8 1,9 a) Ordenar os dados pelo dspostvo ramo e folhas. (também pelo computador). b) Construa a dstrbução de frequêncas usando as técncas de construção. c) Faça o hstograma, o polígono de frequênca e a ogva do tem b.

32 8 4) Se os saláros dos professores do Estado aumentam em 0% em dado período, enquanto o Índce de Preços aumenta em 10%, então, o aumento real de saláro, durante o período, fo: a) de 10% b) maor que 10% c) menor que 10% d) nulo 5) Substtur por uma tabela o trecho do relatóro segunte retrado do IBGE - Estatístcas de Regstro Cvl 004. No Brasl, a porcentagem de óbtos volentos para ndvíduos do sexo masculno entre 000 e 003, nas Regões; Norte, Nordeste, Sudeste, Sul e Centro Oeste são: 000 Norte 17,4%, Nordeste 13,4%, Sudeste 17,3%, Sul 13,6% e Centro-Oeste 19,6%; 001 Norte 17,6%, Nordeste 13,5%, Sudeste 17,4%, Sul 14,6% e Centro-Oeste 19,4%; 00 Norte 17,5%, Nordeste 13,4%, Sudeste 17,5%, Sul 13,5% e Centro-Oeste 19,5%; 003 Norte 15,8%, Nordeste 13,6%, Sudeste 17,0%, Sul 13,3% e Centro-Oeste: 19,7%. Construr também o gráfco de colunas. 6) Substtur por uma tabela o trecho do relatóro segunte retrado do IBGE - Estatístcas de Regstro Cvl 004. No Brasl, a porcentagem de óbtos volentos para ndvíduos do sexo masculno é quase 4 vezes superor à do sexo femnno. Baseado em dados exstentes entre 000 e 003, a stuação no Norte, Nordeste, Sudeste, Sul e Centro Oeste é a segunte: 000 Norte: 17,4% masculno e 5,8% femnno; Nordeste: 13,4% masculno e 3,8% femnno; Sudeste: 17,3% masculno e 4,4% femnno; Sul: 13,6% masculno e 4,4% femnno e Centro- Oeste: 19,6% masculno e 6,5% femnno; 001 Norte: 17,6% masculno e 5,9% femnno; Nordeste: 13,5% masculno e 3,8% femnno; Sudeste: 17,4% masculno e 4,3% femnno; Sul: 14,6% masculno e 5,1% femnno e Centro- Oeste: 19,4% masculno e 6,4% femnno; 00 Norte: 17,5% masculno e 5,8% femnno; Nordeste: 13,4% masculno e 3,7% femnno; Sudeste: 17,5% masculno e 4,% femnno; Sul: 13,5% masculno e 5,7% femnno e Centro- Oeste: 19,5% masculno e 6,3% femnno; 003 Norte: 15,8% masculno e 4,7% femnno; Nordeste: 13,6% masculno e 3,4% femnno; Sudeste: 17,0% masculno e 4,3% femnno; Sul: 13,3% masculno e 3,6% femnno e Centro- Oeste: 19,7% masculno e 6,0% femnno.

33 9 7) Um professor preencheu uma tabela, envado pelo Departamento de Educação, com os seguntes dados: Sére e Turma 1 o B 1 o C 1 o E 1 o F N o de alunos 30/ N o de alunos 30/ Promovdos sem recupe reção Retdos sem Recupe ração Em recupe ração Recupe rados Não Recupe rados Total Geral Promo vdos Total Pede-se: a) a taxa de evasão, por classe; b) a taxa de evasão total; c) a taxa de aprovação, por classe; d) a taxa de aprovação geral; e) a taxa de recuperação, por classe; f) a taxa de recuperação geral; g) a taxa de reprovação na recuperação geral; h) a taxa de aprovação, sem a recuperação; ) a taxa de retdos, sem a recuperação. Ret dos ) A tabela abaxo apresenta uma dstrbução de frequênca das áreas de 400 lotes: Áreas (m ) N o de Lotes Determne: a) o lmte nferor da qunta classe b) o ponto médo da sétma classe c) a ampltude do ntervalo da sexta classe d) a frequênca da quarta classe e) a frequênca relatva da sexta classe f) a freq. acumulada da qunta classe g) o número de lotes cuja área não atnge 700 m. h) o número de lotes gual ou maor a 800 m. ) a porcentagem dos lotes cuja área não atnge 600 m. j) a porcentagem dos lotes cuja área é de 500 m, no mínmo, mas nferor a m.

34 30 6 MEDIDAS ESTATÍSTICAS Além da construção de tabelas e gráfcos, a análse exploratóra de dados, consste também de cálculos de meddas estatístcas que resumem as nformações obtdas dando uma vsão global dos dados. Essas meddas, também conhecdas como meddas descrtvas, recebem o nome genérco de estatístcas quando calculada com os dados da amostra, e de parâmetros quando calculadas com dados populaconas. Dentre as meddas estatístcas as mas utlzadas são as de tendênca central (ou de posção) e as de dspersão (ou de varabldade). Destacam-se, anda, as separatrzes, as assmetras e os box plot. 6.1 MEDIDAS TENDÊNCIA CENTRAL (POSIÇÃO) As meddas de tendênca central são aquelas que produzem um valor em torno do qual os dados observados se dstrbuem, e que vsam sntetzar em um únco número o conjunto de dados. As meddas de tendênca central são: méda artmétca, medana e moda Méda Uma das meddas estatístcas mas utlzadas na representação de uma dstrbução de dados é a méda artmétca, na sua forma smples, ou ponderada. No prmero caso dvde-se a soma de todos os valores da sére pelo número de observações, enquanto no segundo, mas utlzado em dstrbuções de frequêncas, os valores são ponderados pelas frequêncas com que ocorrem e depos dvdem-se pelo total das frequêncas (este segundo caso será vsto em dstrbução de frequêncas): Smples: X n x x x x Σ n = 1 = = ou smplesmente n n X = n x Exemplo: Foram levantados os dâmetros de 10 peças (cm) da Empresa AA Ltda. As meddas foram as seguntes: 13,1 13,5 13,9 13,3 13,7 13,1 13,1 13,7 13, 13,5. Portanto, dâmetro médo é 13,41 cm.

35 31 A méda artmétca possu algumas propredades desejáves e não desejáves e são as seguntes:. Uncdade. Para um conjunto de dados exste somente uma méda artmétca.. Smplcdade. A méda artmétca é fácl de ser nterpretada e de ser calculada.. Todos os valores entram para o cálculo da méda artmétca, porém, os valores extremos afetam no valor calculado, e em alguns casos pode haver uma grande dstorção, tornando, neste caso, a méda artmétca ndesejável como medda de tendênca central. Como a méda é nfluencada por valores extremos da dstrbução, ela só deve ser utlzada em dstrbuções smétrcas, ou levemente assmétrcas, e em dstrbuções não heterogêneas. Sua aplcação nos dos casos acma é precára e de pouca utldade prátca, pos perde sentdo prátco e capacdade de representar a dstrbução que a orgnou. Também nos casos de sére em que o fenômeno tem uma evolução não lnear, como as séres de valores fnanceros no tempo, de acordo com uma captalzação composta, a méda mas recomendada sera a geométrca. Fnalmente, não se recomenda à aplcação da méda artmétca nas séres cujos valores representem relações recíprocas, como por exemplo, velocdades, expressas através da relação entre o espaço e o tempo. Neste últmo caso recomenda-se a utlzação da méda harmônca Medana A medana é o valor que ocupa a posção central de um conjunto de valores ordenados, ou seja, medda dvde a dstrbução de valores em duas partes guas: 50% acma e 50% abaxo do seu valor. Quando o conjunto possu quantdade par de valores, há dos valores centras, neste caso, a medana é o valor médo dos dos valores centras do conjunto de dados ordenados. Exemplo: Com os dados do exemplo anteror, calcular a medana. 13,1 13,1 13,1 13, 13,3 13,5 13,5 13,7 13,7 13,8 Nesta sére tem-se número par de observações logo, têm-se dos valores centras e são 13,3 e 13,5. Logo, a medana é 13,4 cm.

36 3 Suponha, neste mesmo exemplo que se acrescente o valor 14,0 tornando um rol de número ímpar, 13,1 13,1 13,1 13, 13,3 13,5 13,5 13,7 13,7 13,8 14,0 a 13,5 cm. Neste caso, a sére possu apenas um valor central logo, a medana é gual Propredades da medana. Uncdade. Exste somente uma medana para um conjunto de dados... Smplcdade. A medana é fácl de ser calculada. A medana não é tão afetada pelos valores extremos como a méda artmétca, por sso, se dz que a medana é uma medda robusta. Conceto de resstênca de uma medda Dz-se que uma medda de centraldade ou de dspersão é resstente quando ela é pouco afetada pela presença de observações dscrepantes. Entre as meddas de centraldade, a méda é bem menos resstente que a medana. Por outro lado, entre as meddas de dspersão, o desvo padrão é bem menos resstente do que o desvo nter-quartílco Moda Moda de um conjunto de valores é o valor que ocorre com maor frequênca, sua aplcação não depende do nível de mensuração da varável, sendo aplcada tanto a fenômenos qualtatvos quanto quanttatvos. Se todos os valores forem dferentes não há moda, por outro lado, um conjunto pode ter mas do que uma moda: bmodal, trmodal ou multmodal. Exemplo: Para os dados dos exemplos anterores a moda é gual a 13,1 cm. A moda pode ser utlzada para descrever dados qualtatvos. Por exemplo, suponha que os pacentes vstos em uma clínca de saúde mental durante um determnado ano receberam um dos seguntes dagnóstcos: retardo mental, pscose,

37 33 neurose e mudança de personaldade. O dagnóstco que ocorre com maor frequênca no grupo de pacentes pode ser chamado de dagnóstco modal. 6. MEDIDAS DE DISPERSÃO A dspersão de conjunto de dados é a varabldade que os dados apresentam entre s. Se todos os valores forem guas, não há dspersão; se os dados não são guas, exste dspersão entre os dados. A dspersão é pequena quando os valores são próxmos uns dos outros. Se os valores são muto dferentes entre s, a dspersão é grande, assm, as meddas de dspersão apresentam o grau de agregação dos dados. Veja como exemplo a Tabela 14. Tabela 14: Valores das séres A, B e C Repetção Sére A Sére B Sére C Méda Medana Nota-se que a sére A não apresenta dspersão, já os valores da sére B apresentam certa dspersão em torno da méda 45, e os valores da sére C apresentam uma dspersão em torno da méda e maor do que a da sére B. As meddas descrtvas mas comuns para quantfcar a dspersão são: ampltude, desvo médo, varânca, desvo-padrão e coefcente de varação Ampltude Uma manera de medr a varação em um conjunto de valores é calcular a ampltude. A ampltude é a dferença entre o maor e o menor valor de um conjunto de observações. At = n o maor n o menor

38 34 Exemplo: Determnar ampltude total da sére: A, B e C. A utldade da ampltude total como medda de dspersão é muto lmtada, pos depende apenas dos valores extremos. A maor vantagem em usá-la é a smplcdade do seu cálculo. 6.. Desvo Médo Uma vez que se deseja medr a dspersão ou grau de concentração dos valores em torno da méda, nada mas nteressante do que analsar o comportamento dos desvos de cada valor em relação à méda, sto é: d = ( x x) Porém, para qualquer conjunto de dados, a soma de todos os desvos é gual a zero, sto é: d = ( x x) = 0 Neste caso, consdera-se o módulo de cada desvo x x, evtando com sso que d = 0. Dessa forma, o desvo de um conjunto de n valores é dado por: DM n = = 1 x x Exemplo: Determnar desvo médo da sére B. n 6..3 Varânca Embora o desvo médo seja uma medda melhor do que a Ampltude, anda não é uma medda deal, pos não dscrmna pequenos dos grandes afastamentos em relação à méda. Se para elmnar o problema dos snas, ao nvés de consderarmos os valores absolutos elevarmos os afastamentos ao quadrado, estaremos não apenas elmnando o problema dos snas como também potencalzando os afastamentos, enfatzando os grandes desvos em relação às

39 35 observações mas próxmas da méda. Como resultado defne a medda de varação, denomnada de varânca, como: s = n = 1 ( X X ) ou n 1 = = 1 Exemplo: Determnar as varâncas das séres A, B e C. s n X ( n 1 n = 1 X n ) Esta estatístca solada tem dfícl nterpretação por apresentar undade de medda gual ao quadrado da undade de medda dos dados Desvo Padrão Devdo à dfculdade de nterpretação da varânca, por ter sua undade de medda ao quadrado, na prátca usa-se o desvo padrão que é a raz quadrada da varânca, ou seja: s = s Exemplo: Determnar os desvos-padrão das séres A, B e C Erro Padrão Dferentes amostras retradas de uma mesma população podem apresentar médas dferentes. A varação exstente entre este conjunto de médas é estmada através do erro padrão, que corresponde ao desvo padrão das médas, sendo representado por s e calculado pela fórmula: x s x = s n 6..6 Coefcente de Varação Uma pergunta que pode surgr é se um desvo-padrão é grande ou pequeno; questão relevante, por exemplo, na avalação da precsão de métodos. Um desvopadrão pode ser consderado grande ou pequeno dependendo da ordem de grandeza da varável. Por exemplo, um desvo-padrão de 10 pode ser nsgnfcante

Introdução e Organização de Dados Estatísticos

Introdução e Organização de Dados Estatísticos II INTRODUÇÃO E ORGANIZAÇÃO DE DADOS ESTATÍSTICOS 2.1 Defnção de Estatístca Uma coleção de métodos para planejar expermentos, obter dados e organzá-los, resum-los, analsá-los, nterpretá-los e deles extrar

Leia mais

Estatística stica Descritiva

Estatística stica Descritiva AULA1-AULA5 AULA5 Estatístca stca Descrtva Prof. Vctor Hugo Lachos Davla oo que é a estatístca? Para mutos, a estatístca não passa de conjuntos de tabelas de dados numércos. Os estatístcos são pessoas

Leia mais

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00)

Y X Baixo Alto Total Baixo 1 (0,025) 7 (0,175) 8 (0,20) Alto 19 (0,475) 13 (0,325) 32 (0,80) Total 20 (0,50) 20 (0,50) 40 (1,00) Bussab&Morettn Estatístca Básca Capítulo 4 Problema. (b) Grau de Instrução Procedênca º grau º grau Superor Total Interor 3 (,83) 7 (,94) (,) (,33) Captal 4 (,) (,39) (,) (,3) Outra (,39) (,7) (,) 3 (,3)

Leia mais

Professor Mauricio Lutz CORRELAÇÃO

Professor Mauricio Lutz CORRELAÇÃO Professor Maurco Lutz 1 CORRELAÇÃO Em mutas stuações, torna-se nteressante e útl estabelecer uma relação entre duas ou mas varáves. A matemátca estabelece város tpos de relações entre varáves, por eemplo,

Leia mais

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 1. ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de

Leia mais

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS

TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS TABELAS E GRÁFICOS PARA VARIÁVEIS ALEATÓRIAS QUANTITATIVAS CONTÍNUAS Varável Qualquer característca assocada a uma população Classfcação de varáves Qualtatva { Nomnal sexo, cor dos olhos Ordnal Classe

Leia mais

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma.

TEORIA DE ERROS * ERRO é a diferença entre um valor obtido ao se medir uma grandeza e o valor real ou correto da mesma. UNIVERSIDADE FEDERAL DO ESPÍRITO SANTO CENTRO DE CIÊNCIAS EXATAS DEPARTAMENTO DE FÍSICA AV. FERNANDO FERRARI, 514 - GOIABEIRAS 29075-910 VITÓRIA - ES PROF. ANDERSON COSER GAUDIO FONE: 4009.7820 FAX: 4009.2823

Leia mais

NOTA II TABELAS E GRÁFICOS

NOTA II TABELAS E GRÁFICOS Depto de Físca/UFMG Laboratóro de Fundamentos de Físca NOTA II TABELAS E GRÁFICOS II.1 - TABELAS A manera mas adequada na apresentação de uma sére de meddas de um certo epermento é através de tabelas.

Leia mais

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA

Análise de Regressão. Profa Alcione Miranda dos Santos Departamento de Saúde Pública UFMA Análse de Regressão Profa Alcone Mranda dos Santos Departamento de Saúde Públca UFMA Introdução Uma das preocupações estatístcas ao analsar dados, é a de crar modelos que explctem estruturas do fenômeno

Leia mais

IV - Descrição e Apresentação dos Dados. Prof. Herondino

IV - Descrição e Apresentação dos Dados. Prof. Herondino IV - Descrção e Apresentação dos Dados Prof. Herondno Dados A palavra "dados" é um termo relatvo, tratamento de dados comumente ocorre por etapas, e os "dados processados" a partr de uma etapa podem ser

Leia mais

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação

Ministério da Educação. Instituto Nacional de Estudos e Pesquisas Educacionais Anísio Teixeira. Cálculo do Conceito Preliminar de Cursos de Graduação Mnstéro da Educação Insttuto Naconal de Estudos e Pesqusas Educaconas Aníso Texera Cálculo do Conceto Prelmnar de Cursos de Graduação Nota Técnca Nesta nota técnca são descrtos os procedmentos utlzados

Leia mais

7 - Distribuição de Freqüências

7 - Distribuição de Freqüências 7 - Dstrbução de Freqüêncas 7.1 Introdução Em mutas áreas há uma grande quantdade de nformações numércas que precsam ser dvulgadas de forma resumda. O método mas comum de resumr estes dados numércos consste

Leia mais

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas

3.6. Análise descritiva com dados agrupados Dados agrupados com variáveis discretas 3.6. Análse descrtva com dados agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas

Leia mais

Regressão e Correlação Linear

Regressão e Correlação Linear Probabldade e Estatístca I Antono Roque Aula 5 Regressão e Correlação Lnear Até o momento, vmos técncas estatístcas em que se estuda uma varável de cada vez, estabelecendo-se sua dstrbução de freqüêncas,

Leia mais

Caderno de Exercícios Resolvidos

Caderno de Exercícios Resolvidos Estatístca Descrtva Exercíco 1. Caderno de Exercícos Resolvdos A fgura segunte representa, através de um polígono ntegral, a dstrbução do rendmento nas famílas dos alunos de duas turmas. 1,,75 Turma B

Leia mais

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado)

5.1 Seleção dos melhores regressores univariados (modelo de Índice de Difusão univariado) 5 Aplcação Neste capítulo será apresentada a parte empírca do estudo no qual serão avalados os prncpas regressores, um Modelo de Índce de Dfusão com o resultado dos melhores regressores (aqu chamado de

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso de Admnstração em Gestão Públca Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos uns dos

Leia mais

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA

ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA ANÁLISE EXPLORATÓRIA E ESTATÍSTICA DESCRITIVA 014 Estatístca Descrtva e Análse Exploratóra Etapas ncas. Utlzadas para descrever e resumr os dados. A dsponbldade de uma grande quantdade de dados e de métodos

Leia mais

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média.

Ao se calcular a média, moda e mediana, temos: Quanto mais os dados variam, menos representativa é a média. Estatístca Dscplna de Estatístca 0/ Curso Superor de tecnólogo em Gestão Ambental Profª. Me. Valéra Espíndola Lessa e-mal: lessavalera@gmal.com Meddas de Dspersão Indcam se os dados estão, ou não, prómos

Leia mais

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ

PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS DO CEARÁ GOVERNO DO ESTADO DO CEARÁ SECRETARIA DO PLANEJAMENTO E GESTÃO - SEPLAG INSTITUTO DE PESQUISA E ESTRATÉGIA ECONÔMICA DO CEARÁ - IPECE NOTA TÉCNICA Nº 29 PROJEÇÕES POPULACIONAIS PARA OS MUNICÍPIOS E DISTRITOS

Leia mais

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA

CAPÍTULO 2 DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA CAPÍTULO DESCRIÇÃO DE DADOS ESTATÍSTICA DESCRITIVA. A MÉDIA ARITMÉTICA OU PROMÉDIO Defnção: é gual a soma dos valores do grupo de dados dvdda pelo número de valores. X x Soma dos valores de x número de

Leia mais

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL

Faculdade de Tecnologia de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL Faculdade de Tecnologa de Catanduva CURSO SUPERIOR DE TECNOLOGIA EM AUTOMAÇÃO INDUSTRIAL 7. GRÁFICOS DE INFORMAÇÕES São grácos tpcamente epostvos destnados, prncpalmente, ao públco em geral, objetvando

Leia mais

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2

Aplicando o método de mínimos quadrados ordinários, você encontrou o seguinte resultado: 1,2 Econometra - Lsta 3 - Regressão Lnear Múltpla Professores: Hedbert Lopes, Prscla Rbero e Sérgo Martns Montores: Gustavo Amarante e João Marcos Nusdeo QUESTÃO 1. Você trabalha na consultora Fazemos Qualquer

Leia mais

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações.

As tabelas resumem as informações obtidas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de informações. 1. TABELA DE DISTRIBUIÇÃO DE FREQÜÊNCIA As tabelas resumem as normações obtdas da amostra ou da população. Essas tabelas podem ser construídas sem ou com perda de normações. As tabelas sem perda de normação

Leia mais

Introdução à Análise de Dados nas medidas de grandezas físicas

Introdução à Análise de Dados nas medidas de grandezas físicas Introdução à Análse de Dados nas meddas de grandezas físcas www.chem.wts.ac.za/chem0/ http://uregna.ca/~peresnep/ www.ph.ed.ac.uk/~td/p3lab/analss/ otas baseadas nos apontamentos Análse de Dados do Prof.

Leia mais

INE 7001 ESTATÍSTICA PARA ADMINISTRADORES I NOTAS DE AULA PROF. MARCELO MENEZES REIS MANOEL DE OLIVEIRA LINO

INE 7001 ESTATÍSTICA PARA ADMINISTRADORES I NOTAS DE AULA PROF. MARCELO MENEZES REIS MANOEL DE OLIVEIRA LINO INE 7001 ESTATÍSTICA PARA ADMINISTRADORES I NOTAS DE AULA PROF. MARCELO MENEZES REIS MANOEL DE OLIVEIRA LINO INE 7001 Introdução e Análse Exploratóra de Dados 2 1 - INTRODUÇÃO 1.1 - O método centífco A

Leia mais

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis.

PARTE 1. 1. Apresente as equações que descrevem o comportamento do preço de venda dos imóveis. EXERCICIOS AVALIATIVOS Dscplna: ECONOMETRIA Data lmte para entrega: da da 3ª prova Valor: 7 pontos INSTRUÇÕES: O trabalho é ndvdual. A dscussão das questões pode ser feta em grupo, mas cada aluno deve

Leia mais

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para

Objetivos da aula. Essa aula objetiva fornecer algumas ferramentas descritivas úteis para Objetvos da aula Essa aula objetva fornecer algumas ferramentas descrtvas útes para escolha de uma forma funconal adequada. Por exemplo, qual sera a forma funconal adequada para estudar a relação entre

Leia mais

Análise Descritiva com Dados Agrupados

Análise Descritiva com Dados Agrupados Análse Descrtva com Dados Agrupados Em algumas stuações, os dados podem ser apresentados dretamente nas tabelas de frequêncas. Netas stuações devemos utlzar estratégas específcas para obter as meddas descrtvas

Leia mais

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues

CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO 2 DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogério Rodrigues CONCEITOS INICIAIS DE ESTATÍSTICA MÓDULO DISTRIBUIÇÃO DE FREQÜÊNCIA - ELEMENTOS Prof. Rogéro Rodrgues I) TABELA PRIMITIVA E DISTRIBUIÇÃO DE FREQÜÊNCIA : No processo de amostragem, a forma de regstro mas

Leia mais

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas

3ª AULA: ESTATÍSTICA DESCRITIVA Medidas Numéricas PROGRAMA DE PÓS-GRADUAÇÃO EM EGEHARIA DE TRASPORTES E GESTÃO TERRITORIAL PPGTG DEPARTAMETO DE EGEHARIA CIVIL ECV DISCIPLIA: TGT41006 FUDAMETOS DE ESTATÍSTICA 3ª AULA: ESTATÍSTICA DESCRITIVA Meddas umércas

Leia mais

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística

ESTATÍSTICA MULTIVARIADA 2º SEMESTRE 2010 / 11. EXERCÍCIOS PRÁTICOS - CADERNO 1 Revisões de Estatística ESTATÍSTICA MULTIVARIADA º SEMESTRE 010 / 11 EXERCÍCIOS PRÁTICOS - CADERNO 1 Revsões de Estatístca -0-11 1.1 1.1. (Varáves aleatóras: função de densdade e de dstrbução; Méda e Varânca enquanto expectatvas

Leia mais

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1

FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 FICHA de AVALIAÇÃO de MATEMÁTICA A 10.º Ano Versão 1 Nome Nº Turma: Data: / / Professor 10.º Ano Classfcação Apresente o seu racocíno de forma clara, ndcando todos os cálculos que tver de efetuar e todas

Leia mais

Probabilidade e Estatística. Correlação e Regressão Linear

Probabilidade e Estatística. Correlação e Regressão Linear Probabldade e Estatístca Correlação e Regressão Lnear Correlação Este uma correlação entre duas varáves quando uma delas está, de alguma forma, relaconada com a outra. Gráfco ou Dagrama de Dspersão é o

Leia mais

FAAP APRESENTAÇÃO (1)

FAAP APRESENTAÇÃO (1) ARESENTAÇÃO A Estatístca é uma cênca que organza, resume e smplfca nformações, além de analsá-las e nterpretá-las. odemos dvdr a Estatístca em três grandes campos:. Estatístca Descrtva- organza, resume,

Leia mais

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna

Apostila de Estatística Curso de Matemática. Volume II 2008. Probabilidades, Distribuição Binomial, Distribuição Normal. Prof. Dr. Celso Eduardo Tuna Apostla de Estatístca Curso de Matemátca Volume II 008 Probabldades, Dstrbução Bnomal, Dstrbução Normal. Prof. Dr. Celso Eduardo Tuna 1 Capítulo 8 - Probabldade 8.1 Conceto Intutvamente pode-se defnr probabldade

Leia mais

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira

Estatística Experimental Medicina Veterinária. Faculadade de Ciências Agrárias e Veterinárias. Campus de Jaboticabal SP. Gener Tadeu Pereira MATERIAL DIDÁTICO Medcna Veternára Faculadade de Cêncas Agráras e Veternáras Campus de Jabotcabal SP Gener Tadeu Perera º SEMESTRE DE 04 ÍNDICE INTRODUÇÃO AO R AULA ESTATÍSTICA DESCRITIVA 3 º EXERCÍCIO

Leia mais

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF)

CAPÍTULO VI Introdução ao Método de Elementos Finitos (MEF) PMR 40 - Mecânca Computaconal CAPÍTULO VI Introdução ao Método de Elementos Fntos (MEF). Formulação Teórca - MEF em uma dmensão Consderemos a equação abao que representa a dstrbução de temperatura na barra

Leia mais

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma:

x Ex: A tabela abaixo refere-se às notas finais de três turmas de estudantes. Calcular a média de cada turma: Professora Janete Perera Amador 1 8 Meddas Descrtvas Vmos anterormente que um conjunto de dados pode ser resumdo através de uma dstrbução de freqüêncas, e que esta pode ser representada através de uma

Leia mais

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001

Sistemas de Filas: Aula 5. Amedeo R. Odoni 22 de outubro de 2001 Sstemas de Flas: Aula 5 Amedeo R. Odon 22 de outubro de 2001 Teste 1: 29 de outubro Com consulta, 85 mnutos (níco 10:30) Tópcos abordados: capítulo 4, tens 4.1 a 4.7; tem 4.9 (uma olhada rápda no tem 4.9.4)

Leia mais

www.obconcursos.com.br/portal/v1/carreirafiscal

www.obconcursos.com.br/portal/v1/carreirafiscal www.obconcursos.com.br/portal/v1/carrerafscal Moda Exercíco: Determne o valor modal em cada um dos conjuntos de dados a segur: X: { 3, 4,, 8, 8, 8, 9, 10, 11, 1, 13 } Mo 8 Y: { 10, 11, 11, 13, 13, 13,

Leia mais

CORRELAÇÃO E REGRESSÃO

CORRELAÇÃO E REGRESSÃO CORRELAÇÃO E REGRESSÃO Constata-se, freqüentemente, a estênca de uma relação entre duas (ou mas) varáves. Se tal relação é de natureza quanttatva, a correlação é o nstrumento adequado para descobrr e medr

Leia mais

Controle Estatístico de Qualidade. Capítulo 8 (montgomery)

Controle Estatístico de Qualidade. Capítulo 8 (montgomery) Controle Estatístco de Qualdade Capítulo 8 (montgomery) Gráfco CUSUM e da Méda Móvel Exponencalmente Ponderada Introdução Cartas de Controle Shewhart Usa apenas a nformação contda no últmo ponto plotado

Leia mais

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado

Variabilidade Espacial do Teor de Água de um Argissolo sob Plantio Convencional de Feijão Irrigado Varabldade Espacal do Teor de Água de um Argssolo sob Planto Convenconal de Fejão Irrgado Elder Sânzo Aguar Cerquera 1 Nerlson Terra Santos 2 Cásso Pnho dos Res 3 1 Introdução O uso da água na rrgação

Leia mais

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG

CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnilesteMG 1 CENTRO UNIVERSITÁRIO DO LESTE DE MINAS GERAIS - UnlesteMG Dscplna: Introdução à Intelgênca Artfcal Professor: Luz Carlos Fgueredo GUIA DE LABORATÓRIO LF. 01 Assunto: Lógca Fuzzy Objetvo: Apresentar o

Leia mais

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores.

AULA 4. Segundo Quartil ( Q observações são menores que ele e 50% são maiores. Estatístca Aplcada à Engenhara AULA 4 UNAMA - Unversdade da Amazôna.8 MEDIDA EPARATRIZE ão valores que separam o rol (os dados ordenados) em quatro (quarts), dez (decs) ou em cem (percents) partes guas.

Leia mais

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05

LQA - LEFQ - EQ -Química Analítica Complemantos Teóricos 04-05 LQA - LEFQ - EQ -Químca Analítca Complemantos Teórcos 04-05 CONCEITO DE ERRO ALGARISMOS SIGNIFICATIVOS Embora uma análse detalhada do erro em Químca Analítca esteja fora do âmbto desta cadera, sendo abordada

Leia mais

Elaboração: Fevereiro/2008

Elaboração: Fevereiro/2008 Elaboração: Feverero/2008 Últma atualzação: 19/02/2008 E ste Caderno de Fórmulas tem por objetvo esclarecer aos usuáros a metodologa de cálculo e os crtéros de precsão utlzados na atualzação das Letras

Leia mais

4.1. Medidas de Posição da amostra: média, mediana e moda

4.1. Medidas de Posição da amostra: média, mediana e moda 4. Meddas descrtva para dados quanttatvos 4.1. Meddas de Posção da amostra: méda, medana e moda Consdere uma amostra com n observações: x 1, x,..., x n. a) Méda: (ou méda artmétca) é representada por x

Leia mais

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade

CAPÍTULO 4 - Variáveis aleatórias e distribuições de probabilidade CAPÍTULO 4 - Varáves aleatóras e dstrbuções de probabldade Conceto de varável aleatóra Uma função cujo valor é um número real determnado por cada elemento em um espaço amostral é chamado uma varável aleatóra

Leia mais

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como:

REGRESSÃO LOGÍSTICA. Seja Y uma variável aleatória dummy definida como: REGRESSÃO LOGÍSTCA. ntrodução Defnmos varáves categórcas como aquelas varáves que podem ser mensurados usando apenas um número lmtado de valores ou categoras. Esta defnção dstngue varáves categórcas de

Leia mais

Apostila De Estatística

Apostila De Estatística Apostla De Estatístca Professores: Wanderley Akra Shgut Valéra da S. C. Shgut Brasíla 006 INTRODUÇÃO 1.1. PANORAMA HISTÓRICO Toda Cênca tem suas raízes na hstóra do homem; A Matemátca que é consderada

Leia mais

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma

Redução dos Dados. Júlio Osório. Medidas Características da Distribuição. Tendência Central (Localização) Variação (Dispersão) Forma Redução dos Dados Júlo Osóro Meddas Característcas da Dstrbução Tendênca Central (Localzação) Varação (Dspersão) Forma 1 Meddas Característcas da Dstrbução Meddas Estatístcas Tendênca Central Dspersão

Leia mais

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha)

X = 1, se ocorre : VB ou BV (vermelha e branca ou branca e vermelha) Estatístca p/ Admnstração II - Profª Ana Cláuda Melo Undade : Probabldade Aula: 3 Varável Aleatóra. Varáves Aleatóras Ao descrever um espaço amostral de um expermento, não especfcamos que um resultado

Leia mais

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem.

1 a Lei de Kirchhoff ou Lei dos Nós: Num nó, a soma das intensidades de correntes que chegam é igual à soma das intensidades de correntes que saem. Les de Krchhoff Até aqu você aprendeu técncas para resolver crcutos não muto complexos. Bascamente todos os métodos foram baseados na 1 a Le de Ohm. Agora você va aprender as Les de Krchhoff. As Les de

Leia mais

III. Consequências de um novo padrão de inserção das mulheres no mercado de trabalho sobre o bem-estar na região metropolitana de São Paulo

III. Consequências de um novo padrão de inserção das mulheres no mercado de trabalho sobre o bem-estar na região metropolitana de São Paulo CEPAL - SERIE Polítcas socales N 60 III. Consequêncas de um novo padrão de nserção das mulheres no mercado de trabalho sobre o bem-estar na regão metropoltana de São Paulo A. Introdução Rcardo Paes de

Leia mais

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S

Universidade Federal da Bahia Instituto de Física Departamento de Física da Terra e do Meio Ambiente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Unversdade Federal da Baha Insttuto de Físca Departamento de Físca da Terra e do Meo Ambente TEXTOS DE LABORATÓRIO T E O R I A D E E R R O S Físca I SALVADOR, BAHIA 013 1 Prefáco Esta apostla é destnada

Leia mais

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos

Despacho Econômico de. Sistemas Termoelétricos e. Hidrotérmicos Despacho Econômco de Sstemas Termoelétrcos e Hdrotérmcos Apresentação Introdução Despacho econômco de sstemas termoelétrcos Despacho econômco de sstemas hdrotérmcos Despacho do sstema braslero Conclusões

Leia mais

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia

UNIVERSIDADE PRESBITERIANA MACKENZIE CCSA - Centro de Ciências Sociais e Aplicadas Curso de Economia CCSA - Centro de Cêncas Socas e Aplcadas Curso de Economa ECONOMIA REGIONAL E URBANA Prof. ladmr Fernandes Macel LISTA DE ESTUDO. Explque a lógca da teora da base econômca. A déa que sustenta a teora da

Leia mais

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar?

Sistemas Robóticos. Sumário. Introdução. Introdução. Navegação. Introdução Onde estou? Para onde vou? Como vou lá chegar? Sumáro Sstemas Robótcos Navegação Introdução Onde estou? Para onde vou? Como vou lá chegar? Carlos Carreto Curso de Engenhara Informátca Ano lectvo 2003/2004 Escola Superor de Tecnologa e Gestão da Guarda

Leia mais

Cálculo do Conceito ENADE

Cálculo do Conceito ENADE Insttuto aconal de Estudos e Pesqusas Educaconas Aníso Texera IEP Mnstéro da Educação ME álculo do onceto EADE Para descrever o cálculo do onceto Enade, prmeramente é mportante defnr a undade de observação

Leia mais

Escolha do Consumidor sob condições de Risco e de Incerteza

Escolha do Consumidor sob condições de Risco e de Incerteza 9/04/06 Escolha do Consumdor sob condções de Rsco e de Incerteza (Capítulo 7 Snyder/Ncholson e Capítulo Varan) Turma do Prof. Déco Kadota Dstnção entre Rsco e Incerteza Na lteratura econômca, a prmera

Leia mais

Nota Técnica Médias do ENEM 2009 por Escola

Nota Técnica Médias do ENEM 2009 por Escola Nota Técnca Médas do ENEM 2009 por Escola Crado em 1998, o Exame Naconal do Ensno Médo (ENEM) tem o objetvo de avalar o desempenho do estudante ao fm da escolardade básca. O Exame destna-se aos alunos

Leia mais

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas

Universidade Salvador UNIFACS Cursos de Engenharia Cálculo IV Profa: Ilka Rebouças Freire. Integrais Múltiplas Unversdade Salvador UNIFACS Cursos de Engenhara Cálculo IV Profa: Ilka ebouças Frere Integras Múltplas Texto 3: A Integral Dupla em Coordenadas Polares Coordenadas Polares Introduzremos agora um novo sstema

Leia mais

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência.

Os modelos de regressão paramétricos vistos anteriormente exigem que se suponha uma distribuição estatística para o tempo de sobrevivência. MODELO DE REGRESSÃO DE COX Os modelos de regressão paramétrcos vstos anterormente exgem que se suponha uma dstrbução estatístca para o tempo de sobrevvênca. Contudo esta suposção, caso não sea adequada,

Leia mais

CAPÍTULO 2 - Estatística Descritiva

CAPÍTULO 2 - Estatística Descritiva INF 16 Prof. Luz Alexandre Peternell CAPÍTULO - Estatístca Descrtva Exercícos Propostos 1) Consderando os dados amostras abaxo, calcular: méda artmétca, varânca, desvo padrão, erro padrão da méda e coefcente

Leia mais

Análise do Retorno da Educação na Região Norte em 2007: Um Estudo à Luz da Regressão Quantílica.

Análise do Retorno da Educação na Região Norte em 2007: Um Estudo à Luz da Regressão Quantílica. Análse do Retorno da Edcação na Regão Norte em 2007: Um Estdo à Lz da Regressão Qantílca. 1 Introdcão Almr Rogéro A. de Soza 1 Jâno Macel da Slva 2 Marnalva Cardoso Macel 3 O debate sobre o relaconamento

Leia mais

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção

Influência dos Procedimentos de Ensaios e Tratamento de Dados em Análise Probabilística de Estrutura de Contenção Influênca dos Procedmentos de Ensaos e Tratamento de Dados em Análse Probablístca de Estrutura de Contenção Mara Fatma Mranda UENF, Campos dos Goytacazes, RJ, Brasl. Paulo César de Almeda Maa UENF, Campos

Leia mais

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL; 2.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL. A FUNÇÃO DE PRODUÇÃO E SUPERMERCADOS NO BRASIL ALEX AIRES CUNHA (1) ; CLEYZER ADRIAN CUNHA (). 1.UNIVERSIDADE FEDERAL DE VIÇOSA, VIÇOSA, MG, BRASIL;.UNIVERSIDADE FEDERAL DE GOIÁS, GOIANIA, GO, BRASIL.

Leia mais

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO AO CÁLCULO DE ERROS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO AO CÁLCULO DE ERROS AS MEDIDAS DE GRADEAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...3

Leia mais

Elaboração: Novembro/2005

Elaboração: Novembro/2005 Elaboração: Novembro/2005 Últma atualzação: 18/07/2011 Apresentação E ste Caderno de Fórmulas tem por objetvo nformar aos usuáros a metodologa e os crtéros de precsão dos cálculos referentes às Cédulas

Leia mais

7. Resolução Numérica de Equações Diferenciais Ordinárias

7. Resolução Numérica de Equações Diferenciais Ordinárias 7. Resolução Numérca de Equações Dferencas Ordnáras Fenômenos físcos em dversas áreas, tas como: mecânca dos fludos, fluo de calor, vbrações, crcutos elétrcos, reações químcas, dentre váras outras, podem

Leia mais

METROLOGIA E ENSAIOS

METROLOGIA E ENSAIOS METROLOGIA E ENSAIOS Incerteza de Medção Prof. Aleandre Pedott pedott@producao.ufrgs.br Freqüênca de ocorrênca Incerteza da Medção Dstrbução de freqüênca das meddas Erro Sstemátco (Tendênca) Erro de Repettvdade

Leia mais

ESPELHOS E LENTES ESPELHOS PLANOS

ESPELHOS E LENTES ESPELHOS PLANOS ESPELHOS E LENTES 1 Embora para os povos prmtvos os espelhos tvessem propredades mágcas, orgem de lendas e crendces que estão presentes até hoje, para a físca são apenas superfíces poldas que produzem

Leia mais

Análise Econômica da Aplicação de Motores de Alto Rendimento

Análise Econômica da Aplicação de Motores de Alto Rendimento Análse Econômca da Aplcação de Motores de Alto Rendmento 1. Introdução Nesta apostla são abordados os prncpas aspectos relaconados com a análse econômca da aplcação de motores de alto rendmento. Incalmente

Leia mais

Covariância e Correlação Linear

Covariância e Correlação Linear TLF 00/ Cap. X Covarânca e correlação lnear Capítulo X Covarânca e Correlação Lnear 0.. Valor médo da grandeza (,) 0 0.. Covarânca na propagação de erros 03 0.3. Coecente de correlação lnear 05 Departamento

Leia mais

UMA AVALIAÇÃO DOS RESULTADOS DOS PROGRAMAS DE COMBATE AO ANALFABETISMO NO BRASIL

UMA AVALIAÇÃO DOS RESULTADOS DOS PROGRAMAS DE COMBATE AO ANALFABETISMO NO BRASIL UMA AVALIAÇÃO DOS RESULTADOS DOS PROGRAMAS DE COMBATE AO ANALFABETISMO NO BRASIL Área 11 - Economa Socal e Demografa Econômca Classfcação JEL: I28, H52, C35. André Olvera Ferrera Lourero Insttuto de Pesqusa

Leia mais

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel

Estimativa da Incerteza de Medição da Viscosidade Cinemática pelo Método Manual em Biodiesel Estmatva da Incerteza de Medção da Vscosdade Cnemátca pelo Método Manual em Bodesel Roberta Quntno Frnhan Chmn 1, Gesamanda Pedrn Brandão 2, Eustáquo Vncus Rbero de Castro 3 1 LabPetro-DQUI-UFES, Vtóra-ES,

Leia mais

Hoje não tem vitamina, o liquidificador quebrou!

Hoje não tem vitamina, o liquidificador quebrou! A U A UL LA Hoje não tem vtamna, o lqudfcador quebrou! Essa fo a notíca dramátca dada por Crstana no café da manhã, lgeramente amenzada pela promessa de uma breve solução. - Seu pa dsse que arruma à note!

Leia mais

Fast Multiresolution Image Querying

Fast Multiresolution Image Querying Fast Multresoluton Image Queryng Baseado no artgo proposto por: Charles E. Jacobs Adan Fnkelsten Davd H. Salesn Propõe um método para busca em um banco de dados de magem utlzando uma magem de consulta

Leia mais

1. Conceitos básicos de estatística descritiva. A ciência descobre relações de causa efeito entre fenómenos. Há fenómenos que são muito complexos

1. Conceitos básicos de estatística descritiva. A ciência descobre relações de causa efeito entre fenómenos. Há fenómenos que são muito complexos 2 Matemátca Fnancera e Instrumentos de Gestão Sumáro 1. Concetos báscos de estatístca descrtva 1.1. 2ª Aula 1.2. 1.2.1. Frequênca relatva 1.2.2. Frequênca relatva acumulada 3 4 A cênca descobre relações

Leia mais

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é:

UTILIZAÇÃO DO MÉTODO DE TAGUCHI NA REDUÇÃO DOS CUSTOS DE PROJETOS. Uma equação simplificada para se determinar o lucro de uma empresa é: UTILIZAÇÃO DO MÉTODO DE TAGUCHI A REDUÇÃO DOS CUSTOS DE PROJETOS Ademr José Petenate Departamento de Estatístca - Mestrado em Qualdade Unversdade Estadual de Campnas Brasl 1. Introdução Qualdade é hoje

Leia mais

3.1. Conceitos de força e massa

3.1. Conceitos de força e massa CAPÍTULO 3 Les de Newton 3.1. Concetos de força e massa Uma força representa a acção de um corpo sobre outro,.e. a nteracção físca entre dos corpos. Como grandeza vectoral que é, só fca caracterzada pelo

Leia mais

EST 220 ESTATÍSTICA EXPERIMENTAL

EST 220 ESTATÍSTICA EXPERIMENTAL UNIVERSIDADE FEDERAL DE VIÇOSA CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS DEPARTAMENTO DE ESTATÍSTICA EST 0 ESTATÍSTICA EXPERIMENTAL Vçosa Mnas Geras 00 / II UNIVERSIDADE FEDERAL DE VIÇOSA Departamento de

Leia mais

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel

MOQ-14 PROJETO e ANÁLISE de EXPERIMENTOS. Professor: Rodrigo A. Scarpel MOQ-14 PROJETO e ANÁLISE de EPERIMENTOS Professor: Rodrgo A. Scarpel rodrgo@ta.br www.mec.ta.br/~rodrgo Prncípos de cração de modelos empírcos: Modelos (matemátcos, lógcos, ) são comumente utlzados na

Leia mais

FACULDADE DE TECNOLOGIA TUPY CURITIBA

FACULDADE DE TECNOLOGIA TUPY CURITIBA FACULDADE DE TECNOLOGIA TUPY CURITIBA MÉTODOS QUANTITATIVOS ESTATÍSTICA APLICADA VAGNER J. NECKEL 2010 Rev. 00 SUMÁRIO 1. CONCEITOS GERAIS...3 1.1 PANORAMA HISTÓRICO...3 1.2 DEFINIÇÃO...3 1.3 A ESTATÍSTICA

Leia mais

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado

7.4 Precificação dos Serviços de Transmissão em Ambiente Desregulamentado 64 Capítulo 7: Introdução ao Estudo de Mercados de Energa Elétrca 7.4 Precfcação dos Servços de Transmssão em Ambente Desregulamentado A re-estruturação da ndústra de energa elétrca que ocorreu nos últmos

Leia mais

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES

CURSO ON-LINE PROFESSOR: VÍTOR MENEZES O Danel Slvera pedu para eu resolver mas questões do concurso da CEF. Vou usar como base a numeração do caderno foxtrot Vamos lá: 9) Se, ao descontar uma promssóra com valor de face de R$ 5.000,00, seu

Leia mais

Algarismos Significativos Propagação de Erros ou Desvios

Algarismos Significativos Propagação de Erros ou Desvios Algarsmos Sgnfcatvos Propagação de Erros ou Desvos L1 = 1,35 cm; L = 1,3 cm; L3 = 1,30 cm L4 = 1,4 cm; L5 = 1,7 cm. Qual destas meddas está correta? Qual apresenta algarsmos com sgnfcado? O nstrumento

Leia mais

CQ110 : Princípios de FQ

CQ110 : Princípios de FQ CQ110 : Prncípos de FQ CQ 110 Prncípos de Físco Químca Curso: Farmáca Prof. Dr. Marco Vdott mvdott@ufpr.br Potencal químco, m potencal químco CQ110 : Prncípos de FQ Propredades termodnâmcas das soluções

Leia mais

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma

Figura 8.1: Distribuição uniforme de pontos em uma malha uni-dimensional. A notação empregada neste capítulo para avaliação da derivada de uma Capítulo 8 Dferencação Numérca Quase todos os métodos numércos utlzados atualmente para obtenção de soluções de equações erencas ordnáras e parcas utlzam algum tpo de aproxmação para as dervadas contínuas

Leia mais

Metodologia IHFA - Índice de Hedge Funds ANBIMA

Metodologia IHFA - Índice de Hedge Funds ANBIMA Metodologa IHFA - Índce de Hedge Funds ANBIMA Versão Abrl 2011 Metodologa IHFA Índce de Hedge Funds ANBIMA 1. O Que é o IHFA Índce de Hedge Funds ANBIMA? O IHFA é um índce representatvo da ndústra de hedge

Leia mais

Camila Spinassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS

Camila Spinassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS Camla Spnassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS Vtóra Agosto de 2013 Camla Spnassé INTRODUÇÃO À MATEMÁTICA FINANCEIRA PARA ALUNOS NA EDUCAÇÃO DE JOVENS E ADULTOS

Leia mais

2 ANÁLISE ESPACIAL DE EVENTOS

2 ANÁLISE ESPACIAL DE EVENTOS ANÁLISE ESPACIAL DE EVENTOS Glberto Câmara Marla Sá Carvalho.1 INTRODUÇÃO Neste capítulo serão estudados os fenômenos expressos através de ocorrêncas dentfcadas como pontos localzados no espaço, denomnados

Leia mais

Estatística I Licenciatura MAEG 2006/07

Estatística I Licenciatura MAEG 2006/07 Estatístca I Lcencatura MAEG 006/07 AMOSTRAGEM. DISTRIBUIÇÕES POR AMOSTRAGEM.. Em determnada unversdade verfca-se que 30% dos alunos têm carro. Seleccona-se uma amostra casual smples de 0 alunos. a) Qual

Leia mais

INTRODUÇÃO À ANÁLISE DE DADOS NAS MEDIDAS DE GRANDEZAS FÍSICAS

INTRODUÇÃO À ANÁLISE DE DADOS NAS MEDIDAS DE GRANDEZAS FÍSICAS Físca Laboratoral Ano Lectvo 003/04 ITRODUÇÃO À AÁLISE DE DADOS AS MEDIDAS DE GRADEZAS FÍSICAS. Introdução.... Erros de observação: erros sstemátcos e erros fortutos ou acdentas... 3. Precsão e rgor...4

Leia mais

CURRICULUM VITAE - RESUMIDO

CURRICULUM VITAE - RESUMIDO A estatístca tem uma partculardade: pesqusamos para dzer algo sgnfcatvo sobre o unverso que elegemos, porém a pesqusa só será sgnfcatva se conhecermos sufcentemente o unverso para escolhermos adequadamente

Leia mais

1. CORRELAÇÃO E REGRESSÃO LINEAR

1. CORRELAÇÃO E REGRESSÃO LINEAR 1 CORRELAÇÃO E REGREÃO LINEAR Quando deseja-se estudar se exste relação entre duas varáves quanttatvas, pode-se utlzar a ferramenta estatístca da Correlação Lnear mples de Pearson Quando essa correlação

Leia mais

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR

UNIVERSIDADE DO ESTADO DA BAHIA - UNEB DEPARTAMENTO DE CIÊNCIAS EXATAS E DA TERRA COLEGIADO DO CURSO DE DESENHO INDUSTRIAL CAMPUS I - SALVADOR Matéra / Dscplna: Introdução à Informátca Sstema de Numeração Defnção Um sstema de numeração pode ser defndo como o conjunto dos dígtos utlzados para representar quantdades e as regras que defnem a forma

Leia mais

Representação e Descrição de Regiões

Representação e Descrição de Regiões Depos de uma magem ter sdo segmentada em regões é necessáro representar e descrever cada regão para posteror processamento A escolha da representação de uma regão envolve a escolha dos elementos que são

Leia mais