Cálculo dos Esforços Solicitantes em Embarcações Utilizando Planilha Eletrônica

Tamanho: px
Começar a partir da página:

Download "Cálculo dos Esforços Solicitantes em Embarcações Utilizando Planilha Eletrônica"

Transcrição

1 Cálculo dos Esforços Solicianes em Embarcações Uiliando Planilha Elerônica Oscar Brio Auguso Resumo No rabalho apresena-se uma meodologia simples e práica para a obenção dos esforços solicianes primários em esruuras de fluuanes. O corpo fluuane é considerado como sendo uma viga, com peso equilibrado pelas forças de fluuação na presença de ondas, podendo a disribuição de pesos não ser simérica em relação ao plano longiudinal do corpo, ocasionando, na condição de equilíbrio, banda e, evenualmene, rim. Para a sisemaiação, o manuseio, a visualiação dos dados e dos gráficos, o cálculo do equilíbrio na onda e as demais operações necessárias, opou-se pelo uso de uma planilha elerônica, o que orna o rabalho exeqüível apenas com o uso de um compuador pessoal. Adicionalmene, apresena-se uma meodologia para o cálculo do volume imerso do casco que pode ser facilmene esendida para o cálculo de curvas hidrosáicas e de esabilidade de corpos fluuanes. Absrac In he work, a simple and pracical mehodolog is presened for he aainmen of primar bending forces in ship srucures. The floaing bod is considered as being a beam wih weigh balanced b he buoanc in waves. The disribuion of weighs ma be unsmmerical relaive o he bod s longiudinal plan, heeling and evenuall rimming he hull o he balance condiion. For daa ssemaiaion, daa inpu, daa visualiaion, daa plo, balance calculaion of he floaing bod and oher necessar operaions, i was used an Excel spread shee, which is accessible for an engineer wih a personal compuer. Addiionall, a mehodolog for hull submerged volume calculaion is presened and i can easil be exended for hdrosaic and sabili curves of floaing bodies compuaion. Prof. Associado do Deparameno de Engenharia Naval e Oceânica da Escola Poliécnica da Universidade de São Paulo

2 Nomenclaura A área α ângulo de rim A b área submersa da balia γ peso específico da água b(x força de fluuação γ peso específico da carga no anque B boca θ ângulo de banda BB bombordo φ ângulo de fase da onda BE borese (ξ, ψ, ζ sisema referencial de coordenadas CA cenro de área µ faor de comprimeno de onda CG cenro de gravidade deslocameno da embarcação D ponal leve peso do navio leve dw c peso da carga volume de carena f(x força líquida resulane: b(x-q(x volume de anque/porão/comparimeno H w Alura da onda h calado médio h b (x calado médio na posição da balia h(x calado h bb, h be calado em BB e BE na balia K B alura do cenro de fluuação L comprimeno da embarcação LCB posição longiudinal do cenro de carena LCG posição longiudinal do cenro de pesos M momeno fleor verical da VN Me, Me momeno de área relaiva aos eixos P emb peso da embarcação q(x peso disribuído ao longo do eixo x Q j peso concenrado V força corane verical da VN VN viga navio (x,, sisema de coordenadas da embarcação (x,, coords. do volume de carena (x, leve coords. do CG do navio leve (x,, coords. do cenro de (x,, G coords. do CG do navio carregado CA, CA coords. do cenro de área da balia alura do eixo neuro da seção ransversal LN

3 Inrodução O cálculo de esforços solicianes, momeno fleor e força corane, em um navio em ondas é uma das imporanes eapas ou do projeo ou da análise da esruura de embarcações. Para esse propósio a embarcação é considerada como sendo um corpo rígido, com disribuição de pesos equilibrada pela disribuição de empuxo ao longo do eixo longiudinal do casco, gerando-se assim a curva de cargas da viga navio em equilíbrio livre. A maior parcela do esforço do projeisa nese procedimeno esá no cálculo da posição de equilíbrio da embarcação, posição esa que depende da geomeria do volume imerso do casco. Esse cálculo é geralmene feio com o auxílio de aplicaivos compuacionais específicos para esruuras navais que, por suas naureas, são, geralmene, acessíveis a poucos. No rabalho, apresena-se uma alernaiva simples, rápida e econômica para se resolver esse problema, alernaiva que fa uso somene de uma planilha elerônica, dessas comumene enconradas em aplicaivos para auomação de escriórios. Para o cálculo dos esforços, o casco, discreiado, é descrio pela abela de coas de suas balias e os pesos podem ser disribuídos ou concenrados ao longo do eixo da viga navio. Por simplicidade, adoou-se, para a fluuação, onda com perfil senoidal, o que não é resrição, pois ese pode ser facilmene subsiuído por ouro perfil, como o rocoidal, ou de um modo mais geral, um diferencial de alura relaivamene ao calado médio parameriado balia a balia. Com a abela de coas da balia e a alura da linha da superfície, uilia-se a regra de inegração rapeoidal para o cálculo da área imersa da balia e, após o cômpuo da área de odas as balias, perfa-se a inegração das áreas ao longo do eixo, obendo-se o volume imerso e a posição do seu cenro. O problema maemáico a ser resolvido passa a ser: qual calado médio, ângulo de banda e ângulo de rim deve er a embarcação de sore a coincidirem-se a resulane das forças peso com a resulane das forças de empuxo bem como as coordenadas longiudinal e ransversal do cenro de volume imerso e do cenro de gravidade da embarcação. Uiliando-se as funções implícias para o cálculo de exremos de funções disponíveis nas planilhas elerônicas, os resulados são rapidamene enconrados e os diagramas de esforços solicianes auomaicamene desenhados. Sisema de referência Suponha que a embarcação esá referenciada por um sisema orogonal de coordenadas, onde o eixo x é paralelo à linha de base, parindo da exremidade da popa, com senido para a proa. O eixo, aponando para bombordo, BB, e o eixo, compleando o sisema posiivamene orienado, conforme se ilusra na figura.

4 Figura. Sisemas de referência. Para o cálculo de esforços solicianes, adoa-se, usualmene, mar unidirecional, com direção de propagação paralela ao plano longiudinal da embarcação. Nesas condições, suponha a exisência de um sisema de coordenadas (ξ, ψ, ζ fixo à superfície média da água, paralelo ao sisema (x,, esando a embarcação sem rim nem banda, e com o eixo da direção da onda, ξ, paralelo ao eixo x. Para uma onda senoidal com ampliude H w, a elevação da superfície pode ser definida como. ξ η ( ξ = H w sen(π + φ ( µ L sendo µ R, um faor de escala para o comprimeno da onda relaivamene ao comprimeno da embarcação e φ R um ângulo de fase. Quando µ = e φ = π, em-se a onda de osameno e para µ = e φ = π em-se a onda de alquebrameno. Sem inroduir erro significaivo, pode-se admiir, para moderados ângulos de rim, que o calado, devido à perurbação da onda ao longo do comprimeno da embarcação, seja definido por: ( ( φ π x h x = h + H sen µ L + w ( Propriedades de Áreas Uma das roinas fundamenais para a obenção do volume imerso do casco é a de cálculo da área imersa da balia. Ese cálculo é elaborado levando-se em cona que a balia será discreiada, formando um polígono fechado que compreende a linha da balia propriamene dia e a linha correspondene à alura do calado na balia em quesão.

5 Observando-se a figura a, pode-se facilmene deduir que a área do polígono fechado, descrio por n p ponos, seguidos no senido horário, omando-se aleaoriamene um pono de parida, pode ser dada por: np A = ( n+ n ( n+ + n + ( p ( + p ( n= Para dois ponos consecuivos, diga-se n e n+, o ermo ( n+ n ( n+ + n corresponde à área do rapéio formado pela aresa n, n+, as semi-reas que ligam vericalmene esses ponos ao eixo e a semi-rea, no eixo, correspondene à disância ( n+ n. A guisa de exemplo, com os ponos e, conforme se vê na figura b, forma-se o rapéio, P, P e os ponos e no eixo dos. Seguindo os ponos a parir de e indo aé 7 pela pare superior do polígono, o compuo das áreas dos rapéios é posiivo. Por ouro lado, parindo-se de 7 e reornando a, pela pare inferior do polígono, o compuo das áreas é negaivo. Caminhando sobre o circuio fechado, parindo-se de um pono e reornando-se ao próprio, obém-se a área conida no polígono Figura a Área de um polígono fechado Figura b Trapéios com área posiiva ( > 0 e negaiva ( < 0

6 Com base no rapéio, figura b, pode-se facilmene deduir o momeno esáico de área do polígono, em relação ao eixo, como sendo: Me np = = n ( n+ n ( n+ + nn+ + n + ( p ( + p + p ( De forma análoga, o momeno esáico de área em relação ao eixo é dado por: Me np ( n n = = n+ ( n+ + n n+ + n + ( p ( + p + p ( Finalmene, as coordenadas do cenro de área do polígono são obidas por meio da equação (, Me Me ( = CA, CA, ( A A Cálculo do volume imerso do casco Suponha haver uma embarcação em equilíbrio esáico, com rim e banda, e que se ome uma balia qualquer, na posição x b, diga-se balia b. No plano da balia, a linha de calado será inclinada, conforme se mosra na figura a. Sendo a balia descria por ponos, pode-se definir o polígono que represena a área imersa da balia, conforme se mosra na figura b. Aplicando-se as equações de ( à (, obém-se a área imersa A b e as coordenadas do cenro da área imersa ( CA, CA b no plano. θ ζ h be h bb ψ Figura a Elevação da superfície da água na posição de uma balia para a embarcação com ângulo de banda

7 h be CA h bb 7 8 Figura b Represenação discreiada, em 8 ponos, da área imersa da balia, com o cenro da área deslocado para BE, devido ao ângulo de banda. Efeuando os cálculos para odas as balias da embarcação, obém-se, pela regra rapeoidal de inegração, o volume imerso do casco: = n B b= ( A b+ + Ab ( xb+ xb (7 A posição longiudinal do cenro do volume imerso do casco é obida por: nb x = ( Ab + xb+ + Ab xb ( xb+ xb (8 b= Analogamene, obém-se as demais coordenadas do cenro de fluuação: nb = ( Ab + CA b+ + Ab CA b ( xb+ xb (9 b= = nb ( Ab + CA b+ + Ab CA b ( xb+ b= x b (0 A disribuição dos pesos Para fins de cálculo de esforços solicianes, podem-se reunir os componenes de peso da embarcação em dois grandes grupos: um composo pelo peso do navio leve, leve, compreendendo odos os pesos da embarcação exceo os da carga e dos iens operacionais, 7

8 respecivamene, peso da carga, dw c e peso operacional dw op. Sem perda de generalidade, não se fará disinção enre dw c e dw op, raando-se ambos de cargas. Pelo principio de Arquimedes, o peso de um corpo fluuando é igual ao peso da água por ele deslocada: Pemb = leve + dw = = γ ( sendo γ o peso específico da água. Opou-se por modelar a disribuição do peso do navio leve com:. pesos linearmene disribuídos para n q regiões disinas da embarcação, com valor (q r i, na posição a ré, com coordenada (x qr i, valor (q v i, com coordenada (x qv i à vane e alura do cenro de pesos, ( q i ; e,. n Q pesos concenrados Q j, auando na posição longiudinal x Qj com respecivas aluras de seus cenros de gravidade, Qj. Peso do navio leve Chamando de leve o peso do navio leve e (xleve, leve, leve, as coordenadas do cenro de gravidade desse peso; definem-se leve = n i= + q x + q n Q ( q v r ( x i qv qr i j= Q j ( É raoável admiir que a disribuição de pesos do navio leve seja simérica em relação ao plano de simeria longiudinal da embarcação, resulando leve = 0. Para as ouras duas coordenadas, calculam-se: x leve leve nq nq = ( qvxqv + qr xqr i ( xqv xqr i + Q j x leve i= j= nq nq = ( qv + qr i ( xqv xqr i ( q i + Q j leve i= j= Qj Qj ( ( Peso da carga Por hipóese, porões, comparimenos e anques serão desinados para o ranspore de cargas, iens operacionais como óleo combusível, lubrificanes ou água doce e de lasro. Porano, seus pesos dependerão do iem ransporado, definido por um peso específico e do volume ocupado. A íulo de simplicidade no raameno da nomenclaura das equações e sem prejuío para o enendimeno, irá se uiliar a nomenclaura anque quer para porão de carga, quer para comparimeno e quer para anque propriamene dio. Para o cálculo do volume de anques, irá se adoar a mesma meodologia uiliada para o cálculo do volume imerso do casco. Cada anque deverá er suas seções inicial e final discreiadas por ponos, conforme se mosra na figura. 8

9 Área A R Área A v x Figura Volume de um anque Tomando-se o anque, seja (A r a área da seção ransversal de ré do anque, calculada pela aplicação da equação. Sejam (x r, r, r as coordenadas do cenro de (A r, calculadas pela aplicação da equação. De modo análogo, sejam (A v e (x v, v, v a área e as coordenadas do cenro de área da seção ransversal de vane do anque. Nesas condições, o volume do anque será dado por: = ( A v + Ar ( xv xr ( e as coordenadas de seu cenro, (x,, x ( A x v v r r = ( ( A v + A r x + A ( A v v + Ar r = ( A + A v v ( A v v + Ar r = ( A + A r r (7 (8 Sendo o anque ocupado por carga com peso específico γ, calcula-se o peso oal do navio com n an anques carregados: 9

10 n an = leve + γ (9 = e o cenro de gravidade do peso (x G, G, G x G nan = levexleve + γ x (0 = G G nan = leve leve + γ = nan = leveleve + γ = ( ( A íulo de ilusração, referenciando-se à nomenclaura usual da arquieura naval, êm-se KG = G e LCG = x G, respecivamene, alura e posição longiudinal do cenro de gravidade da embarcação. Cálculo do equilíbrio em ondas Para o cálculo do volume imerso e das coordenadas do cenro desse volume, uiliando-se as equações de (7 a (0, será necessário definir a alura da onda H w, o calado médio, h, o ângulo de rim, α, e o ângulo de banda, θ. Porém, calado médio, rim e banda dependem da configuração de equilíbrio que a embarcação enconrará em função da disribuição dos pesos em seu inerior. peso calado médio rim α h G x G x empuxo γ Figura a Navio em equilíbrio longiudinal 0

11 banda θ peso h be G G h bb empuxo γ Figura b Navio em equilíbrio ransversal Observando-se a figura, na condição de equilíbrio as quaro condições a seguir devem ser verificadas:. o peso da embarcação deve ser igual ao peso da água deslocada: = γ (. a posição longiudinal do cenro de peso, x G, e do cenro de volume imerso, x, figura a, devem saisfaer a relação: x ( G = x G anα (. a posição ransversal do cenro de peso, G, e do cenro de volume imerso,, figura b, devem saisfaer a relação: ( G = + G anθ ( Definida, pelo projeisa, a alura de onda H w, o problema a ser resolvido passa a ser: quais devem ser os valores de h, α, e θ, para que as equações ( a ( sejam saisfeias. Denre os diversos processos para se resolver esse problema, opou-se por um de oimiação que minimie o erro quadráico médio dos aribuos de equilíbrio, equações ( a (, ou seja, expliciamene, que se minimie a função:

12 f ( α, θ, h = x = ω x G x + ( G L anα + ω G ( G B anθ ( γ + ω ( onde os parâmeros L, B e foram arbirariamene escolhidos para normaliar os ermos da soma do radicando de ( e (ω x, ω, ω são pesos, ambém arbirários porém com valores posiivos, que aceleram preferencialmene a convergência enre os ermos. Sendo f ( α, θ, h não negaiva, seu mínimo possui valor posiivo ou nulo. Assim, se houver * * * uma condição de equilíbrio esáico, exisirá o pono ( α, θ, h que resula em * * * f ( α, θ, h = 0. Além disso, al condição só ocorrerá se os ermos quadráicos do radicando da equação ( forem idenicamene nulos, o que saisfa as equações ( a (. Sem perda de generalidade do processo, pois qualquer biblioeca maemáica que possua recursos para oimiação de funções possa ser uiliada, opou-se pelo uso da planilha elerônica Excel, que além de faciliar a sisemaiação dos dados, como abulação dos ponos das balias e dos porões de carga, permie a confecção dos gráficos e possui uma ferramena de oimiação baseada nos méodos Quase-Newon ou do Gradiene Conjugado, uiliado para resolver a equação (. Cálculo dos esforços solicianes Com a embarcação em equilíbrio, podem-se calcular os esforços solicianes à flexão longiudinal da viga navio. Adoando-se a Teoria Simples de Vigas [], com pequenas deflexões e no regime elásico, a disribuição de momenos fleores ao longo do eixo, M(x, deve saisfaer a relação: d dx M = f ( x (7 onde f(x é a carga ransversal na viga, expressa por uma disribuição longiudinal de forças. Para a embarcação, ela é o valor líquido resulane da superposição da disribuição do peso q(x e da fluuação b(x. Pelo sisema de coordenadas adoado, as forças de fluuação são posiivas e as de peso são negaivas, conforme se define na figura 7. ( (+ Curva de Pesos CGs F - Aguas ranquilas F -Tosameno F - Alquebrameno Figura 7 Curva de disribuição de pesos e de fluuação da viga navio

13 A solução da equação (7 requer duas inegrações. A primeira resula na força corane ransversal verical, V(x, obida pela imposição do equilíbrio em um elemeno diferencial ao longo do comprimeno, considerado como um corpo livre, conforme se ilusra na figura 8: ou V + fdx V dv = 0 (8.a dv f = (9.b dx da qual resula x V ( x = f ( x dx + C (0 0 0 =0 Para embarcações, a consane de inegração é sempre nula, pois inexise força corane nas exremidades da viga navio, podendo a viga navio ser considerada como uma viga com condições de conorno livre-livre. M M + dm V f(xdx V + dv x dx Figura 8 Equilíbrio de um elemeno diferencial de viga O equilíbrio de momenos gera a equação: dx M Vdx fdx ( M + dm = 0 ( O ermo dx, por ser de segunda ordem, é despreado, resulando: V dm = ( dx da qual resula

14 x M ( x = V ( x dx + C ( 0 =0 A convenção de sinais para força corane e para momeno fleor é a mosrada na figura 8. A força corane, num pono qualquer, é posiiva se a inegral, ou a força resulane acumulada devido a peso e fluuação, aé o pono, é posiiva. Ou, de modo alernaivo, com o sisema de referência adoado, pode-se dier que a força corane é posiiva se ela ena girar um elemeno diferencial da viga navio, no senido horário. De modo análogo, o momeno fleor num pono qualquer é posiivo, se a inegral, ou o acumulo da força corane, é negaivo para aquele pono. Ou, de modo alernaivo, admiindose que o eixo neuro da viga navio ocupe localmene a coordenada LN, o momeno fleor é posiivo se ele provocar ração nas fibras com coordenada ( LN posiivas. Para a viga navio iso significa momeno fleor de alquebrameno. Dos modelos à práica. Na presene proposa deermina-se a curva de cargas, a disribuição de forças coranes e a disribuição de momenos fleores, nessa ordem, em cada coordenada de balia, percorrendo-se os seguines passos:. efeua-se a disribuição dos pesos ao longo do eixo x da viga navio.. define-se o perfil da onda (alquebrameno ou osameno e sua alura H w ;. equilibra-se a embarcação na onda;. em cada posição de anepara, x a, adiciona-se a fluuação, como sendo: b ( x a = A a γ ( onde A a é obido por inerpolação enre as áreas das balias a ré e a vane da anepara;. em cada posição de anepara, calcula-se a força corane, implemenando-se a inegral da equação (0 como soma acumulada;. em cada posição de anepara, calcula-se o momeno fleor, implemenando-se a inegral da equação ( como soma acumulada. Os passos de a são repeidos para as condições de carga e de ondas desejadas, obendo-se uma envolória de esforços solicianes que pode ser uiliada para a análise ou para o projeo da esruura primária da embarcação. Exemplo de aplicação Seja PNV um navio hipoéico conforme ilusrado na figura 9. Traa-se do navio graneleiro, de oneladas de dw e 70 m de comprimeno. O arranjo de anques a meio navio é mosrado na figura 0. Na abela T, apresenam-se as principais caracerísicas da embarcação e na abela T, a abela de coas das balias. Tabela T - Dimensões Principais do Navio PNV Comprimeno de linha d água LWL 70. m Boca Moldada B.000 m Ponal Moldado D.00 m Calado de Projeo H 7.0 m

15 9 8 7 PPAR PPAV 9.. x,9. x,9. x,9.9 LBP.7 Dimensões em meros Figura 9 Navio graneleiro PNV

16 ,0m,00m 9,90m Camber.00,00m,00m, 0, 0m,0m Figura 0 Dimensões dos anques na seção mesra Tabela T - Tabela de coas das balias Balia x(m (m Balia x(m (m

17 balias Figura Plano de balias do graneleiro PNV 7

18 PN V PN V Carregando-se os porões de a 9 com carga de peso específico 0.79 f/m e adoando-se alura de onda igual a L/0, obém-se, uiliando a planilha elerônica desenvolvida, as curvas de esforços solicianes mosradas nas figuras e..00 E+0.0 E+0.00 E+0.00 E f 0.00 E E E E+0 Aguas Tranquilas Tosameno Alquebrameno Figura Curvas Forças Coranes.00 E+0.00 E+0.00 E E E+0 f * m -.00 E E E E E E+0 Águas Tranquilas Tosameno Alquebrameno Figura Curvas Momenos Fleores 8

19 Conclusões No rabalho apresenou-se uma formulação consisene para o cálculo do equilíbrio do navio em ondas e para o desenho dos diagramas de esforços solicianes primários da viga navio. Tal formulação permie a programação em qualquer linguagem compuacional bem como a uiliação de biblioecas de aplicaivos de oimiação para a busca ieraiva da posição de equilíbrio. Não obsane, adoou-se a planilha elerônica Excel, como ferramena básica para a arefa, por ser de fácil acesso, por permiir a sisemaiação dos dados e a confecção dos gráficos. Como exensão do rabalho, pode-se calcular, a parir dos esforços solicianes, as disribuições de ensões normais e de cisalhameno, ao longo de qualquer seção ransversal da viga navio. Além disso, ouro poencial desenvolvimeno é o de cálculo e de desenho das curvas hidrosáicas e de esabilidade do casco a parir dos conceios de cálculo de volume apresenados. A meodologia proposa foi aplicada em um exemplo de casco hipoéico onde se verificou a validade dos modelos uiliados. Referências [] Comsock, J., P., edior, Principles of Naval Archiecure, SNAME, 97, New York. [] Hughes, O. F., Ship Srucural Design, A Raionall-Based, Compuer-Aided Opimiaion Approach, SNAME, 988, New Jerse. [] Eric Wells, Desenvolvendo Soluções e Aplicações em Excel 7/Visual Basic, Tradução Flavio Deni Seffen, Makron Books, 997, São Paulo. Anexo: Imagens da Planilha de Cálculo F - Aguas ranquilas Tosameno Alquebrameno Figura - Perfil de ondas 9

20 Area de Carga Node M (Zca M (Yca Node M (Zca M (Yca LC c c c Area Carga. 9. Area Lasro B. 8. Area de Lasro Bojo Area de Lasro Wing Node M (Zca M (Yca Area Lasro W Area de Lasro Fundo Node M (Zca M (Yca Area Lasro F. 8.0 Figura - Áreas de anques/porões na Seção Mesra 0

21 Tabela T - Propriedades de Área da Seção Mesra No i No j Perfis Area do Momeno de Inercia Esp. Al CA M. Esáico Painel x x Quan Area Painel Próprio Transf. Toal mm mm mm mm mm mm mm mm mm mm mm c E+.70E+.89E E+.898E+.9E E+.997E+.E E+.88E E+.9E E+ 9.77E E+.98E E+.77E E+.9E E+.890E E+.87E E+ 9.70E E+.87E E+.8080E E+ 8.7E E+.09E E+.09E E+.87E E+.07E E Tdf Tf E+.089E+.E+ TIPO Area da Secao.0 m Alura da LN 0.9 m 9. m I LN

22 (9900, 00 (9900, 70 (00, (00, 00 0 (00, (00, (7900, 9 (000, 70 8 (00, (0, 700 (800, (000, (870, (0, (00, 880 (00, 90 (0, 0 (800, 0 (800, 0 (00, 0 (90, 0 Figura Coordenadas nodais dos anques na Seção Mesra

ANÁLISE DE ESTRUTURAS VIA ANSYS

ANÁLISE DE ESTRUTURAS VIA ANSYS 2 ANÁLISE DE ESTRUTURAS VIA ANSYS A Análise de esruuras provavelmene é a aplicação mais comum do méodo dos elemenos finios. O ermo esruura não só diz respeio as esruuras de engenharia civil como pones

Leia mais

CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS

CAPÍTULO III TORÇÃO PROBLEMAS ESTATICAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS APÍTULO III TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS TORÇÃO - PEÇAS DE SEÇÃO VAZADA DE PAREDES FINAS A- TORÇÃO PROBLEMAS ESTATIAMENTE INDETERMINADOS Vimos aé aqui que para calcularmos as ensões em

Leia mais

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues

Mecânica dos Fluidos. Aula 8 Introdução a Cinemática dos Fluidos. Prof. MSc. Luiz Eduardo Miranda J. Rodrigues Aula 8 Inrodução a Cinemáica dos Fluidos Tópicos Abordados Nesa Aula Cinemáica dos Fluidos. Definição de Vazão Volumérica. Vazão em Massa e Vazão em Peso. Definição A cinemáica dos fluidos é a ramificação

Leia mais

ENGENHARIA ECONÔMICA AVANÇADA

ENGENHARIA ECONÔMICA AVANÇADA ENGENHARIA ECONÔMICA AVANÇADA TÓPICOS AVANÇADOS MATERIAL DE APOIO ÁLVARO GEHLEN DE LEÃO gehleao@pucrs.br 55 5 Avaliação Econômica de Projeos de Invesimeno Nas próximas seções serão apresenados os principais

Leia mais

Equações Diferenciais Ordinárias Lineares

Equações Diferenciais Ordinárias Lineares Equações Diferenciais Ordinárias Lineares 67 Noções gerais Equações diferenciais são equações que envolvem uma função incógnia e suas derivadas, além de variáveis independenes Aravés de equações diferenciais

Leia mais

Aula - 2 Movimento em uma dimensão

Aula - 2 Movimento em uma dimensão Aula - Moimeno em uma dimensão Física Geral I - F- 18 o semesre, 1 Ilusração dos Principia de Newon mosrando a ideia de inegral Moimeno 1-D Conceios: posição, moimeno, rajeória Velocidade média Velocidade

Leia mais

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16

Equações Simultâneas. Aula 16. Gujarati, 2011 Capítulos 18 a 20 Wooldridge, 2011 Capítulo 16 Equações Simulâneas Aula 16 Gujarai, 011 Capíulos 18 a 0 Wooldridge, 011 Capíulo 16 Inrodução Durane boa pare do desenvolvimeno dos coneúdos desa disciplina, nós nos preocupamos apenas com modelos de regressão

Leia mais

Sistemas não-lineares de 2ª ordem Plano de Fase

Sistemas não-lineares de 2ª ordem Plano de Fase EA93 - Pro. Von Zuben Sisemas não-lineares de ª ordem Plano de Fase Inrodução o esudo de sisemas dinâmicos não-lineares de a ordem baseia-se principalmene na deerminação de rajeórias no plano de esados,

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

ENSAIO SOBRE A FLUÊNCIA NA VIBRAÇÃO DE COLUNAS

ENSAIO SOBRE A FLUÊNCIA NA VIBRAÇÃO DE COLUNAS Congresso de Méodos Numéricos em Engenharia 215 Lisboa, 29 de Junho a 2 de Julho, 215 APMTAC, Porugal, 215 ENSAIO SOBRE A FLUÊNCIA NA VIBRAÇÃO DE COLUNAS Alexandre de Macêdo Wahrhafig 1 *, Reyolando M.

Leia mais

Valor do Trabalho Realizado 16.

Valor do Trabalho Realizado 16. Anonio Vicorino Avila Anonio Edésio Jungles Planejameno e Conrole de Obras 16.2 Definições. 16.1 Objeivo. Valor do Trabalho Realizado 16. Parindo do conceio de Curva S, foi desenvolvida pelo Deparameno

Leia mais

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é:

Estando o capacitor inicialmente descarregado, o gráfico que representa a corrente i no circuito após o fechamento da chave S é: PROCESSO SELETIVO 27 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 31. Considere o circuio mosrado na figura abaixo: S V R C Esando o capacior inicialmene descarregado, o gráfico que represena a correne

Leia mais

OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE GANHOS

OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE GANHOS STC/ 08 17 à 22 de ouubro de 1999 Foz do Iguaçu Paraná - Brasil SESSÃO TÉCNICA ESPECIAL CONSERVAÇÃO DE ENERGIA ELÉTRICA (STC) OTIMIZAÇÃO ENERGÉTICA NA CETREL: DIAGNÓSTICO, IMPLEMENTAÇÃO E AVALIAÇÃO DE

Leia mais

1 TRANSMISSÃO EM BANDA BASE

1 TRANSMISSÃO EM BANDA BASE Página 1 1 TRNSMISSÃO EM BND BSE ransmissão de um sinal em banda base consise em enviar o sinal de forma digial aravés da linha, ou seja, enviar os bis conforme a necessidade, de acordo com um padrão digial,

Leia mais

PROJETO ÓTIMO DE PÓRTICOS PLANOS USANDO ALGORITMO GENÉTICO

PROJETO ÓTIMO DE PÓRTICOS PLANOS USANDO ALGORITMO GENÉTICO PROJTO ÓTIMO D PÓRTICOS PLANOS USANDO ALGORITMO GNÉTICO Anderson Pereira Deparameno de ngenharia de Civil Poniícia Universidade Caólica do Rio de Janeiro Rua Marquês de São Vicene 5/301L, Gávea CP 453-900,

Leia mais

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov

Instituto de Tecnologia de Massachusetts Departamento de Engenharia Elétrica e Ciência da Computação. Tarefa 5 Introdução aos Modelos Ocultos Markov Insiuo de Tecnologia de Massachuses Deparameno de Engenharia Elérica e Ciência da Compuação 6.345 Reconhecimeno Auomáico da Voz Primavera, 23 Publicado: 7/3/3 Devolução: 9/3/3 Tarefa 5 Inrodução aos Modelos

Leia mais

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião

Curso de preparação para a prova de matemática do ENEM Professor Renato Tião Porcenagem As quaro primeiras noções que devem ser assimiladas a respeio do assuno são: I. Que porcenagem é fração e fração é a pare sobre o odo. II. Que o símbolo % indica que o denominador desa fração

Leia mais

METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL

METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL METODOLOGIA PROJEÇÃO DE DEMANDA POR TRANSPORTE AÉREO NO BRASIL 1. Inrodução O presene documeno visa apresenar dealhes da meodologia uilizada nos desenvolvimenos de previsão de demanda aeroporuária no Brasil

Leia mais

Experimento. Guia do professor. O método de Monte Carlo. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância

Experimento. Guia do professor. O método de Monte Carlo. Governo Federal. Ministério da Educação. Secretaria de Educação a Distância Análise de dados e probabilidade Guia do professor Experimeno O méodo de Mone Carlo Objeivos da unidade 1. Apresenar um méodo ineressane e simples que permie esimar a área de uma figura plana qualquer;.

Leia mais

PROCESSO SELETIVO 2006/2 UNIFAL 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45

PROCESSO SELETIVO 2006/2 UNIFAL 2 O DIA GABARITO 1 13 FÍSICA QUESTÕES DE 31 A 45 OCEO EEIVO 006/ UNIF O DI GIO 1 13 FÍIC QUEÕE DE 31 45 31. Uma parícula é sola com elocidade inicial nula a uma alura de 500 cm em relação ao solo. No mesmo insane de empo uma oura parícula é lançada do

Leia mais

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE

APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E 2ª ORDEM COM O SOFTWARE MAPLE 170 APÊNDICES APÊNDICE A - TEXTO DE INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS ORDINÁRIAS LINEARES DE 1ª E ª ORDEM COM O SOFTWARE MAPLE PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS PUC MINAS MESTRADO PROFISSIONAL

Leia mais

Capítulo 19. 4. (UTFPR) Na figura a seguir, temos r//s e t//u//v. Triângulos. 1. Na figura, AB = AC ead = AE. A medida do ângulo oposto α é:

Capítulo 19. 4. (UTFPR) Na figura a seguir, temos r//s e t//u//v. Triângulos. 1. Na figura, AB = AC ead = AE. A medida do ângulo oposto α é: Maemáica II Ângulos apíulo 19 1. (UNIRI) s reas r 1 e r são paralelas. valor do ângulo, apresenado na figura a seguir, é: r 1 Suponha que um passageiro de nome arlos pegou um avião II, que seguiu a direção

Leia mais

Comportamento Assintótico de Convoluções e Aplicações em EDP

Comportamento Assintótico de Convoluções e Aplicações em EDP Comporameno Assinóico de Convoluções e Aplicações em EDP José A. Barrionuevo Paulo Sérgio Cosa Lino Deparameno de Maemáica UFRGS Av. Beno Gonçalves 9500, 9509-900 Poro Alegre, RS, Brasil. 2008 Resumo Nese

Leia mais

VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA. Antônio Carlos de Araújo

VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA. Antônio Carlos de Araújo 1 VALOR DA PRODUÇÃO DE CACAU E ANÁLISE DOS FATORES RESPONSÁVEIS PELA SUA VARIAÇÃO NO ESTADO DA BAHIA Anônio Carlos de Araújo CPF: 003.261.865-49 Cenro de Pesquisas do Cacau CEPLAC/CEPEC Faculdade de Tecnologia

Leia mais

MARCOS VELOSO CZERNORUCKI REPRESENTAÇÃO DE TRANSFORMADORES EM ESTUDOS DE TRANSITÓRIOS ELETROMAGNÉTICOS

MARCOS VELOSO CZERNORUCKI REPRESENTAÇÃO DE TRANSFORMADORES EM ESTUDOS DE TRANSITÓRIOS ELETROMAGNÉTICOS MARCOS VELOSO CZERNORUCKI REPRESENTAÇÃO DE TRANSFORMADORES EM ESTUDOS DE TRANSITÓRIOS ELETROMAGNÉTICOS Disseração apresenada à Escola Poliécnica da Universidade de São Paulo para obenção do íulo de Mesre

Leia mais

Figura 1 Carga de um circuito RC série

Figura 1 Carga de um circuito RC série ASSOIAÇÃO EDUAIONAL DOM BOSO FAULDADE DE ENGENHAIA DE ESENDE ENGENHAIA ELÉTIA ELETÔNIA Disciplina: Laboraório de ircuios Eléricos orrene onínua 1. Objeivo Sempre que um capacior é carregado ou descarregado

Leia mais

Modelos de Previsão. 1. Introdução. 2. Séries Temporais. Modelagem e Simulação - Modelos de Previsão

Modelos de Previsão. 1. Introdução. 2. Séries Temporais. Modelagem e Simulação - Modelos de Previsão Modelos de Previsão Inrodução Em omada de decisão é basane comum raar problemas cujas decisões a serem omadas são funções de faos fuuros Assim, os dados descrevendo a siuação de decisão precisam ser represenaivos

Leia mais

Física. MU e MUV 1 ACESSO VESTIBULAR. Lista de Física Prof. Alexsandro

Física. MU e MUV 1 ACESSO VESTIBULAR. Lista de Física Prof. Alexsandro Física Lisa de Física Prof. Alexsandro MU e MU 1 - (UnB DF) Qual é o empo gaso para que um merô de 2m a uma velocidade de 18km/h aravesse um únel de 1m? Dê sua resposa em segundos. 2 - (UERJ) Um rem é

Leia mais

EQUIVALENTES DINÂMICOS PARA ESTUDOS DE HARMÔNICOS USANDO ANÁLISE MODAL. Franklin Clement Véliz Sergio Luis Varricchio Sergio Gomes Jr.

EQUIVALENTES DINÂMICOS PARA ESTUDOS DE HARMÔNICOS USANDO ANÁLISE MODAL. Franklin Clement Véliz Sergio Luis Varricchio Sergio Gomes Jr. SP-2 X SEPOPE 2 a 25 de maio de 2006 a 2 s o 25 h 2006 X SIPÓSIO DE ESPECIAISTAS E PANEJAENTO DA OPERAÇÃO E EXPANSÃO EÉTRICA X SYPOSIU OF SPECIAISTS IN EECTRIC OPERATIONA AND EXPANSION PANNING FORIANÓPOIS

Leia mais

AÇÕES DO MERCADO FINACEIRO: UM ESTUDO VIA MODELOS DE SÉRIES TEMPORAIS

AÇÕES DO MERCADO FINACEIRO: UM ESTUDO VIA MODELOS DE SÉRIES TEMPORAIS AÇÕES DO MERCADO FINACEIRO: UM ESTUDO VIA MODELOS DE SÉRIES TEMPORAIS Caroline Poli Espanhol; Célia Mendes Carvalho Lopes Engenharia de Produção, Escola de Engenharia, Universidade Presbieriana Mackenzie

Leia mais

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi

Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriette Righi Faculdade de Engenharia São Paulo FESP Física Básica 1 (BF1) - Professores: João Arruda e Henriee Righi LISTA DE EXERCÍCIOS # 1 Aenção: Aualize seu adobe, ou subsiua os quadrados por negaivo!!! 1) Deermine

Leia mais

Transistor de Efeito de Campo de Porta Isolada MOSFET - Revisão

Transistor de Efeito de Campo de Porta Isolada MOSFET - Revisão Transisor de Efeio de Campo de Pora Isolada MOSFET - Revisão 1 NMOS: esruura física NMOS subsrao ipo P isposiivo simérico isposiivo de 4 erminais Pora, reno, Fone e Subsrao (gae, drain, source e Bulk)

Leia mais

Física e Química A. Teste Intermédio de Física e Química A. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 26.05.2009

Física e Química A. Teste Intermédio de Física e Química A. Teste Intermédio. Versão 1. Duração do Teste: 90 minutos 26.05.2009 Tese Inermédio de Física e Química A Tese Inermédio Física e Química A Versão Duração do Tese: 90 minuos 26.05.2009.º ou 2.º Anos de Escolaridade Decreo-Lei n.º 74/2004, de 26 de Março Na folha de resposas,

Leia mais

Espaço SENAI. Missão do Sistema SENAI

Espaço SENAI. Missão do Sistema SENAI Sumário Inrodução 5 Gerador de funções 6 Caracerísicas de geradores de funções 6 Tipos de sinal fornecidos 6 Faixa de freqüência 7 Tensão máxima de pico a pico na saída 7 Impedância de saída 7 Disposiivos

Leia mais

UNIVERSIDADE DE BRASÍLIA

UNIVERSIDADE DE BRASÍLIA ANÁLISE ESTÁTICA E DINÂMICA DE TORRES METÁLICAS ESTAIADAS RENATO CÉSAR GAVAZZA MENIN DISSERTAÇÃO DE MESTRADO EM ESTRUTURAS E CONSTRUÇÃO CIVIL DEPARTAMENTO DE ENGENHARIA CIVIL E AMBIENTAL FACULDADE DE TECNOLOGIA

Leia mais

ESTIMAÇÃO DE ESTADO EM SISTEMAS ELÉTRICOS DE POTÊNCIA: PROGRAMA PARA ANÁLISE E ATUALIZAÇÃO DAS CARACTERÍSTICAS QUALITATIVAS DE CONJUNTO DE MEDIDAS

ESTIMAÇÃO DE ESTADO EM SISTEMAS ELÉTRICOS DE POTÊNCIA: PROGRAMA PARA ANÁLISE E ATUALIZAÇÃO DAS CARACTERÍSTICAS QUALITATIVAS DE CONJUNTO DE MEDIDAS ESTIMAÇÃO DE ESTADO EM SISTEMAS ELÉTRICOS DE POTÊNCIA: PROGRAMA PARA ANÁLISE E ATUALIZAÇÃO DAS CARACTERÍSTICAS QUALITATIVAS DE CONJUNTO DE MEDIDAS EDUARDO MARMO MOREIRA Disseração de Mesrado apresenada

Leia mais

MODELAMENTO DINÂMICO DO SISTEMA DE CONTROLE DE UMA MÁQUINA CNC DIDÁTICA

MODELAMENTO DINÂMICO DO SISTEMA DE CONTROLE DE UMA MÁQUINA CNC DIDÁTICA 6º CONGRESSO BRASILEIRO DE ENGENHARIA DE FABRICAÇÃO 6 h BRAZILIAN CONFERENCE ON MANUFACTURING ENGINEERING 11 a 15 de abril de 2011 Caxias do Sul RS - Brasil April 11 h o 15 h, 2011 Caxias do Sul RS Brazil

Leia mais

FUNÇÕES CONVEXAS EM TEORIA DE APREÇAMENTO DE OPÇÕES POR ARBITRAGEM UTILIZANDO O MODELO BINOMIAL

FUNÇÕES CONVEXAS EM TEORIA DE APREÇAMENTO DE OPÇÕES POR ARBITRAGEM UTILIZANDO O MODELO BINOMIAL FUNÇÕES CONVEAS EM EORIA DE APREÇAMENO DE OPÇÕES POR ARBIRAGEM UILIZANDO O MODELO BINOMIAL Devanil Jaques de SOUZA Lucas Moneiro CHAVES RESUMO: Nese rabalho uilizam-se écnicas maemáicas elemenares, baseadas

Leia mais

PUBLICAÇÃO CDTN-944/2005. FOTOELASTICIDADE Primeiros Passos. Geraldo de Paula Martins

PUBLICAÇÃO CDTN-944/2005. FOTOELASTICIDADE Primeiros Passos. Geraldo de Paula Martins PUBLICAÇÃO CDTN-944/005 FOTOELASTICIDADE Primeiros Passos Geraldo de Paula Marins Seembro/005 COMISSÃO NACIONAL DE ENERGIA NUCLEAR Cenro de Desenvolvimeno da Tecnologia Nuclear Publicação CDTN-944/005

Leia mais

Redes de Computadores

Redes de Computadores Inrodução Ins iuo de Info ormáic ca - UF FRGS Redes de Compuadores Conrole de fluxo Revisão 6.03.015 ula 07 Comunicação em um enlace envolve a coordenação enre dois disposiivos: emissor e recepor Conrole

Leia mais

Módulo 07 Capítulo 06 - Viscosímetro de Cannon-Fensk

Módulo 07 Capítulo 06 - Viscosímetro de Cannon-Fensk Módulo 07 Capíulo 06 - Viscosímero de Cannon-Fensk Inrodução: o mundo cienífico, medições são necessárias, o que sempre é difícil, impreciso, principalmene quando esa é muio grande ou muio pequena. Exemplos;

Leia mais

Experiências para o Ensino de Queda Livre

Experiências para o Ensino de Queda Livre Universidade Esadual de Campinas Insiuo de Física Gleb Waagin Relaório Final da disciplina F 69A - Tópicos de Ensino de Física I Campinas, de juno de 7. Experiências para o Ensino de Queda Livre Aluno:

Leia mais

TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS

TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS ARTIGO: TOMADA DE DECISÃO EM FUTUROS AGROPECUÁRIOS COM MODELOS DE PREVISÃO DE SÉRIES TEMPORAIS REVISTA: RAE-elerônica Revisa de Adminisração de Empresas FGV EASP/SP, v. 3, n. 1, Ar. 9, jan./jun. 2004 1

Leia mais

Um estudo de Cinemática

Um estudo de Cinemática Um esudo de Cinemáica Meu objeivo é expor uma ciência muio nova que raa de um ema muio anigo. Talvez nada na naureza seja mais anigo que o movimeno... Galileu Galilei 1. Inrodução Nese exo focaremos nossa

Leia mais

Prof. Luiz Marcelo Chiesse da Silva DIODOS

Prof. Luiz Marcelo Chiesse da Silva DIODOS DODOS 1.JUÇÃO Os crisais semiconduores, ano do ipo como do ipo, não são bons conduores, mas ao ransferirmos energia a um deses ipos de crisal, uma pequena correne elérica aparece. A finalidade práica não

Leia mais

Universidade Federal de Lavras

Universidade Federal de Lavras Universidade Federal de Lavras Deparameno de Ciências Exaas Prof. Daniel Furado Ferreira 8 a Lisa de Exercícios Disribuição de Amosragem 1) O empo de vida de uma lâmpada possui disribuição normal com média

Leia mais

Função definida por várias sentenças

Função definida por várias sentenças Ese caderno didáico em por objeivo o esudo de função definida por várias senenças. Nese maerial você erá disponível: Uma siuação que descreve várias senenças maemáicas que compõem a função. Diversas aividades

Leia mais

A CONSTRUÇÃO DO CONCEITO DE LOGARITMO A PARTIR DE UM PROBLEMA GERADOR

A CONSTRUÇÃO DO CONCEITO DE LOGARITMO A PARTIR DE UM PROBLEMA GERADOR A CONSTRUÇÃO DO CONCEITO DE LOGARITMO A PARTIR DE UM PROBLEMA GERADOR Bárbara Lopes Macedo (Faculdades Inegradas FAFIBE) Carina Aleandra Rondini Marreo (Faculdades Inegradas FAFIBE) Jucélia Maria de Almeida

Leia mais

IDENTIFICAÇÃO DE SISTEMAS VIA FUNÇÕES ORTOGONAIS: MODELOS DE SEGUNDA ORDEM VERSUS REALIZAÇÃO NO ESPAÇO DE ESTADOS

IDENTIFICAÇÃO DE SISTEMAS VIA FUNÇÕES ORTOGONAIS: MODELOS DE SEGUNDA ORDEM VERSUS REALIZAÇÃO NO ESPAÇO DE ESTADOS 6º PSMEC Universidade Federal de Uberlândia Faculdade de Engenharia Mecânica IDENIFICAÇÃ DE SISEMAS VIA FUNÇÕES RGNAIS: MDES DE SEGUNDA RDEM VERSUS REAIZAÇÃ N ESPAÇ DE ESADS Clayon Rodrigo Marqui clayon_rm@dem.feis.unesp.br

Leia mais

Física 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA CINEMÁTICA IV. 4. (0,2s) movimento progressivo: 1. Como x 1

Física 2 aula 11 COMENTÁRIOS ATIVIDADES PARA SALA CINEMÁTICA IV. 4. (0,2s) movimento progressivo: 1. Como x 1 Física aula CIEMÁTICA IV 4. (,s) movimeno progressivo: COMETÁRIOS ATIVIDADES PARA SALA. Como x x é a diferença enre as posições dos auomóveis A e A em-se: o insane, os auomóveis A e A esão na mesma posição.

Leia mais

O Fluxo de Caixa Livre para a Empresa e o Fluxo de Caixa Livre para os Sócios

O Fluxo de Caixa Livre para a Empresa e o Fluxo de Caixa Livre para os Sócios O Fluxo de Caixa Livre para a Empresa e o Fluxo de Caixa Livre para os Sócios! Principais diferenças! Como uilizar! Vanagens e desvanagens Francisco Cavalcane (francisco@fcavalcane.com.br) Sócio-Direor

Leia mais

3 PROGRAMAÇÃO DOS MICROCONTROLADORES

3 PROGRAMAÇÃO DOS MICROCONTROLADORES 3 PROGRAMAÇÃO DOS MICROCONTROLADORES Os microconroladores selecionados para o presene rabalho foram os PICs 16F628-A da Microchip. Eses microconroladores êm as vanagens de serem facilmene enconrados no

Leia mais

4 Cenários de estresse

4 Cenários de estresse 4 Cenários de esresse Os cenários de esresse são simulações para avaliar a adequação de capial ao limie de Basiléia numa deerminada daa. Sua finalidade é medir a capacidade de o PR das insiuições bancárias

Leia mais

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores

Diodos. Símbolo. Função (ideal) Conduzir corrente elétrica somente em um sentido. Tópico : Revisão dos modelos Diodos e Transistores 1 Tópico : evisão dos modelos Diodos e Transisores Diodos Símbolo O mais simples dos disposiivos semiconduores. Função (ideal) Conduzir correne elérica somene em um senido. Circuio abero Polarização 2

Leia mais

Aula 1. Atividades. Para as questões dessa aula, podem ser úteis as seguintes relações:

Aula 1. Atividades. Para as questões dessa aula, podem ser úteis as seguintes relações: Aula 1 Para as quesões dessa aula, podem ser úeis as seguines relações: 1. E c = P = d = m. v E m V E P = m. g. h cos = sen = g = Aividades Z = V caeo adjacene hipoenusa caeo oposo hipoenusa caeo oposo

Leia mais

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC

EXPERIÊNCIA 7 CONSTANTE DE TEMPO EM CIRCUITOS RC EXPERIÊNIA 7 ONSTANTE DE TEMPO EM IRUITOS R I - OBJETIVO: Medida da consane de empo em um circuio capaciivo. Medida da resisência inerna de um volímero e da capaciância de um circuio aravés da consane

Leia mais

INSTRUMENTOS GERENCIAIS ACESSÓRIOS AO V@R NA ADMINISTRAÇÃO DE RISCO DE TAXAS DE JUROS. Paulo Beltrão Fraletti 1 Paulo Kwok Shaw Sain 2

INSTRUMENTOS GERENCIAIS ACESSÓRIOS AO V@R NA ADMINISTRAÇÃO DE RISCO DE TAXAS DE JUROS. Paulo Beltrão Fraletti 1 Paulo Kwok Shaw Sain 2 IV SEMEAD INSTRUMENTOS GERENCIAIS ACESSÓRIOS AO V@R NA ADMINISTRAÇÃO DE RISCO DE TAXAS DE JUROS Paulo Belrão Fralei Paulo Kwok Shaw Sain 2 RESUMO O Value-a-Risk (V@R) é aualmene a ferramena mais popular

Leia mais

Economia e Finanças Públicas Aula T21. Bibliografia. Conceitos a reter. Livro EFP, Cap. 14 e Cap. 15.

Economia e Finanças Públicas Aula T21. Bibliografia. Conceitos a reter. Livro EFP, Cap. 14 e Cap. 15. Economia e Finanças Públicas Aula T21 6.3 Resrição Orçamenal, Dívida Pública e Susenabilidade 6.3.1 A resrição orçamenal e as necessidades de financiameno 6.3.2. A divida pública 6.3.3 A susenabilidade

Leia mais

Capítulo 5: Introdução às Séries Temporais e aos Modelos ARIMA

Capítulo 5: Introdução às Séries Temporais e aos Modelos ARIMA 0 Capíulo 5: Inrodução às Séries emporais e aos odelos ARIA Nese capíulo faremos uma inrodução às séries emporais. O nosso objeivo aqui é puramene operacional e esaremos mais preocupados com as definições

Leia mais

Modelos para títulos de desconto e considerações sobre calibragem

Modelos para títulos de desconto e considerações sobre calibragem Modelos para íulos de descono e considerações sobre calibragem Fabricio Tourrucôo April 25, 2007 Absrac Uilizando méodos de perurbação regulares são obidas fórmulas aproximadas para o preço de um íulo

Leia mais

Física Fascículo 01 Eliana S. de Souza Braga

Física Fascículo 01 Eliana S. de Souza Braga Física Fascículo 01 Eliana S. de Souza raga Índice Cinemáica...1 Exercícios... Gabario...6 Cinemáica (Não se esqueça de adoar uma origem dos espaços, uma origem dos empos e orienar a rajeória) M.R.U. =

Leia mais

Avaliação de Empresas com Base em Números Contábeis

Avaliação de Empresas com Base em Números Contábeis Vol. 4, No. 2 Viória-ES, Brasil Mai/ Ago 27 p. 96-3 ISSN 87-734X Avaliação de Empresas com Base em Números Conábeis James A. Ohlson* Arizona Sae Universiy Alexsandro Broedel Lopes** USP- Universidade de

Leia mais

CIRCULAR Nº 3.640, DE 4 DE MARÇO DE 2013

CIRCULAR Nº 3.640, DE 4 DE MARÇO DE 2013 CIRCULAR Nº.640, DE 4 DE MARÇO DE 20 Esabelece os procedimenos para o cálculo da parcela dos aivos ponderados pelo risco (RWA), relaiva ao cálculo do capial requerido para o risco operacional mediane abordagem

Leia mais

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA POLITÉCNICA Curso de Engenharia Civil Departamento de Estruturas

UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA POLITÉCNICA Curso de Engenharia Civil Departamento de Estruturas UNIVERSIDADE FEDERAL DO RIO DE JANEIRO ESCOLA POLITÉCNICA Curso de Engenharia Civil Deparameno de Esruuras PROJETO DE PASSARELA COMPOSTA DE PERFIS TUBULARES EM AÇO Rafael Brand Ruas Projeo de Graduação

Leia mais

PROCESSOS DE PASSEIO NA RETA CONTÍNUA DANIELA TRENTIN NAVA. Orientador: Prof. Ph.D. Andrei Toom. Área de concentração: Probabilidade

PROCESSOS DE PASSEIO NA RETA CONTÍNUA DANIELA TRENTIN NAVA. Orientador: Prof. Ph.D. Andrei Toom. Área de concentração: Probabilidade PROCESSOS DE PASSEIO NA RETA CONTÍNUA DANIELA TRENTIN NAVA Orienador: Prof. Ph.D. Andrei Toom Área de concenração: Probabilidade Disseração submeida como requerimeno parcial para obenção do grau de Mesre

Leia mais

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico

CAPÍTULO 9. y(t). y Medidor. Figura 9.1: Controlador Analógico 146 CAPÍULO 9 Inrodução ao Conrole Discreo 9.1 Inrodução Os sisemas de conrole esudados aé ese pono envolvem conroladores analógicos, que produzem sinais de conrole conínuos no empo a parir de sinais da

Leia mais

GABARITO DE QUÍMICA INSTITUTO MILITAR DE ENGENHARIA

GABARITO DE QUÍMICA INSTITUTO MILITAR DE ENGENHARIA GABARITO DE QUÍMICA INSTITUTO MILITAR DE ENGENHARIA Realizada em 8 de ouubro de 010 GABARITO DISCURSIVA DADOS: Massas aômicas (u) O C H N Na S Cu Zn 16 1 1 14 3 3 63,5 65,4 Tempo de meia - vida do U 38

Leia mais

PREÇOS DE PRODUTO E INSUMO NO MERCADO DE LEITE: UM TESTE DE CAUSALIDADE

PREÇOS DE PRODUTO E INSUMO NO MERCADO DE LEITE: UM TESTE DE CAUSALIDADE PREÇOS DE PRODUTO E INSUMO NO MERCADO DE LEITE: UM TESTE DE CAUSALIDADE Luiz Carlos Takao Yamaguchi Pesquisador Embrapa Gado de Leie e Professor Adjuno da Faculdade de Economia do Insiuo Vianna Júnior.

Leia mais

MÉTODO MARSHALL. Os corpos de prova deverão ter a seguinte composição em peso:

MÉTODO MARSHALL. Os corpos de prova deverão ter a seguinte composição em peso: TEXTO COMPLEMENTAR MÉTODO MARSHALL ROTINA DE EXECUÇÃO (PROCEDIMENTOS) Suponhamos que se deseje dosar um concreo asfálico com os seguines maeriais: 1. Pedra 2. Areia 3. Cimeno Porland 4. CAP 85 100 amos

Leia mais

Dinâmica de interação da praga da cana-de-açúcar com seu parasitóide Trichogramma galloi

Dinâmica de interação da praga da cana-de-açúcar com seu parasitóide Trichogramma galloi Dinâmica de ineração da praga da cana-de-açúcar com seu parasióide Trichogramma galloi Elizabeh de Holanda Limeira 1, Mara Rafikov 2 1 Universidade Federal do ABC - UFABC, Sano André, Brasil, behmacampinas@yahoo.com.br

Leia mais

Centro Federal de EducaçãoTecnológica 28/11/2012

Centro Federal de EducaçãoTecnológica 28/11/2012 Análise da Dinâmica da Volailidade dos Preços a visa do Café Arábica: Aplicação dos Modelos Heeroscedásicos Carlos Albero Gonçalves da Silva Luciano Moraes Cenro Federal de EducaçãoTecnológica 8//0 Objevos

Leia mais

SIMULAÇÃO DA OPERAÇÃO HIDRÁULICA DE RESERVATÓRIOS

SIMULAÇÃO DA OPERAÇÃO HIDRÁULICA DE RESERVATÓRIOS SIMULAÇÃO DA OPERAÇÃO HIDRÁULICA DE RESERVATÓRIOS Anasácio Sebasian Arce Encina 1, João Eduardo Gonçalves Lopes 2, Marcelo Auguso Cicogna 2, Secundino Soares Filho 2 e Thyago Carvalho Marques 2 RESUMO

Leia mais

PSO APLICADO À SINTONIA DO CONTROLADOR PI/PID DA MALHA DE NÍVEL DE UMA PLANTA DIDÁTICA INDUSTRIAL

PSO APLICADO À SINTONIA DO CONTROLADOR PI/PID DA MALHA DE NÍVEL DE UMA PLANTA DIDÁTICA INDUSTRIAL PSO APLICADO À SINTONIA DO CONTROLADOR PI/PID DA MALHA DE NÍVEL DE UMA PLANTA DIDÁTICA INDUSTRIAL Lucas H. S. de Andrade, Bruno L. G. Cosa, Bruno A. Angélico Avenida Albero Carazzai, 1 Universidade Tecnológica

Leia mais

Escola E.B. 2,3 / S do Pinheiro

Escola E.B. 2,3 / S do Pinheiro Escola E.B. 2,3 / S do Pinheiro Ciências Físico Químicas 9º ano Movimenos e Forças 1.º Período 1.º Unidade 2010 / 2011 Massa, Força Gravíica e Força de Ario 1 - A bordo de um vaivém espacial, segue um

Leia mais

CUSTOS POTENCIAIS DA PRODUÇÃO E OS BENEFÍCIOS DO PLANEJAMENTO E CONTROLE DA PRODUÇÃO

CUSTOS POTENCIAIS DA PRODUÇÃO E OS BENEFÍCIOS DO PLANEJAMENTO E CONTROLE DA PRODUÇÃO XXII Enconro Nacional de Engenharia de rodução Curiiba R, 23 a 25 de ouubro de 2002 CUSTOS OTENCIAIS DA RODUÇÃO E OS BENEFÍCIOS DO LANEJAMENTO E CONTROLE DA RODUÇÃO Valério Anonio amplona Salomon José

Leia mais

Física B Extensivo V. 5

Física B Extensivo V. 5 Gabario Eensivo V 5 Resolva Aula 8 Aula 9 80) E 80) A 90) f = 50 MHz = 50 0 6 Hz v = 3 0 8 m/s v = f = v f = 3 0 8 50 0 = 6 m 90) B y = 0,5 cos [ (4 0)] y = 0,5 cos y = A cos A = 0,5 m 6 = 4 s = 0,5 s

Leia mais

CORREÇÃO PROVA UFRGS 2009 MATEMÁTICA FAÉ

CORREÇÃO PROVA UFRGS 2009 MATEMÁTICA FAÉ CORREÇÃO PROVA UFRGS 009 MATEMÁTICA FAÉ QUESTÃO 6 (E) ASSUNTO: MATEMÁTICA BÁSICA (PORCENT. E POTÊNCIAS DE 0) 00 milhões = 00.0 6 Regra de Três: 00.0 6,% 00%.0 8,.0.0 0 dólares QUESTÃO 7 (E) ASSUNTO: MATEMÁTICA

Leia mais

INSTRUMENTAÇÃO, CONTROLE E AUTOMAÇÃO

INSTRUMENTAÇÃO, CONTROLE E AUTOMAÇÃO INSTRUMENTAÇÃO, CONTROLE E AUTOMAÇÃO Pág.: 1/88 ÍNDICE Professor: Waldemir Loureiro Inrodução ao Conrole Auomáico de Processos... 4 Conrole Manual... 5 Conrole Auomáico... 5 Conrole Auo-operado... 6 Sisema

Leia mais

DEMANDA BRASILEIRA DE CANA DE AÇÚCAR, AÇÚCAR E ETANOL REVISITADA

DEMANDA BRASILEIRA DE CANA DE AÇÚCAR, AÇÚCAR E ETANOL REVISITADA XXX ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO Mauridade e desafios da Engenharia de Produção: compeiividade das empresas, condições de rabalho, meio ambiene. São Carlos, SP, Brasil, 12 a15 de ouubro

Leia mais

ANÁLISE DE UMA EQUAÇÃO DIFERENCIAL LINEAR QUE CARACTERIZA A QUANTIDADE DE SAL EM UM RESERVATÓRIO USANDO DILUIÇÃO DE SOLUÇÃO

ANÁLISE DE UMA EQUAÇÃO DIFERENCIAL LINEAR QUE CARACTERIZA A QUANTIDADE DE SAL EM UM RESERVATÓRIO USANDO DILUIÇÃO DE SOLUÇÃO ANÁLSE DE UMA EQUAÇÃO DFERENCAL LNEAR QUE CARACTERZA A QUANTDADE DE SAL EM UM RESERATÓRO USANDO DLUÇÃO DE SOLUÇÃO Alessandro de Melo Omena Ricardo Ferreira Carlos de Amorim 2 RESUMO O presene arigo em

Leia mais

ABORDAGEM ANALÍTICA E CARACTERIZAÇÃO DE CONTATO ENTRE SUPERFÍCIES

ABORDAGEM ANALÍTICA E CARACTERIZAÇÃO DE CONTATO ENTRE SUPERFÍCIES ABORDAGEM ANALÍTICA E CARACTERIZAÇÃO DE CONTATO ENTRE SUPERFÍCIES Paulo Eduardo Nunes Bruel Disseração apresenada à escola de Engenharia de São Carlos da Universidade de São Paulo como pare dos requisios

Leia mais

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 *

Mecânica de Sistemas de Partículas Prof. Lúcio Fassarella * 2013 * Mecânica e Sisemas e Parículas Prof. Lúcio Fassarella * 2013 * 1. A velociae e escape e um planea ou esrela é e nia como seno a menor velociae requeria na superfície o objeo para que uma parícula escape

Leia mais

3 REVISÃO BIBLIOGRÁFICA

3 REVISÃO BIBLIOGRÁFICA 33 3 REVISÃO BIBLIOGRÁFICA No iem 3.1, apresena-se uma visão geral dos rabalhos esudados sobre a programação de horários de rens. No iem 3.2, em-se uma análise dos rabalhos que serviram como base e conribuíram

Leia mais

Ampliador com estágio de saída classe AB

Ampliador com estágio de saída classe AB Ampliador com eságio de saída classe AB - Inrodução Nese laboraório será esudado um ampliador com rês eságios empregando ransisores bipolares, com aplicação na faixa de áudio freqüência. O eságio de enrada

Leia mais

ANÁLISE DE TRANSIENTES COM ALTOS PERCENTUAIS DE TAMPONAMENTO DOS TUBOS DOS GERADORES DE VAPOR DE ANGRA 1

ANÁLISE DE TRANSIENTES COM ALTOS PERCENTUAIS DE TAMPONAMENTO DOS TUBOS DOS GERADORES DE VAPOR DE ANGRA 1 ANÁLISE DE TRANSIENTES COM ALTOS PERCENTUAIS DE TAMPONAMENTO DOS TUBOS DOS GERADORES DE VAPOR DE ANGRA 1 Márcio Poubel Lima *, Laercio Lucena Marins Jr *, Enio Anonio Vanni *, Márcio Dornellas Machado

Leia mais

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa

GFI00157 - Física por Atividades. Caderno de Trabalhos de Casa GFI00157 - Física por Aiidades Caderno de Trabalhos de Casa Coneúdo 1 Cinemáica 3 1.1 Velocidade.............................. 3 1.2 Represenações do moimeno................... 7 1.3 Aceleração em uma

Leia mais

Modelos Econométricos para a Projeção de Longo Prazo da Demanda de Eletricidade: Setor Residencial no Nordeste

Modelos Econométricos para a Projeção de Longo Prazo da Demanda de Eletricidade: Setor Residencial no Nordeste 1 Modelos Economéricos para a Projeção de Longo Prazo da Demanda de Elericidade: Seor Residencial no Nordese M. L. Siqueira, H.H. Cordeiro Jr, H.R. Souza e F.S. Ramos UFPE e P. G. Rocha CHESF Resumo Ese

Leia mais

BLOCO 9 PROBLEMAS: PROBLEMA 1

BLOCO 9 PROBLEMAS: PROBLEMA 1 BLOCO 9 ASSUNTOS: Análise de Invesimenos Valor Acual Líquido (VAL) Taxa Inerna de Renabilidade (TIR) Rácio Benefício - Cuso (RBC) Tempo de Recuperação (TR) PROBLEMAS: PROBLEMA 1 Perane a previsão de prejuízos

Leia mais

A FÁBULA DO CONTROLADOR PID E DA CAIXA D AGUA

A FÁBULA DO CONTROLADOR PID E DA CAIXA D AGUA A FÁBULA DO CONTROLADOR PID E DA CAIXA D AGUA Era uma vez uma pequena cidade que não inha água encanada. Mas, um belo dia, o prefeio mandou consruir uma caia d água na serra e ligou-a a uma rede de disribuição.

Leia mais

AVALIAÇÃO DE OPÇÕES AMERICANAS DE TAXA DE JURO: O MÉTODO DOS MÍNIMOS QUADRADOS DE MONTE CARLO

AVALIAÇÃO DE OPÇÕES AMERICANAS DE TAXA DE JURO: O MÉTODO DOS MÍNIMOS QUADRADOS DE MONTE CARLO 10 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO INSIUO COPPEAD DE ADMINISRAÇÃO CLAUDIA DOURADO CESCAO AVALIAÇÃO DE OPÇÕES AMERICANAS DE AXA DE JURO: O MÉODO DOS MÍNIMOS QUADRADOS DE MONE CARLO RIO DE JANEIRO

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA. Amanda Zani Dutra Silva

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA. Amanda Zani Dutra Silva UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA DEPARTAMENTO DE ENGENHARIA MECÂNICA Amanda Zani Dura Silva Gerenciameno de Manuenção de Equipamenos de um Hospial São Paulo 006 Amanda Zani Dura Silva Gerenciameno

Leia mais

CALIBRAÇÃO DE UM PROJETOR DE PADRÕES PARA RECONSTRUÇÃO 3D POR LUZ ESTRUTURADA

CALIBRAÇÃO DE UM PROJETOR DE PADRÕES PARA RECONSTRUÇÃO 3D POR LUZ ESTRUTURADA ALIBRAÇÃO DE UM ROJETOR DE ADRÕES ARA REONSTRUÇÃO 3D OR LUZ ESTRUTURADA Mário Luiz Lopes Reiss 1 Anonio Maria arcia Tommaselli 1 1 Universidade Esadual aulisa UNES Faculdade de iências e Tecnologia rograma

Leia mais

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney).

exercício e o preço do ativo são iguais, é dito que a opção está no dinheiro (at-themoney). 4. Mercado de Opções O mercado de opções é um mercado no qual o iular (comprador) de uma opção em o direio de exercer a mesma, mas não a obrigação, mediane o pagameno de um prêmio ao lançador da opção

Leia mais

A Produtividade do Capital no Brasil de 1950 a 2002

A Produtividade do Capital no Brasil de 1950 a 2002 UNIVERSIDADE DE BRASÍLIA Insiuo de Ciências Humanas Deparameno de Economia DOUTORADO EM ECONOMIA A Produividade do Capial no Brasil de 1950 a 2002 Aumara Feu Orienador: Prof. Maurício Baraa de Paula Pino

Leia mais

UMA ANÁLISE ECONOMÉTRICA DOS COMPONENTES QUE AFETAM O INVESTIMENTO PRIVADO NO BRASIL, FAZENDO-SE APLICAÇÃO DO TESTE DE RAIZ UNITÁRIA.

UMA ANÁLISE ECONOMÉTRICA DOS COMPONENTES QUE AFETAM O INVESTIMENTO PRIVADO NO BRASIL, FAZENDO-SE APLICAÇÃO DO TESTE DE RAIZ UNITÁRIA. UMA ANÁLISE ECONOMÉTRICA DOS COMPONENTES QUE AFETAM O INVESTIMENTO PRIVADO NO BRASIL, FAZENDO-SE APLICAÇÃO DO TESTE DE RAIZ UNITÁRIA Área: ECONOMIA COELHO JUNIOR, Juarez da Silva PONTILI, Rosangela Maria

Leia mais

Uso da Simulação de Monte Carlo e da Curva de Gatilho na Avaliação de Opções de Venda Americanas

Uso da Simulação de Monte Carlo e da Curva de Gatilho na Avaliação de Opções de Venda Americanas J.G. Casro e al. / Invesigação Operacional, 27 (2007) 67-83 67 Uso da imulação de Mone Carlo e da Curva de Gailho na Avaliação de Opções de Venda Americanas Javier Guiérrez Casro Tara K. Nanda Baidya Fernando

Leia mais

OTIMIZAÇÃO NOS PADRÕES DE CORTE DE CHAPAS DE FIBRA DE MADEIRA RECONSTITUÍDA: UM ESTUDO DE CASO

OTIMIZAÇÃO NOS PADRÕES DE CORTE DE CHAPAS DE FIBRA DE MADEIRA RECONSTITUÍDA: UM ESTUDO DE CASO versão impressa ISSN 0101-7438 / versão online ISSN 1678-5142 OTIMIZAÇÃO NOS PADRÕES DE CORTE DE CHAPAS DE FIBRA DE MADEIRA RECONSTITUÍDA: UM ESTUDO DE CASO Luciano Belluzzo Reinaldo Morabio * Deparameno

Leia mais

Modelos Matemáticos na Tomada de Decisão em Marketing

Modelos Matemáticos na Tomada de Decisão em Marketing Universidade dos Açores Deparameno de Maemáica Monografia Modelos Maemáicos na Tomada de Decisão em Markeing Pona delgada, 3 de Maio de Orienador: Eng. Armado B. Mendes Orienanda: Marla Silva Modelos Maemáicos

Leia mais

FERRAMENTA PARA MAXIMIZAÇÃO DE CARGA NA FASE FLUENTE DE RECOMPOSIÇÃO DE SISTEMAS ELÉTRICOS. Eduardo Martins Viana

FERRAMENTA PARA MAXIMIZAÇÃO DE CARGA NA FASE FLUENTE DE RECOMPOSIÇÃO DE SISTEMAS ELÉTRICOS. Eduardo Martins Viana FERRAMENTA PARA MAXIMIZAÇÃO DE CARGA NA FASE FLUENTE DE RECOMPOSIÇÃO DE SISTEMAS ELÉTRICOS Eduardo Marins Viana DISSERTAÇÃO SUBMETIDA AO CORPO DOCENTE DA COORDENAÇÃO DO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA

Leia mais