Prof. Josemar dos Santos

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Prof. Josemar dos Santos"

Transcrição

1 Engenharia Mecânica - FAENG Sumário SISTEMAS DE CONTROLE Definições Básicas; Exemplos. Definição; ; Exemplo. Prof. Josemar dos Sanos Sisemas de Conrole Sisemas de Conrole Objeivo: Inroduzir ferramenal maemáico, conceios fundamenais e algumas écnicas de Modelagem de Sisemas Dinâmicos e de Engenharia de Conrole Moderno; Uilização do Scilab como ferramena compuacional de engenharia para aplicação dos conceios e écnicas de conrole e modelagem. Emena: Inrodução à engenharia de conrole de sisemas. Preliminares maemáicas: Revisão de Números Complexos os e. Conceios e écnicas de modelagem de sisemas. Funções de ransferência e diagramas de blocos. Criérios de desempenho, esabilidade e realimenação de sisemas. Técnicas de sínese de conrole pelo méodo do lugar das raízes e de resposa em freqüência. Projeo de compensadores. 3 Livro Texo: Nise, N. Engenharia de Sisemas de Conrole, 3a edição, LTC Ediora,. Bibliografia Complemenar: Franklin, G.; Powell, J.D. Feedback Conrol of Dynamic Sysems, Prenice-Hall,5. Ogaa, K. Engenharia de Conrole Moderno, 4a edição, Prenice- Hall, 3. Dorf, R.C. Sisemas de Conrole Moderno, LTC Ediora,. 4

2 Sisemas de Conrole Criério de Avaliação P*,4+P*,4+AT*, 4+AT* Definições Básicas; Exemplos. Definição; ; Exemplo. 5 6 Conrole Conrole é o ao de comandar, dirigir, ordenar, manipular alguma coisa ou alguém. Assim, um sisema de conrole é um conjuno de componenes que em por função dirigir alguma coisa ou alguém. Grandezas que cruzam a froneira imaginária de um sisema podem ser chamadas de enradas ou saídas. Enradas são grandezas que esimulam, exciam um sisema. Também chamadas de Referência ou do inglês, Se Poin SP. Saídas são as reações, resposas, do sisema a um ou mais esímulos exernos. Também chamadas de Variável do Processo ou do inglês, Process Variable PV. 7 8

3 Grandezas que cruzam a froneira imaginária de um sisema podem ser chamadas de enradas ou saídas. Variável manipulada é uma grandeza ou condição que é variada pelo conrolador para que modifique o valor da variável conrolada. Do inglês, Manipulaed Variable abe MV. Grandezas que cruzam a froneira imaginária de um sisema podem ser chamadas de enradas ou saídas. Perurbações ou disúrbios são sinais que endem a afear adversamene o valor da saída do sisema. Se a perurbação for gerada denro do sisema, ela é denominada perurbação inerna, enquano que uma perurbação disúrbio exerna é gerada fora do sisema e consiui uma enrada. 9 Sisema de conrole realimenado é um sisema que maném uma deerminada relação enre a saída e alguma enrada de referência comparando-as e uilizando a diferença como um meio de conrole. Exemplo: um sisema de conrole da emperaura ambiene. Os sisemas de conrole realimenados não esão limiados a aplicações de Engenharia. Um exemplo é o sisema de conrole da emperaura do corpo humano, que é um sisema alamene avançado. Sisema de conrole a malha abera SCMA é aquele sisema em que a saída não em nenhum efeio sobre a ação de conrole. Em ouras palavras, em um SCMA a saída não é medida nem realimenada para comparação com a enrada. Exemplo: máquina de lavar roupas.

4 Sisema de conrole a malha fechada SCMF Nome dado ao sisema de conrole realimenado. Num SCMF a diferença enre a referência sinal de enrada e a medida da variável conrolada sinal realimenado, ambém chamada de sinal de erro auane, é inroduzido no conrolador de modo a reduzir o erro e razer a saída do sisema a um valor desejado. O ermo conrole a malha fechada sempre implica o uso de ação de conrole realimenado a fim de reduzir o erro do sisema. SCMF x SCMA 3 4 Componenes de um Sisema de Conrole Conceios Básicos SP MV PV Conrolador Auador Plana ± Sensor Consise em aplicar as leis físicas fundamenais de ciência e engenharia para se ober uma represenação maemáica de um sisema. Circuios Eléricos Lei de Ohm e as Leis de Kirchoff Sisemas Mecânicos Leis de Newon Enrada Descrição maemáica Saída 5 6

5 Conceios Básicos Equações Diferenciais Conceios Básicos : Exemplo Circuio RLC a d n y n d y a a dy ay b d m x m d x b b dx n n + n n = m m + m m bx d d d d d d y - saída do sisema x - enrada do sisema 7 8 Conceios Básicos : Exemplo Conceios Básicos : Exemplo Tabela - Relações Tensão-correne, Tensão-carga, e Impedâncias de capaciores, resisores e induores Componene Tensão-correne Correne-ensão Tensão-carga Impedância Zs = Vs/Is Admiância Ys = Is/Vs Circuio RLC di L + Ri + i τ dτ = v d C Induor Noa: ν = V vols, i = A ampères, q = Q coulombs, C = F farads, R = Ω ohms, G = mhos, L = H henries 9

6 Conceios Básicos : Exemplo Circuio RLC Mudança de variável correne para carga d q dq L + R + q = v d d C Conceios Básicos : Exemplo Circuio RLC Uilizando a relação ensão-carga da Tabela. q = Cv C d VC dvc LC + RC + v v C = d d Conceios Básicos : Exemplo Circuio RLC d LC v C dvc + RC + v v C d d = Conceios Básicos : Exemplo Circuio RLC d v dv LC C C + RC + v v C = d d Aplicar a 3 4

7 Méodo para solucionar equações diferenciais ordinárias Esquemaicamene É uma operação semelhane à ransformada logarímica Equações diferenciais são ransformadas em equações algébricas Realiza-se operações no domínio s Reorna ao domínio aravés da ransformada inversa 5 6 Maemáico francês LAPLACE invenou um méodo para resolver equações diferenciais da seguine forma Muliplica cada ermo da equação diferencial por e -s Inegra cada ermo em relação ao empo de ZERO a INFINITO s é uma consane de unidade /empo Conceios Básicos: F s s = L [ f ] = f e d Em que s = σ + jω é uma variável complexa Onde: Fs - símbolo da ransformada de Laplace f - função conínua em < < infinio L - operador de Laplace 7 8

8 Conceios Básicos: Transformada Inversa de Laplace L [ fs ] f = Conceios Básicos: Tabela de Onde: f - função que não é definida para < L - - operador da inversa de Laplace SOMA DE DUAS FUNÇÕES L[ + f ] = L[ f ] + L[ f ] = F s F s f + 3 FUNÇÃO COM ATRASO NO TEMPO = [ s ] L f e F s - MULTIPLICAÇÃO POR UMA CONSTANTE [ af ] = a f = af s L L[ ] s s s L[ f ] = f e d = e f e d s [ = ] L f e F s 3 3

9 4 DERIVADA PRIMEIRA DE UMA FUNÇÃO L df sf s f onde f f = : = = d 5 DERIVADA SEGUNDA DE UMA FUNÇÃO L d f d = s F s sf df d onde d : d f = df df L d d s s s = e d = f e d + f e = s f df L = sf s f d L [ f ] 33 φ = df φ s = sf s f d d f d d d s s = φ = φ φ L L[ ] 34 5 DERIVADA SEGUNDA DE UMA FUNÇÃO 6 DERIVADA N-ÉSIMA DE UMA FUNÇÃO d f L d = s [ sf s f ] φ = s F s sf f ' L d n n n n n d f s F s S f S d d f n =... f dd 35 36

10 Referências Bibliográficas BEGA, E. A. Organizador. Insrumenação Indusrial a. ed. Rio de Janeiro: Inerciência, p. FRANKLIN, G.F., POWELL, J.D., EMAMI-NAEINI, A. Feedback Conrol of Dynamic Sysems 3a. ed. USA: Addison-Wesley Publishing Company, p. GARCIA, CLAUDIO. Modelagem e Simulação a. ed. São Paulo: EDUSP, p. MARLIN, T. Process Conrol - Designing Processes and Conrol Sysems for Dynamics Performance a. ed. USA: McGraw-Hill, p. NISE, N.S. Engenharia de Sisemas de Conrole 3a. Edição ed. São Paulo: LTC,. 695 p. OGATA, K. Engenharia de Conrole Moderno 4a. ed. São Paulo: Pearson - Prenice Hall, p. 37

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

Tabela 1 Relações tensão-corrente, tensão-carga e impedância para capacitoers, resistores e indutores.

Tabela 1 Relações tensão-corrente, tensão-carga e impedância para capacitoers, resistores e indutores. Modelagem Maemáica MODELOS MATEMÁTICOS DE CIRCUITOS ELÉTRICOS O circuio equivalene à rede elérica com a quai rabalhamo coniem baicamene em rê componene lineare paivo: reiore, capaciore e induore. A Tabela

Leia mais

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3

INF Técnicas Digitais para Computação. Conceitos Básicos de Circuitos Elétricos. Aula 3 INF01 118 Técnicas Digiais para Compuação Conceios Básicos de Circuios Eléricos Aula 3 1. Fones de Tensão e Correne Fones são elemenos aivos, capazes de fornecer energia ao circuio, na forma de ensão e

Leia mais

Introdução às Medidas em Física

Introdução às Medidas em Física Inrodução às Medidas em Física 43152 Elisabeh Maeus Yoshimura emaeus@if.usp.br Bloco F Conjuno Alessandro Vola sl 18 agradecimenos a Nemiala Added por vários slides Conceios Básicos Lei Zero da Termodinâmica

Leia mais

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031

Universidade Federal do Rio Grande do Sul Escola de Engenharia de Porto Alegre Departamento de Engenharia Elétrica ANÁLISE DE CIRCUITOS II - ENG04031 Universidade Federal do io Grande do Sul Escola de Engenharia de Poro Alegre Deparameno de Engenharia Elérica ANÁLISE DE CICUITOS II - ENG43 Aula 5 - Condições Iniciais e Finais de Carga e Descarga em

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 1 3 quadrimestre 2012 EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares janeiro EN67 Transformadas em Sinais e Sisemas Lineares Lisa de Exercícios Suplemenares quadrimesre Figura Convolução (LATHI,

Leia mais

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus i Sinais e Sisemas (LERCI) o Exame 0 de Janeiro de 005 Noa: Resolva os problemas do exame em folhas separadas. Jusifique odas as resposas e explique os seus cálculos. Problema.. Represene graficamene o

Leia mais

Aula 04 Representação de Sistemas

Aula 04 Representação de Sistemas Aula 04 Representação de Sistemas Relação entre: Função de Transferência Transformada Laplace da saída y(t) - Transformada Laplace da entrada x(t) considerando condições iniciais nulas. Pierre Simon Laplace,

Leia mais

CIRCUITO RC SÉRIE. max

CIRCUITO RC SÉRIE. max ELETRICIDADE 1 CAPÍTULO 8 CIRCUITO RC SÉRIE Ese capíulo em por finalidade inroduzir o esudo de circuios que apresenem correnes eléricas variáveis no empo. Para ano, esudaremos o caso de circuios os quais

Leia mais

Circuitos Elétricos- módulo F4

Circuitos Elétricos- módulo F4 Circuios léricos- módulo F4 M 014 Correne elécrica A correne elécrica consise num movimeno orienado de poradores de cara elécrica por acção de forças elécricas. Os poradores de cara podem ser elecrões

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45

18 GABARITO 1 2 O DIA PROCESSO SELETIVO/2005 FÍSICA QUESTÕES DE 31 A 45 18 GABARITO 1 2 O DIA PROCESSO SELETIO/2005 ÍSICA QUESTÕES DE 31 A 45 31. O gálio é um meal cuja emperaura de fusão é aproximadamene o C. Um pequeno pedaço desse meal, a 0 o C, é colocado em um recipiene

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos

Transformadas de Laplace Engenharia Mecânica - FAENG. Prof. Josemar dos Santos Engenharia Mecânica - FAENG SISTEMAS DE CONTROLE Prof. Josemar dos Santos Sumário Transformadas de Laplace Teorema do Valor Final; Teorema do Valor Inicial; Transformada Inversa de Laplace; Expansão em

Leia mais

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz.

5.1 Objectivos. Caracterizar os métodos de detecção de valor eficaz. 5. PRINCÍPIOS DE MEDIÇÃO DE CORRENE, ENSÃO, POÊNCIA E ENERGIA 5. Objecivos Caracerizar os méodos de deecção de valor eficaz. Caracerizar os méodos de medição de poência e energia em correne conínua, correne

Leia mais

COMO CONHECER A DISTRIBUIÇÃO DE TEMPERATURA

COMO CONHECER A DISTRIBUIÇÃO DE TEMPERATURA ESUDO DA CONDUÇÃO DE CALOR OBJEIVOS - Deerminar a disribuição de emperaura em um meio - Calcular o fluo de calor usando a Lei de Fourier Aplicações: - Conhecer a ineridade esruural de um meio em aluns

Leia mais

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara

Instituto de Física USP. Física V - Aula 26. Professora: Mazé Bechara Insiuo de Física USP Física V - Aula 6 Professora: Mazé Bechara Aula 6 Bases da Mecânica quânica e equações de Schroedinger. Aplicação e inerpreações. 1. Ouros posulados da inerpreação de Max-Born para

Leia mais

ELETRÔNICA DE POTÊNCIA II

ELETRÔNICA DE POTÊNCIA II EETRÔNIA DE POTÊNIA II AUA 2 ONEROR BUK (sep-down) Prof. Marcio Kimpara UFM - Universidade Federal de Mao Grosso do ul FAENG Faculdade de Engenharias, Arquieura e Urbanismo e Geografia Aula Anerior...

Leia mais

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos

Capítulo 2: Conceitos Fundamentais sobre Circuitos Elétricos SETOR DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA ELÉTRICA TE041 Circuios Eléricos I Prof. Ewaldo L. M. Mehl Capíulo 2: Conceios Fundamenais sobre Circuios Eléricos 2.1. CARGA ELÉTRICA E CORRENTE ELÉTRICA

Leia mais

F B d E) F A. Considere:

F B d E) F A. Considere: 5. Dois corpos, e B, de massas m e m, respecivamene, enconram-se num deerminado insane separados por uma disância d em uma região do espaço em que a ineração ocorre apenas enre eles. onsidere F o módulo

Leia mais

Confiabilidade e Taxa de Falhas

Confiabilidade e Taxa de Falhas Prof. Lorí Viali, Dr. hp://www.pucrs.br/fama/viali/ viali@pucrs.br Definição A confiabilidade é a probabilidade de que de um sisema, equipameno ou componene desempenhe a função para o qual foi projeado

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

CONTROLE. Área de Ciências Exatas e Tecnologia Sub área de Computação. Programa da disciplina 2 o Semestre de Prof.

CONTROLE. Área de Ciências Exatas e Tecnologia Sub área de Computação. Programa da disciplina 2 o Semestre de Prof. Objetivos: CONTROLE Área de Ciências Exatas e Tecnologia Sub área de Computação Engenharia da Computação T7013A Programa da disciplina 2 o Semestre de 2008 Prof. Valdemir Carrara Conteúdo da disciplina

Leia mais

AULA PRÁTICA-TEÓRICA EXTRA SIMULAÇÃO DE CIRCUITOS COM MULTISIM

AULA PRÁTICA-TEÓRICA EXTRA SIMULAÇÃO DE CIRCUITOS COM MULTISIM INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA DEPARTAMENTO ACADÊMICO DE ELETRÔNICA CURSO TÉCNICO DE ELETRÔNICA Elerônica I AULA PRÁTICATEÓRICA EXTRA SIMULAÇÃO DE CIRCUITOS COM MULTISIM

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Primeira Lista de Exercícios

Primeira Lista de Exercícios TP30 Modulação Digial Prof.: MSc. Marcelo Carneiro de Paiva Primeira Lisa de Exercícios Caracerize: - Transmissão em Banda-Base (apresene um exemplo de especro de ransmissão). - Transmissão em Banda Passane

Leia mais

Noções de Espectro de Freqüência

Noções de Espectro de Freqüência MINISTÉRIO DA EDUCAÇÃO - Campus São José Curso de Telecomunicações Noções de Especro de Freqüência Marcos Moecke São José - SC, 6 SUMÁRIO 3. ESPECTROS DE FREQÜÊNCIAS 3. ANÁLISE DE SINAIS NO DOMÍNIO DA

Leia mais

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel

MATEMÁTICA APLICADA AO PLANEJAMENTO DA PRODUÇÃO E LOGÍSTICA. Silvio A. de Araujo Socorro Rangel MAEMÁICA APLICADA AO PLANEJAMENO DA PRODUÇÃO E LOGÍSICA Silvio A. de Araujo Socorro Rangel saraujo@ibilce.unesp.br, socorro@ibilce.unesp.br Apoio Financeiro: PROGRAMA Inrodução 1. Modelagem maemáica: conceios

Leia mais

Denominação O Problema Um pouco de História Motivação Pré-requisitos Conceitos Bibliografia Recursos na Internet C. Capítulo 1. Gustavo H. C.

Denominação O Problema Um pouco de História Motivação Pré-requisitos Conceitos Bibliografia Recursos na Internet C. Capítulo 1. Gustavo H. C. Capítulo 1 Introdução Gustavo H. C. Oliveira TE055 Teoria de Sistemas Lineares de Controle Dept. de Engenharia Elétrica / UFPR Gustavo H. C. Oliveira Introdução 1/32 Este material contém notas de aula

Leia mais

INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS

INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS INTRODUÇÃO ÀS EQUAÇÕES DIFERENCIAIS Gil da Cosa Marques Fundamenos de Maemáica I.1 Inrodução. Equações Diferenciais Lineares.3 Equações Lineares de Primeira ordem.3.1 Equações de Primeira ordem não homogêneas

Leia mais

Contabilometria. Séries Temporais

Contabilometria. Séries Temporais Conabilomeria Séries Temporais Fone: Corrar, L. J.; Theóphilo, C. R. Pesquisa Operacional para Decisão em Conabilidade e Adminisração, Ediora Alas, São Paulo, 2010 Cap. 4 Séries Temporais O que é? Um conjuno

Leia mais

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado

UNIDADE 2. t=0. Fig. 2.1-Circuito Com Indutor Pré-Carregado UNIDAD 2 CIRCUITOS BÁSICOS COM INTRRUPTORS 2.1 CIRCUITOS D PRIMIRA ORDM 2.1.1 Circuio com Induor PréCarregado em Série com Diodo Seja o circuio represenado na Fig. 2.1. D i =0 Fig. 2.1Circuio Com Induor

Leia mais

Proporcional, Integral e Derivativo

Proporcional, Integral e Derivativo Implemenação de um conrolador do ipo Proporcional, Inegral e Derivaivo num auómao programável e(k) PID u(k) U s min U s max u s ( pv( Moor ario velocidade Auomao programável Processo Aluno: José Lucas

Leia mais

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM

AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM AULA 22 PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 163 22. PROCESSO DE TORNEAMENTO: CONDIÇÕES ECONÔMICAS DE USINAGEM 22.1. Inrodução Na Seção 9.2 foi falado sobre os Parâmeros de Core e

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais

Capítulo Cálculo com funções vetoriais

Capítulo Cálculo com funções vetoriais Cálculo - Capíulo 6 - Cálculo com funções veoriais - versão 0/009 Capíulo 6 - Cálculo com funções veoriais 6 - Limies 63 - Significado geomérico da derivada 6 - Derivadas 64 - Regras de derivação Uiliaremos

Leia mais

Formas Quadráticas e Cônicas

Formas Quadráticas e Cônicas Formas Quadráicas e Cônicas Sela Zumerle Soares Anônio Carlos Nogueira (selazs@gmail.com) (anogueira@uu.br). Resumo Faculdade de Maemáica, UFU, MG Nesse rabalho preendemos apresenar alguns resulados da

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

Análise de séries de tempo: modelos de decomposição

Análise de séries de tempo: modelos de decomposição Análise de séries de empo: modelos de decomposição Profa. Dra. Liane Werner Séries de emporais - Inrodução Uma série emporal é qualquer conjuno de observações ordenadas no empo. Dados adminisraivos, econômicos,

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Conversores CC/CA. Nikolas Libert. Aula 12 Manutenção de Sistemas Eletrônicos Industriais ET54A Tecnologia em Automação Industrial

Conversores CC/CA. Nikolas Libert. Aula 12 Manutenção de Sistemas Eletrônicos Industriais ET54A Tecnologia em Automação Industrial Conversores CC/CA Nikolas Liber Aula 12 Manuenção de Sisemas lerônicos Indusriais T54A Tecnologia em Auomação Indusrial Conversores CC/CA Conversores CC/CA Circuios esáicos (sem peças móveis) para conversão

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 11º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tarefa de revisão nº 17 1. Uma empresa lançou um produo no mercado. Esudos efecuados permiiram concluir que a evolução do preço se aproxima do seguine modelo maemáico: 7 se 0 1 p() =, p em euros e em anos.

Leia mais

1 Movimento de uma Carga Pontual dentro de um Campo Elétrico

1 Movimento de uma Carga Pontual dentro de um Campo Elétrico Correne Elérica Movimeno de uma Carga Ponual denro de um Campo Elérico Uma carga elérica denro de um campo elérico esá sujeia a uma força igual a qe. Se nenhuma oura força aua sobre essa carga (considerar

Leia mais

Métodos de Modelagem Numérica

Métodos de Modelagem Numérica Disciplina: Méodos de Modelagem Numérica Enilson Palmeira Cavalcani enilson@dca.ucg.edu.br Universidade Federal de Campina Grande Cenro de Tecnologia e Recursos Naurais Unidade Acadêmica de Ciências Amoséricas

Leia mais

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou

6ROXomR: A aceleração das esferas é a mesma, g (aceleração da gravidade), como demonstrou 6ROXomR&RPHQWDGD3URYDGH)VLFD. O sisema inernacional de unidades e medidas uiliza vários prefixos associados à unidade-base. Esses prefixos indicam os múliplos decimais que são maiores ou menores do que

Leia mais

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque:

DEMOGRAFIA. Assim, no processo de planeamento é muito importante conhecer a POPULAÇÃO porque: DEMOGRAFIA Fone: Ferreira, J. Anunes Demografia, CESUR, Lisboa Inrodução A imporância da demografia no planeameno regional e urbano O processo de planeameno em como fim úlimo fomenar uma organização das

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA

CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA CINÉTICA QUÍMICA LEI DE VELOCIDADE - TEORIA Inrodução Ese arigo raa de um dos assunos mais recorrenes nas provas do IME e do ITA nos úlimos anos, que é a Cinéica Química. Aqui raamos principalmene dos

Leia mais

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc.

ECONOMETRIA. Prof. Patricia Maria Bortolon, D. Sc. ECONOMETRIA Prof. Paricia Maria Borolon, D. Sc. Séries Temporais Fone: GUJARATI; D. N. Economeria Básica: 4ª Edição. Rio de Janeiro. Elsevier- Campus, 2006 Processos Esocásicos É um conjuno de variáveis

Leia mais

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC)

Tópicos Especiais em Energia Elétrica (Projeto de Inversores e Conversores CC-CC) Deparameno de Engenharia Elérica Tópicos Especiais em Energia Elérica () ula 2.2 Projeo do Induor Prof. João mérico Vilela Projeo de Induores Definição do úcleo a Fig.1 pode ser observado o modelo de um

Leia mais

Método de integração por partes

Método de integração por partes Maemáica - 8/9 - Inegral de nido 77 Méodo de inegração or ares O méodo de inegração or ares é aenas uma "radução", em ermos de inegrais, do méodo de rimiivação or ares. Sejam f e g duas funções de nidas

Leia mais

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig.

Lista de Exercícios n o.1. 1) O diodo do circuito da Fig. 1(a) se comporta segundo a característica linearizada por partes da Fig 1(b). I D (ma) Fig. Universidade Federal da Bahia EE isposiivos Semiconduores ENG C41 Lisa de Exercícios n o.1 1) O diodo do circuio da Fig. 1 se compora segundo a caracerísica linearizada por pares da Fig 1. R R (ma) 2R

Leia mais

Características dos Processos ARMA

Características dos Processos ARMA Caracerísicas dos Processos ARMA Aula 0 Bueno, 0, Capíulos e 3 Enders, 009, Capíulo. a.6 Morein e Toloi, 006, Capíulo 5. Inrodução A expressão geral de uma série emporal, para o caso univariado, é dada

Leia mais

11 Conversores. Capítulo. Meta deste capítulo Estudar o princípio de funcionamento dos conversores cc-cc.

11 Conversores. Capítulo. Meta deste capítulo Estudar o princípio de funcionamento dos conversores cc-cc. 11 Conversores Capíulo CCCC Mea dese capíulo Esudar o princípio de funcionameno dos conversores cccc objeivos Enender o funcionameno dos conversores cccc; Enender os conceios básicos envolvidos com conversores

Leia mais

Amplificadores de potência de RF

Amplificadores de potência de RF Amplificadores de poência de RF Objeivo: Amplificar sinais de RF em níveis suficienes para a sua ransmissão (geralmene aravés de uma anena) com bom rendimeno energéico. R g P e RF P CC Amplificador de

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

METODOLOGIA DE SÍNTESE DE TOPOLOGIAS ZVT SIMPLIFICADAS APLICADAS A PÓLOS PWM BIDIRECIONAIS

METODOLOGIA DE SÍNTESE DE TOPOLOGIAS ZVT SIMPLIFICADAS APLICADAS A PÓLOS PWM BIDIRECIONAIS UNIVERSIDADE FEDERAL DE SANTA MARIA CENTRO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA METODOLOGIA DE SÍNTESE DE TOPOLOGIAS ZVT SIMPLIFICADAS APLICADAS A PÓLOS PWM BIDIRECIONAIS DISSERTAÇÃO

Leia mais

ESTUDO COMPARATIVO ENTRE OS MÉTODOS CONTÍNUO E BPZ DE ELEVAÇÃO ARTIFICIAL DE PETRÓLEO

ESTUDO COMPARATIVO ENTRE OS MÉTODOS CONTÍNUO E BPZ DE ELEVAÇÃO ARTIFICIAL DE PETRÓLEO ESTUDO COMPARATIVO ENTRE OS MÉTODOS CONTÍNUO E BPZ DE ELEVAÇÃO ARTIFICIAL DE PETRÓLEO M. F. C. SOUSA 1, W. R. S. CRUZ 2, R. A. MEDRONHO 3 e G. F. SILVA 4 1 Universidade Federal de Sergipe, Deparameno de

Leia mais

30/08/15' Incerteza- Padrão. Repetitividade. Estimativa da Repetitividade (para 95,45% de probabilidade) Estimativa da Repetitividade

30/08/15' Incerteza- Padrão. Repetitividade. Estimativa da Repetitividade (para 95,45% de probabilidade) Estimativa da Repetitividade Incereza- Padrão Repeiividade! A incereza padrão corresponde ao desvio-padrão (esimaiva do desvio-padrão da população) e deve ser associado a ela o número de graus de liberdade (reflee o grau de segurança

Leia mais

REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS

REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS REPRESENTAÇÃO DE SISTEMAS DINÂMICOS NA FORMA DO ESPAÇO DOS ESTADOS. Espaço dos estados Representação da dinâmica de um sistema de ordem n usando n equações diferenciais de primeira ordem. Sistema é escrito

Leia mais

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade

3 Retorno, Marcação a Mercado e Estimadores de Volatilidade eorno, Marcação a Mercado e Esimadores de Volailidade 3 3 eorno, Marcação a Mercado e Esimadores de Volailidade 3.. eorno de um Aivo Grande pare dos esudos envolve reorno ao invés de preços. Denre as principais

Leia mais

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA)

PEA LABORATÓRIO DE INSTALAÇÕES ELÉTRICAS I CONDUTORES E DISPOSITIVOS DE PROTEÇÃO (CDP_EA) PEA 40 - LAORAÓRO DE NSALAÇÕES ELÉRCAS CONDUORES E DSPOSVOS DE PROEÇÃO (CDP_EA) RELAÓRO - NOA... Grupo:...... Professor:...Daa:... Objeivo:..... MPORANE: Em odas as medições, o amperímero de alicae deverá

Leia mais

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva

UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA. Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva UNIVERSIDADE GAMA FILHO PROCET DEPARTAMENTO DE ENGENHARIA ELÉTRICA Disciplina de Controle II Prof. MC. Leonardo Gonsioroski da Silva 1. K. Ogata: Engenharia de Controle Moderno, 5 Ed., Pearson, 2011 2.

Leia mais

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial Programa de Pós-graduação em Engenharia de Produção Análise de séries de empo: modelos de suavização exponencial Profa. Dra. Liane Werner Séries emporais A maioria dos méodos de previsão se baseiam na

Leia mais

Tipos de Processos Estocásticos

Tipos de Processos Estocásticos Mesrado em Finanças e Economia Empresarial EPGE - FGV Derivaivos Pare 7: Inrodução ao álculo Diferencial Esocásico Derivaivos - Alexandre Lowenkron Pág. 1 Tipos de Processos Esocásicos Qualquer variável

Leia mais

3 Análise Não-Linear Geométrica

3 Análise Não-Linear Geométrica 3 Análise Não-inear Geomérica 3.1 Comenários Iniciais Ese capíulo começa com uma breve discussão sobre o comporameno não linear, o objeivo da análise não linear, e o seu lugar na engenharia esruural. As

Leia mais

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012

EN2607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 2012 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 fevereiro 03 EN607 Transformadas em Sinais e Sistemas Lineares Lista de Exercícios Suplementares 3 3 quadrimestre 0

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with -14-16 -18-20 -22-24 -26-28 -30-32 Frequency (khz) Hamming kaiser Chebyshev Sinais e Sistemas Power Spectral Density Env B F CS1 CS2 B F CS1 Ground Revolute Body Revolute1 Body1 Power/frequency (db/hz)

Leia mais

Introdução aos Circuitos Elétricos

Introdução aos Circuitos Elétricos Introdução aos Circuitos Elétricos A Transformada de Laplace Prof. Roberto Alves Braga Jr. Prof. Bruno Henrique Groenner Barbosa UFLA - Departamento de Engenharia A Transformada de Laplace História Pierri

Leia mais

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos.

4 Metodologia Proposta para o Cálculo do Valor de Opções Reais por Simulação Monte Carlo com Aproximação por Números Fuzzy e Algoritmos Genéticos. 4 Meodologia Proposa para o Cálculo do Valor de Opções Reais por Simulação Mone Carlo com Aproximação por Números Fuzzy e Algorimos Genéicos. 4.1. Inrodução Nese capíulo descreve-se em duas pares a meodologia

Leia mais

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1

Modelagem no Domínio da Frequência. Carlos Alexandre Mello. Carlos Alexandre Mello 1 Modelagem no Domínio da Frequência Carlos Alexandre Mello 1 Transformada de Laplace O que são Transformadas? Quais as mais comuns: Laplace Fourier Cosseno Wavelet... 2 Transformada de Laplace A transf.

Leia mais

CONCEITOS FUNDAMENTAIS

CONCEITOS FUNDAMENTAIS Projeo eenge - Eng. Elérica Apoila de Siema de Conrole I III- &$3Ì78/,,, CONCEITOS FUNDAMENTAIS 3.- INTODUÇÃO Inicialmene nee capíulo, euda-e o conceio de função de ranferência, o qual é a bae da eoria

Leia mais

Exemplos de fontes emissoras de ondas eletromagnéticas

Exemplos de fontes emissoras de ondas eletromagnéticas emplos de fones emissoras de ondas eleromagnéicas Luz visível emiida por um filameno de lâmpada incandescene missoras de rádio e TV Osciladores de micro-ondas Aparelhos de raios X Diferem enre si, apenas

Leia mais

MICROELETRÔNICA LISTA DE EXERCÍCIOS UNIDADE 2

MICROELETRÔNICA LISTA DE EXERCÍCIOS UNIDADE 2 MICROELETRÔNIC LIT E EXERCÍCIO UNIE 2 Fernando Moraes 18/JNEIRO/2016 LÓGIC INÂMIC 1) Explique a operação de poras com lógica dinâmica uilizando o exemplo ao lado. esenhe ambém um diagrama de empos mosrando

Leia mais

Pontifícia Universidade Católica de Goiás. Engenharia de Controle e Automação. Prof: Marcos Lajovic Carneiro Aluno (a):

Pontifícia Universidade Católica de Goiás. Engenharia de Controle e Automação. Prof: Marcos Lajovic Carneiro Aluno (a): Pontifícia Universidade Católica de Goiás Departamento de Engenharia Laboratório ENG 3502 Controle de Processos 01 Prof: Marcos Lajovic Carneiro Aluno (a): Aula Prática 01 Polinômios, frações parciais,

Leia mais

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III

UNIVERSIDADE DA BEIRA INTERIOR FACULDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III UNIVERSIDADE DA BEIRA INTERIOR FACUDADE DE CIÊNCIAS SOCIAIS E HUMANAS DEPARTAMENTO DE GESTÃO E ECONOMIA MACROECONOMIA III icenciaura de Economia (ºAno/1ºS) Ano ecivo 007/008 Caderno de Exercícios Nº 1

Leia mais

dipolar eléctrico de um cristal ferromagnético)

dipolar eléctrico de um cristal ferromagnético) Insrumenação Opoelecrónica 55 Tipos de foodeecores Deecores érmicos: Foodeecores Absorvem radiação luminosa e converem a energia elecromagnéica em energia érmica. O resulado desa conversão é um aumeno

Leia mais

Ciências do Ambiente

Ciências do Ambiente Universidade Federal do Paraná Engenharia Civil Ciências do Ambiene Aula 24 O meio aquáico III: Auodepuração 2º Semesre/ 205 Auodepuração de rios Auodepuração de rios Cinéica da desoxigenação O conceio

Leia mais

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIDADE ACADÊMICA DE ENGENHARIA ELÉTRICA

UNIVERSIDADE FEDERAL DE CAMPINA GRANDE CENTRO DE ENGENHARIA ELÉTRICA E INFORMÁTICA UNIDADE ACADÊMICA DE ENGENHARIA ELÉTRICA UNIVERSIDADE FEDERA DE AMPINA GRANDE ENTRO DE ENGENHARIA EÉTRIA E INFORMÁTIA UNIDADE AADÊMIA DE ENGENHARIA EÉTRIA PROGRAMA DE EDUAÇÃO TUTORIA PET Modelagem e Simulação de ircuios Eléricos Aluna: Bolsisa

Leia mais

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14

Sumário. CAPÍTULO 1 Introdução 1. CAPÍTULO 2 Terminologia dos Sistemas de Controle 14 Sumário CAPÍTULO 1 Introdução 1 1.1 Sistemas de controle 1 1.2 Exemplos de sistemas de controle 2 1.3 Sistemas de controle de malha aberta e malha fechada 3 1.4 Realimentação 3 1.5 Características da realimentação

Leia mais

Introdução ao estudo de Circuitos Lineares, Invariantes, Dinâmicos e de Parâmetros Concentrados usando o. Modelo de Estado. Análise de Circuitos

Introdução ao estudo de Circuitos Lineares, Invariantes, Dinâmicos e de Parâmetros Concentrados usando o. Modelo de Estado. Análise de Circuitos Inrodução ao esudo de ircuios Lineares, Invarianes, Dinâmicos e de Parâmeros oncenrados usando o Modelo de Esado Análise de ircuios ircuios Elecrónicos das Telecomunicações ircuios Lineares e Não-Lineares

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

TIR Taxa Interna de Retorno LCF Economia de Recursos Florestais 2009

TIR Taxa Interna de Retorno LCF Economia de Recursos Florestais 2009 TIR Taxa Inerna de Reorno LCF 685-Economia de Recursos Floresais 2009 TIR: Taxa Inerna de Reorno AT Taxa Inerna de Reorno (TIR)de um projeo é aquela que orna o valor presene das receias menos o valor presene

Leia mais

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M.

Matemática. Funções polinomiais. Ensino Profissional. Caro estudante. Maria Augusta Neves Albino Pereira António Leite Luís Guerreiro M. Ensino Profissional Maria Augusa Neves Albino Pereira Anónio Leie Luís Guerreiro M. Carlos Silva Maemáica Funções polinomiais Revisão cienífica Professor Douor Jorge Nuno Silva Faculdade de Ciências da

Leia mais

RELATIVIDADE ESPECIAL

RELATIVIDADE ESPECIAL 1 RELATIIDADE ESPECIAL AULA N O 5 ( Equações de Mawell em forma ensorial Equação da Coninuidade 4-veor densidade de correne) Anes de prosseguirmos com a Teoria da Relaividade, observando as consequências

Leia mais

FÍSICA II. Estudo de circuitos RC em corrente contínua

FÍSICA II. Estudo de circuitos RC em corrente contínua FÍSICA II GUIA DO 2º TRABALHO LABORATORIAL Esudo de circuios RC em correne conínua OBJECTIVOS Preende-se com ese rabalho que os alunos conacem com um circuio elécrico conendo resisências, condensadores

Leia mais

4 Modelagem e metodologia de pesquisa

4 Modelagem e metodologia de pesquisa 4 Modelagem e meodologia de pesquisa Nese capíulo será apresenada a meodologia adoada nese rabalho para a aplicação e desenvolvimeno de um modelo de programação maemáica linear misa, onde a função-objeivo,

Leia mais

Conceitos Básicos Circuitos Resistivos

Conceitos Básicos Circuitos Resistivos Conceios Básicos Circuios esisivos Elecrónica 005006 Arnaldo Baisa Elecrónica_biomed_ef Circuio Elécrico com uma Baeria e uma esisência I V V V I Lei de Ohm I0 V 0 i0 Movimeno Das Pás P >P P >P Líquido

Leia mais

Planejamento da Disciplina Controle e Servomecanismos I

Planejamento da Disciplina Controle e Servomecanismos I Planejamento da Disciplina Controle e Servomecanismos I Professor José Paulo Vilela Soares da Cunha 12 de abril de 2013 Identificação UERJ Faculdade de Engenharia Departamento de Eletrônica e Telecomunicações

Leia mais

MODELOS USADOS EM QUÍMICA: CINÉTICA NO NÍVEL SUPERIOR. Palavras-chave: Modelos; Cinética Química; Compostos de Coordenação.

MODELOS USADOS EM QUÍMICA: CINÉTICA NO NÍVEL SUPERIOR. Palavras-chave: Modelos; Cinética Química; Compostos de Coordenação. MDELS USADS EM QUÍMICA: CINÉTICA N NÍVEL SUPERIR André Luiz Barboza Formiga Deparameno de Química Fundamenal, Insiuo de Química, Universidade de São Paulo. C.P. 6077, CEP 05513-970, São Paulo, SP, Brasil.

Leia mais

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50

RASCUNHO. a) 120º10 b) 95º10 c) 120º d) 95º e) 110º50 ª QUESTÃO Uma deerminada cidade organizou uma olimpíada de maemáica e física, para os alunos do º ano do ensino médio local. Inscreveramse 6 alunos. No dia da aplicação das provas, consaouse que alunos

Leia mais

Prof. Dr.-Ing. João Paulo C. Lustosa da Costa. Universidade de Brasília (UnB) Departamento de Engenharia Elétrica (ENE)

Prof. Dr.-Ing. João Paulo C. Lustosa da Costa. Universidade de Brasília (UnB) Departamento de Engenharia Elétrica (ENE) Circuitos Elétricos 2 Circuitos Elétricos Aplicados Prof. Dr.-Ing. João Paulo C. Lustosa da Costa (UnB) Departamento de Engenharia Elétrica (ENE) Caixa Postal 4386 CEP 70.919-970, Brasília - DF Homepage:

Leia mais

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace

Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Sinais e Sistemas Unidade 5 Representação em domínio da frequência para sinais contínuos: Transformada de Laplace Prof. Cassiano Rech, Dr. Eng. rech.cassiano@gmail.com Prof. Rafael Concatto Beltrame, Me.

Leia mais

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa

CINÉTICA RADIOATIVA. Introdução. Tempo de meia-vida (t 1/2 ou P) Atividade Radioativa CIÉTIC RDIOTIV Inrodução Ese arigo em como objeivo analisar a velocidade dos diferenes processos radioaivos, no que chamamos de cinéica radioaiva. ão deixe de anes esudar o arigo anerior sobre radioaividade

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

Taxa de Paridade: Real (R$)/Dólar Americano (US$) - IPA-OG Índice Dez/98 = 100 Período: Mar/94 a Fev/2003

Taxa de Paridade: Real (R$)/Dólar Americano (US$) - IPA-OG Índice Dez/98 = 100 Período: Mar/94 a Fev/2003 80 Taxa de Pardade: Real (R$/Dólar Amercano (US$ - IPA-OG Índce Dez/98 00 Período: Mar/94 a Fev/2003 60 40 20 Índce 00 80 60 40 20 0 mar/94 jul/94 Fone: IPA nov/94 mar/95 jul/95 nov/95 mar/96 jul/96 nov/96

Leia mais