Área das figuras planas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Área das figuras planas"

Transcrição

1 AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine: a) a área de um terreno, de forma retangular, que tem m de frente (base) por m de fundos (altura); b) a altura de um retângulo cuja base mede cm e cuja área mede cm ; c) a base de um retângulo cuja altura mede m e cuja área mede 0m ; d) as dimensões de um retângulo cuja área mede cm, sabendo que a base é cm maior que a altura; e) o valor de um terreno, de forma retangular, que mede m de frente por m de fundos, sabendo que o metro está custando $,00. ) Calcule as áreas dos s cujos lados medem: a) cm b) 0m c),m ) m ) Determine: a) a área do cujo lado mede cm; b) a área do cuja diagonal mede cm; c) a área do cujo perímetro mede 0cm; d) a medida do lado do que tem área de m ; e) a medida da diagonal de um cuja área mede m. ) Calcule as áreas dos triângulos de base b e altura h nos seguintes casos: a) b = cm e h = cm b) b = dm e h =,dm c) b =,m e h = m d) b = cm e h = 7cm ) Calcule as áreas dos triângulos apresentados nas figuras: m cm cm m Área das figuras planas cm c m 7c m 7c m c m c m 7) esolva: a) Num triângulo, a medida do lado considerado como base é cm e a medida de altura relativa a esse lado é cm. Qual é a área desse triângulo? b) Num triângulo retângulo, os catetos medem m e m. Calcule a sua área. c) Num triângulo retângulo, a hipotenusa mede cm e um dos catetos mede cm. Calcule a área desse triângulo. d) Num triângulo retângulo, as projeções dos catetos sobre a hipotenusa medem cm e cm, respectivamente. Qual a sua área? e) Calcule a área de um triângulo equilátero de cm de lado. f) Calcule a área de um triângulo, sabendo que os lados medem mm, mm e mm. g) Num triângulo, a base mede 9m e a altura mede da base. Qual a área desse triângulo? h) Calcule a área de um triângulo isósceles, cujos lados medem 0cm, 0cm e cm. i) O lado de um triângulo equilátero mede cm. Se aumentamos o lado em cm, quanto aumenta sua área?. Calcule as áreas dos losangos de diagonal maior D e diagonal menor d, nos seguintes casos: a) D = cm e d = cm b) D = cm e d = cm c) D = 9m e d = m d) D = m e d = 7m 9. esolva: a) A área de um losango mede cm e a diagonal menor mede 7cm. Calcule a medida da diagonal maior. b) A diagonal maior de um losango mede cm e o seu lado mede 0cm. Qual é a sua área? c) Sabendo que o perímetro de um losango mede 00cm e que uma das diagonais mede 0cm, determine sua área. d) A Área de um losango é m e uma das diagonais mede m. Calcule o perímetro desse losango. e) Qual a área de um losango cujo perímetro é 0m e uma das diagonais é da outra? ua Baronesa, 70 - sala 0 - Praça Seca

2 0) Calcule as áreas dos trapézios de base maior B, base menor b e altura h, nos seguintes casos: a) B = m, b = m e h =,m b) B = cm, b = cm e h = cm c) B = cm, b = 0cm e h = cm ) esolva: a) Num trapézio, a base maior mede cm, a menor cm e a área, 90cm. Quanto mede a altura? b) A área de um trapézio é igual a 0dm e sua altura mede dm. Calcule as bases, sabendo que elas estão na razão. c) A altura de um trapézio mede 0cm e a base menor mede da maior. Calcule essas bases, sabendo que a área do trapézio é de 0cm. d) Um terreno tem a forma de um trapézio. Sua área é de m e sua altura mede,7m. Sabendo que uma das bases mede m, calcule a outra e) Num trapézio, a soma das bases é igual a 0cm. A base maior somada à altura é igual a 7cm, e a base menor somada à altura é igual a cm. Determine sua área. f) O perímetro de um trapézio isósceles é de m e a área de m. Sabendo que a altura mede m, calcule a medida dos lados não paralelos. ) Calcule as áreas das figuras abaixo (medidas em cm):,, ) Calcule as áreas hachuradas nas figuras abaixo (medidas em cm): forma s retâ ngula res 9 paralelogramo q ua d ra d os trapézios isósceles 7 ) Determine a área de: a) um retângulo de dimensões de 9m e m; b) um de cm de lado; c) um paralelogramo de dm de base e dm de altura; d) um losango de diagonais de 0mm e mm; e) um trapézio cujas bases valem cm e cm e cuja altura vale,cm; f) um triângulo de cm de base e cm de altura; g) um triângulo retângulo de catetos de m e m; h) um triângulo eqüilátero de cm de lado. ) esolva os problemas: a) A área de um retângulo mede m. Sabendo que a base mede 7m, determine a altura. b) A área de um é de cm. Determine o seu perímetro. c) A diagonal de um retângulo mede 0dm e um dos lados, dm. Qual a área desse retângulo? d) O perímetro de um retângulo mede 7cm e a base é o dobro da altura. Determine a sua área. e) Calcule a área de um cuja diagonal mede cm. f) Um triângulo tem 0m de área e m de altura. Qual a medida da base? g) A área de um triângulo é de 7cm. Calcule as medidas da base e da altura, sabendo que estão entre si como 7 está para. h) Um paralelogramo tem 0m de área. Sendo a razão entre as medidas da base e da altura, determine essas medidas. i) Um terreno de forma retangular tem m x 0m de dimensões. Uma casa, no interior desse terreno, ocupa uma área de m. Qual é a área livre do terreno? j) Um campo de futebol tem dimensões de 90m e 0m. Se o metro de grama custa $,00, quanto será gasto para gramar esse campo? ) esolva os problemas: ua Baronesa, 70 - sala 0 - Praça Seca

3 a) Calcule a área de um retângulo de dimensões 9cm e cm. b) A área de um retângulo é m. Suas dimensões são expressas por x e x - metros. Calcule as dimensões do retângulo. c) Qual é a área do que tem 0 cm de lado? d) A área do é m. Quanto mede o seu lado? e) Qual é a área de um inscrito numa circunferência de raio m? f) Num triângulo, a medida do lado é cm, e a altura relativa a esse lado mede cm. Calcule a área do triângulo. g) Qual é a área de um triângulo eqüilátero que tem 0cm de lado? h) Num triângulo retângulo, a hipotenusa mede a = 7 cm e um dos catetos mede b = cm. Determine a área desse triângulo. i) Num triângulo isósceles, a base mede cm e cada lado congruente mede cm. Qual a área do triângulo? j) Qual é a área do triângulo ABC cujos lados medem a =cm, b = 9cm e c = cm? l) Num losango, o lado mede m. A maior das diagonais mede m. Qual é a área do losango? m) As bases de um trapézio medem cm e 7cm. A altura mede cm. Calcule a área desse trapézio. n) Um hexágono regular está inscrito numa circunferência de raio m. Qual é a área desse hexágono? o) Calcule a área de um círculo de raio cm. p) A área de um círculo mede πcm. Quanto mede o diâmetro do círculo? q) O ângulo central de um setor circular mede 0 0. Se o raio da circunferência mede cm, calcule a área do setor. r) Uma coroa circular é determinada por duas circunferências concêntricas de raios cm e cm, respectivamente. Qual a área da coroa? s) Um e um retângulo são equivalentes (têm áreas iguais). As dimensões do retângulo são cm e cm. Quanto mede o lado do? t) Um triângulo tem a mesma área de um de lado a. Se a altura do triângulo mede a, quanto mede sua base? u) Um terreno de forma retangular tem 0m de frente por m de lateral. Qual é o preço do terreno, se o m está custando $00,00? v) Num terreno de 0m de lado, fezse uma casa que ocupa uma área de 0m de construção. Qual é a área livre do terreno? z) Um terreno retangular tem 0m por 0m. Nesse terreno, foram construídas 0 salas quadradas de 0m de lado cada uma. Qual a área livre do terreno? 7) Quantos m de azulejo são necessários para revestir até o teto as quatro paredes de uma cozinha, com as dimensões da figura abaixo? Sabese, também, que cada porta tem,0m de área e a janela tem uma área de m. m m,70m ) Uma metalúrgica utiliza chapas de aço quadradas de m de lado para recortar s de 0cm de lado. Ao sair da máquina, da chapa original sobra uma parte que é reaproveitada posteriormente. quantos m de chapa são reaproveitados? 0c m 0 m 9) Quantas telhas francesas são necessárias para cobrir as duas partes do telhado de uma casa, sabendo que as dimensões do telhado são 0m e m (em cada parte) e que para cada m de telhado são usadas 0 telhas? 0) Uma sala é retangular e suas dimensões são m de comprimento, m de largura e m de altura. Com uma lata de tinta, é possível pintar 0m das paredes dessa sala. quantos m de parede da sala faltam para ser pintados quando acabar a tinta da primeira lata? ) Calcule a área das seguintes figuras geométricas planas: a) retângulo b) d= h m L d = b = ua Baronesa, 70 - sala 0 - Praça Seca

4 0 h e) f) 9 L forma s retâ ng ula res 0 ) A figura ABCD é um retângulo de dimensões cm e cm. Sabendo que DM = MN = NC, calcule a área do trapézio ABMN. D M N C A B ) Ligando-se os centros de quatro circunferências, tangentes duas a duas, de mesmo raio m, encontramos um quadrilátero. Calcule a área desse quadrilátero. ) Na figura abaixo, qual é a área da parte hachurada? O ) Na figura, ABCD é um de lado cm e M, N, P e Q são os pontos médios dos seus lados. Calcule a área do MNPQ. D P C Q N a a ) Determine a área das figuras: a) trapézio retângulo b) trapézio isósceles ) Dado um de área cm, calcule: a) o comprimento da circunferência inscrita ao. b) o comprimento da circunferência circunscrita ao. 0) Calcule a área de um hexágono regular inscrito num círculo de diâmetro 0cm. ) Calcule a área do hexágono regular circunscrito a uma circunferência de comprimento 0πcm. ) Um hexágono regular tem área igual a cm. Calcule: a) o comprimento da circunferência circunscrita a ele; b) a área do círculo circunscrito a ele. ) Determine o raio do círculo cuja área é igual à de uma coroa circular de raios cm e cm. ) Determine a área da coroa nos casos: A M B ) Na figura, ABCD é um de lado m. Qual é a área da região hachurada? D C A 7) Na figura abaixo, a = cm. Calcule a área da região hachurada. B r 0 ) Determine a área da parte hachurada, nas figuras abaixo: a) cm x arcos de círculo ua Baronesa, 70 - sala 0 - Praça Seca

5 b) cm i) 9m arcos de círculo m raio cm c m 0 0 ) Calcule a área dos paralelogramos das figuras: c m m m c m c m e) 0 7 x f) cm 7) Ache a área da figura abaixo: B C AG = 0cm FD = cm A G FB = cm CE = cm D AG // FD F E BC // EF ) Qual é a área de um triângulo eqüilátero cujo perímetro é 0dm? 9) Qual é a área de um triângulo eqüilátero inscrito numa circunferência de raio 0cm? 0) Sabendo que a área do triângulo da figura é igual a m, calcule as medidas dos seus lados. x x + g) h) 0 x 0 7 x x + ) Determine o perímetro de um triângulo retângulo de 0m de área e inscrito numa circunferência de,m de raio. ) Num triângulo isósceles, os lados iguais medem 0m cada um e a projeção de um desses lados sobre o terceiro lado mede m. Calcule a á- rea desse triângulo. ) A área da figura hachurada é 0cm. Calcule o lado L do. L L L L 0 7 x ua Baronesa, 70 - sala 0 - Praça Seca

6 ) Calcule a área do triângulo representado na figura a seguir ) Calcule a área da região hachurada, sabendo que é parte de semicírculos e um trapézio isósceles. (π =,) ) Ache a área do polígono hachurado na figura, construído a partir de dois triângulos eqüiláteros. L L L L ) Na figura representada a seguir, ABCD é um de lado cm e A é o centro do círculo. Calcule a área da região hachurada. C B D A ) Num triângulo retângulo, os lados são proporcionais a, e. Sabendo que o perímetro é 0m, determine a área desse retângulo. 7) Ache a área de um triângulo retângulo, sabendo que a hipotenusa mede m e o perímetro m. ) A região hachurada da figura é limitada por arcos de circunferência centrados nos vértices de um de lado 0cm. Calcule. (π =,) ) Ache a área da região hachurada da figura, sendo = m e = m. ) Calcule a área hachurada da figura. O 9) Calcule a área das figuras hachuradas: (π =,) 0 x 0m 0cm 0m 0cm 0) Sabendo que r = 0cm, calcule a área da região hachurada. (π =,) r r r r espostas ua Baronesa, 70 - sala 0 - Praça Seca

7 ) a) cm b) dm c) 0m d),m ) a) 0m b) cm c) m d) b = 7cm; h = cm e) $,00 ) a) cm b) 00m c),m d) m ) a) 0cm b) 9cm c) cm d) m e) m ) a) cm b) dm c),m d) cm ) a) m b) cm c) cm d) 0cm 7) a) 0cm b) m c) 0cm d) cm e) cm f) mm g) 7m h) cm i) cm ) a) cm b) cm c) m d),m 9) a) cm b) 9cm c) 00cm d) 0m e) 9m 0) a) m b) 0cm c) 0cm ) a) cm b) dm; dm c) cm e 0cm d) m e) 0cm f) m ) ua e 0ua ) a) ua b) ua c) 9 ua d) 0, ua ) a) m b) 0cm c) 0dm d) 0mm e) cm f) cm g) m h) cm ) a) m b) cm c) dm d) cm e) cm f) m g) b = cm; h = cm h) b = m; h = m i) m j) $.000,00 ) a) cm b) 7m e m c) 00cm d) m e) m f) 0cm g) 00 cm h) cm i) cm j) cm l) m m) 0cm n) m o) 0πcm ou,cm p) cm π q) cm r) πcm s) cm t) a u) $.000,00 v) 0m x) 7m z) 000m 7),m ) 0,9m 9) 00 0) m ) a) b) c) 9 d) e) 79 f) ) 0cm ) m π ) ) cm ) ( - π)m π 7) cm ) a) b) 9 9) πcm 0) 0 cm ) 00 cm ) a) πcm b) πcm ) cm ) a) πm b) πm ) a) (π-)cm b) (π - )cm c) ( -π)cm d) πcm e) f), g), h), i) m ) a) cm b) cm 7) cm ) dm 9) 7 cm 0) m, m e 0m ) 0m ) m ) cm ) ( + ) ) l ) 0m 7) m ) cm 9) a) 7, cm b) cm 0) cm ) 0, ) π - ) π ), ua Baronesa, 70 - sala 0 - Praça Seca

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2.

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2. 1. Encontre a área de um losango qualquer em função de suas diagonais. 2. Se dois triângulos ABC e DEF são semelhantes com razão de semelhança k, mostre que A ABC A DEF = k 2. 3. Na figura 1, ABCD e EF

Leia mais

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A Segmento: ENSINO MÉDIO Disciplina: GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/017 Turma: A POLÍGONOS REGULARES 1) Considere um quadrado com 3 cm de lado, inscrito em um círculo.

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo

Leia mais

ÁREAS. Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

ÁREAS. Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1 A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade O quadrilátero ABCD,

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos. ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do

Leia mais

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir.

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercícios Propostos Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercício 2: As bissetrizes de dois ângulos adjacentes AÔB e BÔC são,

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega

Leia mais

QUESTÃO 03 (OBMEP) Os quadrados abaixo tem todos o mesmo tamanho. Em qual deles a região sombreada tem a maior área?

QUESTÃO 03 (OBMEP) Os quadrados abaixo tem todos o mesmo tamanho. Em qual deles a região sombreada tem a maior área? / /017 QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. Considere que cada quadrícula da malha equivale

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO

CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO CRONOGRAMA DE RECUPERAÇÃO SÉRIE: 1ª série do EM DISCIPLINA: MATEMÁTICA 2 Cadernos Assuntos 3 e 4 Áreas e perímetros de figuras planas Lei dos senos e cossenos Trigonometria no triângulo retângulo Teorema

Leia mais

-1,05 7,61m 2. cm, é dada por. ö ç ø. 3 = ,8 m Þ AC F = 60. Resposta da questão 1:[D]

-1,05  7,61m 2. cm, é dada por. ö ç ø. 3 = ,8 m Þ AC F = 60. Resposta da questão 1:[D] Resposta da questão 1:[D] h 3 Sabendo que a área S de um triângulo equilátero de altura h é dada por S, tem-se que o resultado pedido é 3 igual a (,5) 1,7-1,05,5 @ 10, -,63 @ 7,61m. 3 Resposta da questão

Leia mais

Na figura: AC = 6 e BC = 2 3. Traçando CE e escrevendo BE = 54 AE, tem-se que

Na figura: AC = 6 e BC = 2 3. Traçando CE e escrevendo BE = 54 AE, tem-se que Resposta da questão 1: [B] A figura apresenta um arco de circunferência com um quadrado inscrito e um triângulo retângulo em um de seus lados. O lado do quadrado é igual a hipotenusa do triângulo. Pelo

Leia mais

LISTA DE EXERCÍCIO GEOMETRIA PLANA

LISTA DE EXERCÍCIO GEOMETRIA PLANA QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. LISTA DE EXECÍCIO GEOMETIA PLANA Considere que

Leia mais

CENTRO EDUCACIONAL SESC CIDADANIA

CENTRO EDUCACIONAL SESC CIDADANIA CENTRO EDUCACIONAL SESC CIDADANIA Prof. (a): Heloísa Andréia LRR MATEMÁTICA III 2º TRIMESTRE Se não existe esforço, não existe progresso (F. Douglas) ENSINO MÉDIO Aluno(a): SÉRIE 3ª TURMA DATA: / /2017

Leia mais

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico UNIVERSIDADE ESTADUAL VALE DO ACARAÚ- UVA DEPARTAMENTO DE MATEMÁTICA Desenho Geométrico Desenho Geométrico Desenho Geométrico Desenho Geometrico Daniel Caetano de Figueiredo Daniel Caetano de Figueiredo

Leia mais

Roteiro de Estudos - RECUPERAÇÃO FINAL

Roteiro de Estudos - RECUPERAÇÃO FINAL Roteiro de Estudos - RECUPERAÇÃO FINAL Nome completo: nº Disciplina: Geometria Ano: 9 Data: / / Professor: André Moreira Instruções Gerais: 1) Leia atentamente as questões. Confira sempre os resultados

Leia mais

Exercícios de Geometria Plana Tchê Concursos Prof. Diego

Exercícios de Geometria Plana Tchê Concursos Prof. Diego (001). Se a diferença entre o número de diagonais de dois polígonos convexos é 30 e um deles tem 5 lados a mais que o outro, então o número de lados de cada um dos polígonos é: (A) 5 e 10 (B) 6 e 11 (C)

Leia mais

GGM /10/2010 Turma M2

GGM /10/2010 Turma M2 GGM00161-28/10/2010 Turma M2 Superfície retangular: Considere como unidade a superfície de um quadrado de lado u: E o retângulo de dimensão 5u e 3u: Superfície retangular: Considere como unidade a superfície

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

AM relativa ao vértice A que medem respectivamente 10 cm e 12 cm. Calcule a medida do raio. (R. 3 cm)

AM relativa ao vértice A que medem respectivamente 10 cm e 12 cm. Calcule a medida do raio. (R. 3 cm) LISTA GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 8. Na figura, a reta r é tangente às circunferências de centros A e B e raios cm e cm, respectivamente, nos pontos C e D, e a distância entre os centros

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Unifesp 2004) As figuras A e B representam dois retângulos de perímetros iguais a 100 cm, porém de áreas diferentes, iguais a 400 cm e 600 cm, respectivamente. A figura C exibe

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA

VESTIBULAR UFPE UFRPE / ª ETAPA VSTIULR UFP UFRP / 1999 2ª TP NOM O LUNO: SOL: SÉRI: TURM: MTMÁTI 2 01. O triângulo da ilustração abaixo é isósceles ( = ) e = = (isto é,, trissectam ): nalise as afirmações: 0-0) Os ângulos, e são congruentes.

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência Circunferência e círculo Circunferência de centro O e raio r é o lugar geométrico dos pontos do plano que estão a uma distância r do ponto O. Observação O conjunto constituído dos pontos de uma circunferência

Leia mais

AULA 01 GEOMETRIA PLANA 25º 130º. AB é paralelo a CG. a) 115 b) 65 c) 130 d) 95 e) 125

AULA 01 GEOMETRIA PLANA 25º 130º. AB é paralelo a CG. a) 115 b) 65 c) 130 d) 95 e) 125 UL 01 GEOMETRI PLN 01) Determine o valor de x na figura abaixo: 5º r// s a) 115 b) 65 c) 10 d) 95 e) 15 05) ( OM-006 ). Três quadrados são colados pelos seus vértices entre si e a dois bastões verticais,

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013 CÁLCULO DE ÁREA DAS FIGURAS PLANAS Professor: Marcelo Silva Natal-RN, agosto de 013 ÁREA A reunião de um polígono com sua região interior é denominada superfície do polígono. A medida da superfície é expressa

Leia mais

SEMELHANÇA DE TRIÂNGULOS

SEMELHANÇA DE TRIÂNGULOS SEMELHANÇA DE TRIÂNGULOS 01. Na figura as retas r, s, t e u são paralelas. Sabendo que AB = 8; BC = 9; CD = 10; CG = x; CF = y e EF = k (x + y), determine k. a) 19 8 b) 19 9 c) 1 17 d) 7 7 8 0. Na figura,

Leia mais

SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012

SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 SAGRADO REDE DE EDUCAÇÃO PROFESSORA :MÁRCIA CONTE 3º ANO ENSINO MÉDIO 2012 -POLÍGONOS REGULARES -APÓTEMAS DE BASES REGULARES -PONTOS NOTÁVEIS NO TRIÂNGULO -COMPRIMENTO DA CIRCUNFERÊNCIA -ÁREA DO CÍRCULO

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

2. (Pucrj 2013) O retângulo DEFG está inscrito no triângulo isósceles ABC, como na figura abaixo: Utilize 1,7 como aproximação para 3.

2. (Pucrj 2013) O retângulo DEFG está inscrito no triângulo isósceles ABC, como na figura abaixo: Utilize 1,7 como aproximação para 3. 1. A soma das medidas dos ângulos internos de um triângulo é 180º. A soma das medidas dos ângulos internos de um hexágono é: a) 180º b) 360º c) 540º d) 70º e) 900º 4. (Enem 013) Em um sistema de dutos,

Leia mais

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x?

01- Assunto: Equação do 2º grau. Se do quadrado de um número real positivo x subtrairmos 4 unidades, vamos obter o número 140. Qual é o número x? EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - ª ETAPA ============================================================================================== 01- Assunto: Equação do º grau.

Leia mais

2. (Fgv 2005) a) Obtenha a área de um triângulo eqüilátero em função da medida h da altura.

2. (Fgv 2005) a) Obtenha a área de um triângulo eqüilátero em função da medida h da altura. 1 Projeto Jovem Nota 10 1. (Uerj 2004) No triângulo ABC abaixo, os lados BC, AC e AB medem, respectivamente, a, b e c. As medianas AE e BD relativas aos lados BC e AC interceptam-se ortogonalmente no ponto

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção

Leia mais

ATIVIDADES COM GEOPLANO CIRCULAR

ATIVIDADES COM GEOPLANO CIRCULAR ATIVIDADES COM GEOPLANO CIRCULAR Observações. O geoplano circular utilizado tem 24 pinos no círculo. Os pinos do geoplano circular são chamados de pontos. Os pontos do círculo são enumerados de 1 até 24

Leia mais

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas)

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) DEPARTAMENTO DE MATEMÁTICA PROFª VALÉRIA NAVARRO ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) 1. (G1 - cftrj 014) Na figura abaixo,

Leia mais

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI 01.: (FATEC) Um terreno retangular tem 170 m de perímetro. e a razão entre as medidas dos lados é 0,7, então a área desse terreno, em metros quadrados, é igual a: a) 7000 b) 5670 c) 4480 d) 1750 e) 1120

Leia mais

CIRCUNFERÊNCIA E CÍRCULO

CIRCUNFERÊNCIA E CÍRCULO IRUNFRÊNI ÍRUL 01 ( FUVST) medida do ângulo ˆ inscrito na circunferência de centro é, em graus, ) 100 ) 110 ) 10 ) 15 35º 0 0 ( U ) bserve a figura. la mostra dois círculos de mesmo raio com centros em

Leia mais

FIGURAS PLANAS E O CÁLCULO DE ÁREAS

FIGURAS PLANAS E O CÁLCULO DE ÁREAS unifmu Nome: Professor: Ricardo Luís de Souza Curso de Design Matemática Aplicada Atividade Exploratória III Turma: Data: FIGURAS PLANAS E O CÁLCULO DE ÁREAS Objetivo: Rever o conceito de área de figuras

Leia mais

30's Volume 9 Matemática

30's Volume 9 Matemática 30's Volume 9 Matemática www.cursomentor.com 20 de janeiro de 201 Q1. Uma pessoa adulta possui aproximadamente litros de sangue. Em uma pessoa saudável, 1 mm 3 de sangue possui, aproximadamente: milhões

Leia mais

A área construída da bandeirinha APBCD, em cm 2, é igual a: a) b) c) d)

A área construída da bandeirinha APBCD, em cm 2, é igual a: a) b) c) d) 1 Para confeccionar uma bandeirinha de festa junina, utilizou-se um pedaço de papel com 10 cm de largura e 15 cm de comprimento, obedecendo-se às instruções abaixo 1 Dobrar o papel ao meio, Dobrar a ponta

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA 11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 9R Ensino Médio Equipe de Matemática Data: Áreas de Figuras Planas MATEMÁTICA O estudo da área de figuras planas está ligado aos conceitos relacionados à Geometria

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

Nome: nº Data: / / Professor Gustavo - Ensino Fundamental II - 8º ano FICHA DE ESTUDO

Nome: nº Data: / / Professor Gustavo - Ensino Fundamental II - 8º ano FICHA DE ESTUDO Nome: nº Data: / / Professor Gustavo - Ensino Fundamental II - 8º ano FICHA DE ESTUDO 1) Na figura abaixo, C é ponto médio do segmento AB, e B é ponto médio do segmento CD. Se AB mede 12 cm, quanto mede

Leia mais

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial

Leia mais

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Desenho Técnico Material de aula Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Geometria Conversão de unidades Polígonos e sólidos Escala Desenho

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

Geometria Plana Exercícios de Áreas e Razão entre Áreas

Geometria Plana Exercícios de Áreas e Razão entre Áreas Prof. Marcelo ampos Silva - marcelocs00@gmail.com Geometria Plana Exercícios de Áreas e Razão entre Áreas 0 - s figuras abaixo representam, respectivamente, um terreno com área de.000 m e uma maquete do

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros

MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira. MÓDULO 5 Quadriláteros MATEMÁTICA 3 GEOMETRIA PLANA Professor Renato Madeira MÓDULO 5 Quadriláteros Os dois dias mais importantes da sua vida são o dia em que você nasceu e o dia em que você descobre o porquê. (Mark Twain) SUMÁRIO

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5

ÍNDICE: Relações Métricas num Triângulo Retângulo página: 2. Triângulo Retângulo página: 4. Áreas de Polígonos página: 5 ÍNDICE: Relações Métricas num Triângulo Retângulo página: Triângulo Retângulo página: 4 Áreas de Polígonos página: 5 Área do Círculo e suas partes página: 11 Razão entre áreas de figuras planas semelhantes

Leia mais

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Nome: Nº: Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Polígonos: - nomenclatura.

Leia mais

Encontro 6: Áreas e perímetros - resolução de exercícios

Encontro 6: Áreas e perímetros - resolução de exercícios Encontro 6: Áreas e perímetros - resolução de exercícios Recapitulando... Área de um triângulo retângulo Área de um paralelogramo Á. 2 Á. Todos os paralelogramos de mesma base e mesma altura possuem áreas

Leia mais

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios

Leia mais

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é:

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: Lista de Exercícios: Geometria Plana Questão 1 Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: A( ) 20 cm 2. B( ) 10 cm 2. C( ) 24 cm 2. D( )

Leia mais

6. ( CN - 83 ) Se o lado de um quadrado aumentar de 30% de seu comprimento, a sua área aumentará de: A) 55% B) 47% C) 30% D) 69% E) 90%

6. ( CN - 83 ) Se o lado de um quadrado aumentar de 30% de seu comprimento, a sua área aumentará de: A) 55% B) 47% C) 30% D) 69% E) 90% 1 1. ( CN - 8 ) Duas retas tangenciam uma circunferência, de centro P e 8cm de raio, nos pontos R e S. O ângulo entre essas tangentes é de 10. A área do triângulo PRS em cm, é: 16 B) 16 C) 16 D) 8 E) 8.

Leia mais

Lista de Recuperação Bimestral de Matemática 2

Lista de Recuperação Bimestral de Matemática 2 Lista de Recuperação Bimestral de Matemática NOME Nº SÉRIE: DATA / /01 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática VISTO COORDENAÇÃO INSTRUÇÕES EM Visto: 1) Preencha seu nome número e série

Leia mais

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3. 1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o

Leia mais

LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio

LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 11. Em cada uma das figuras, o centro da circunferência é O. Calcule o valor de x. (a) 35 b) 70 ) a) b) 01. Qual é o polígono cuja soma dos ângulos

Leia mais

PARTE 1. 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5

PARTE 1. 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5 ENSINO FUNDAMENTAL 9º ano LISTA DE EXERCÍCIOS PT 3º TRIM PROF. MARCELO DISCIPLINA : MATEMÁTICA PARTE 1 1) Calcule a soma dos catetos do triângulo retângulo da figura, sabendo que AB = 10 e 4 cosx 5 ) Para

Leia mais

Aula 11 Polígonos Regulares

Aula 11 Polígonos Regulares MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre

Leia mais

Professor: Pedro Ítallo (UFSCar SP) Em um terreno retangular com 20 m de comprimento por 15 m de largura, foi feito um gramado com área igual a

Professor: Pedro Ítallo (UFSCar SP) Em um terreno retangular com 20 m de comprimento por 15 m de largura, foi feito um gramado com área igual a Professor: Pedro Ítallo 01 - (UFSCar SP) Em um terreno retangular com 0 m de comprimento por 15 m de largura, foi feito um gramado com área igual a 1 4 da área de um círculo de 10 m de raio, conforme mostra

Leia mais

EMENTA ESCOLAR III Trimestre Ano 2014

EMENTA ESCOLAR III Trimestre Ano 2014 EMENTA ESCOLAR III Trimestre Ano 2014 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 8 ano do Ensino Fundamental II Data 16/setembro 18/setembro 19/setembro 23/setembro 25/setembro 26/setembro

Leia mais

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - N1M2 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Áreas - capítulo 2 da apostila

Leia mais

01 - (UNICAMP SP/2013/1ª Fase) O segmento AB é o diâmetro de um semicírculo e a base de um triângulo isósceles ABC, conforme a figura abaixo.

01 - (UNICAMP SP/2013/1ª Fase) O segmento AB é o diâmetro de um semicírculo e a base de um triângulo isósceles ABC, conforme a figura abaixo. 01 - (UNICAMP SP/01/1ª Fase) O segmento AB é o diâmetro de um semicírculo e a base de um triângulo isósceles ABC, conforme a figura abaixo. Denotando as áreas das regiões semicircular e triangular, respectivamente,

Leia mais

EXERCICIOS - ÁREAS E ÂNGULOS:

EXERCICIOS - ÁREAS E ÂNGULOS: EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos

Leia mais

Exercício 1) Uma praça circular tem 200 m de raio. Quantos metros de grade serão necessários para cerca-la?

Exercício 1) Uma praça circular tem 200 m de raio. Quantos metros de grade serão necessários para cerca-la? O círculo e o número π As formas circulares aparecem com freqüência nas construções e nos objetos presente em nosso mundo. As formas circulares estão presentes: nas moedas, nos discos, roda do carro...

Leia mais

COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO

COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO Série: 9ºANO Turma: Disciplina: GEOMETRIA Professor: Mozart William EXERCÍCIO DE FIXAÇÃO II SEMESTRE 1) Num triângulo retângulo, a razão entre as projeções dos catetos sobre a hipotenusa é 16 9. Sabendo

Leia mais

Áreas parte 1. Rodrigo Lucio Silva Isabelle Araújo

Áreas parte 1. Rodrigo Lucio Silva Isabelle Araújo Áreas parte 1 Rodrigo Lucio Silva Isabelle Araújo Introdução Desde os egípcios, que procuravam medir e demarcar suas terras, até hoje, quando topógrafos, engenheiros e arquitetos fazem seus mapeamentos

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

esquerda e repetia esse processo até chegar ao ponto A novamente. a) Faça um esboço dessa figura com os três primeiros segmentos.

esquerda e repetia esse processo até chegar ao ponto A novamente. a) Faça um esboço dessa figura com os três primeiros segmentos. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 8º ANO REVISÃO 1) A medida de um ângulo interno de um polígono é o dobro da medida do seu ângulo externo. Qual

Leia mais

Geometria Euclidiana Plana

Geometria Euclidiana Plana CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 014. Geometria Euclidiana Plana Parte II Joyce Danielle de Araújo - Engenharia de Produção Vitor Bruno - Engenharia Civil Introdução Desde os egípcios,

Leia mais

RETAS E CIRCUNFERÊNCIAS

RETAS E CIRCUNFERÊNCIAS RETAS E CIRCUNFERÊNCIAS Diâmetro Corda que passa pelo centro da circunferência [EF] e [GH] Raio Segmento de reta que une o centro a um ponto da circunferência [OD] [AB], [IJ], [GH], são cordas - segmentos

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

Geometria Plana. Exterior do ângulo Ô:

Geometria Plana. Exterior do ângulo Ô: Geometria Plana Ângulo é a união de duas semiretas de mesma origem, não sendo colineares. Interior do ângulo Ô: Exterior do ângulo Ô: Dois ângulos são consecutivos se, e somente se, apresentarem um lado

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados: Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO ======================================================================= 1) (FUVEST-SP) - Dados: MÔB

Leia mais

BANCO DE EXERCÍCIOS - 24 HORAS

BANCO DE EXERCÍCIOS - 24 HORAS BANCO DE EXERCÍCIOS - 4 HORAS 9º ANO ESPECIALIZADO/CURSO ESCOLAS TÉCNICAS E MILITARES FOLHA Nº 14 EXERCÍCIOS 01) A figura abaixo mostra um semicírculo com diâmetro O AB = 1. Sabendo-se que o arco AC mede

Leia mais

Grupo de exercícios I - Geometria plana- Professor Xanchão

Grupo de exercícios I - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos

Leia mais

Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS

Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS Nome: nº Data: / / Professor: Lucas Factor Curso/Série 8º Ano Ensino Fundamental II Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS Os cálculos de perímetro e área são necessários, seja para a compra de um

Leia mais

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais

Leia mais