FIGURAS PLANAS E O CÁLCULO DE ÁREAS

Save this PDF as:
Tamanho: px
Começar a partir da página:

Download "FIGURAS PLANAS E O CÁLCULO DE ÁREAS"

Transcrição

1 unifmu Nome: Professor: Ricardo Luís de Souza Curso de Design Matemática Aplicada Atividade Exploratória III Turma: Data: FIGURAS PLANAS E O CÁLCULO DE ÁREAS Objetivo: Rever o conceito de área de figuras planas geométricas e orgânicas, desenvolver métodos para a determinação dessas áreas e utilizar esses conceitos em projetos gráficos ou de produto. Instruções: 1. A atividade faz parte da avaliação continuada e vale três pontos.. Ela deve ser feita em dupla e entregue ao professor apenas uma atividade por dupla, na data estipulada. 3. A atividade deverá ser entregue grampeada, ou seja, folhas soltas não serão aceitas. 4. Cada aluno deve fazer as anotações em sua folha, pois a finalidade do material é desenvolver a habilidade de interpretação de texto, possibilitar a compreensão do conteúdo e servirá como material de estudo. 5. Discuta suas dúvidas primeiramente com seu colega, caso não tenham compreendido o que foi solicitado ou tenham opiniões divergentes solicitem o auxílio do professor. 6. O gabarito da atividade será enviado aos alunos por . BOA ATIVIDADE! Área de Figuras Planas Chama-se de superfície S uma região plana delimitada por uma linha fechada. A área A será um número real positivo associado a essa superfície com a finalidade de quantificá-la, através de uma unidade de área. Algumas fórmulas para o cálculo de áreas de figuras planas Nomenclatura (referência aos comprimentos dos segmentos). b : base ( b base menor quando B é a base maior), h : altura, l : lado, D : diagonal maior, d : diagonal menor, r : raio, E : metade do eixo maior, e : metade do eixo menor. Fórmulas Retângulo e Paralelogramo: A= b h Quadrado: A= l b h Triângulo: A =, para triângulo equilátero: ( B+ b) h Trapézio: A = D d Losango: A = Círculo: A= π r α Setor com ângulo qualquer α: A = π r 360 Elipse: A= π E e l A = 3 4 1

2 Exercícios: 1. Esboce as seguintes figuras e calcule sua área: a) Retângulo de lados 13 cm e 7 cm. b) Paralelogramo com base 13 cm e altura de 5 cm. c) Quadrado de lado 8 cm. d) Triângulo qualquer cuja base mede 1 cm e a altura 7 cm. e) Triângulo equilátero cujos lados medem 8 cm. f) Triângulo retângulo de catetos 5 cm e 1 cm e hipotenusa 13 cm. g) Losango cujas diagonais medem 4 cm e 5 cm.

3 h) Trapézio com bases medindo 8 cm e 5 cm e altura 6 cm. i) Trapézio isósceles com bases medindo 10 cm e 4 cm e lados não paralelos medindo 5 cm. j) Círculo com 5 cm de raio. k) Semicircunferência com 1 cm de raio. l) Elipse com eixos medindo 1 cm e 8 cm.. Numa cozinha de 3,0 m de comprimento,,0 m de largura e,8 m de altura, as portas e janelas ocupam uma área de 4,0 m. Para azulejar as quatro paredes, o pedreiro aconselhou a compra de 10% a mais de metragem a ladrilhar. Calcule a metragem de ladrilhos que se deve comprar. 3

4 3. O retângulo de uma bandeira do Brasil, cuja parte externa ao losango é pintada de verde, mede m de comprimento por 1,40 m de largura. Os vértices do losango, cuja parte externa ao círculo é pintada de amarelo, distam 17 cm dos lados do retângulo, e o raio do círculo mede 35 cm. Para calcular a área do círculo use π=3. a) Qual é a área da região pintada de verde? b) Qual é a porcentagem da área da região pintada de amarelo, em relação à área total da bandeira? 4

5 4. Num jardim em forma circular as flores formam uma coroa circular, como mostra a figura. Sabendo que o comprimento do jardim é igual a 1,56 m e o raio da parte sem flores é igual a 1 m, calcule: Área com flores Área sem flores a) A medida do raio de todo o jardim. b) A área que as flores ocupam no jardim. 5. (MACK 008 modificada) Alguns filmes em DVD apresentam imagens, cuja razão entre altura e largura é igual a 16 9 (conforme figura 1). Para esses filmes serem exibidos sem distorções, em uma TV tradicional de tela plana, cuja razão entre altura e largura é igual a 4, surgem faixas pretas na horizontal, (conforme 3 figura ). Qual é a área total ocupada pelas faixas pretas, nessa TV, dada em porcentagem? (Resolva na próxima página) (Jéssica Bial e Edward Norton em cena do filme O Ilusionista - 006) 5

6 6. Observe a composição das figuras: (Use π=3,14 e 3 = 1, 7 ). Os comprimentos da coroa circular medem 9,4 cm e 15,70 cm. O lado do hexágono regular tem a mesma medida do maior raio da coroa circular. O triângulo equilátero tem o lado igual ao dobro do lado do hexágono. O trapézio tem a base maior igual ao lado do triângulo equilátero. A base menor mede 3 cm e a altura é igual a 4 cm. a) Calcule a área de cada uma das 4 figuras. Área da coroa circular: Área do hexágono: Área do triângulo: Área do trapézio: 6

7 b) Calcule a área branca do quadro sabendo que as dimensões do retângulo são iguais a 6 cm por 13 cm. 7. Um quadro tem o formato de um retângulo áureo. Sua maior dimensão é de 1, m (segmento todo). a) Qual é a medida do segmento áureo em relação ao 1, metros? b) Qual a área desse retângulo? 7

8 8. Calcule a área da parte sombreada sabendo que as dimensões da elipse são: eixo maior 8 e eixo menor 6. (Use π=3). 9. Calcule a área da parte sombreada entre o quadrado e o círculo cujo diâmetro mede 8 m. (Use π=3). 8

9 Cálculo aproximado de áreas de figuras orgânicas Estudaremos um método para determinar um valor aproximado da área de figuras planas orgânicas, para tanto precisamos conhecer o conceito de malhas geométricas. Malhas geométricas As malhas geométricas são constituídas de figuras geométricas justapostas podendo ser todas iguais ou não. Para o cálculo de área preferimos as malhas com figuras congruentes. Veja exemplos: Malha quadriculada Malha triangular Exemplo: Dada a figura orgânica, determinar o valor aproximado de sua área. Para tanto devemos proceder do seguinte modo: 1º) Escolher um tipo de malha geométrica que melhor se adapta a região orgânica e calcular a área de uma célula. º) Desenhar a figura sobre a malha. 3º) Contar quantas células da malha estão contidas totalmente na figura. 4º) Contar quantas células da malha contém a figura (parcialmente e totalmente). 5º) Calcular a média aritmética desses valores, ou seja, adicionar os valores e dividir por. 6º) Multiplicar o resultado da média pelo valor da área de uma célula A malha escolhida foi a quadrada com 1 cm de lado, portanto sua área é igual a 1 cm. - Há células totalmente contidas na figura. - Há 14 células que contém a figura A média M é: M = = = 8 - A área da figura é: A = 1 8 = 8cm Exercício: 10. Escolher uma folha de qualquer tipo de árvore, mas com uma área maior que 0 cm. Calcular o valor aproximado de sua área utilizando dois tipos diferentes de malha. (Utilizar folha avulsa). 9

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo

Leia mais

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2.

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2. 1. Encontre a área de um losango qualquer em função de suas diagonais. 2. Se dois triângulos ABC e DEF são semelhantes com razão de semelhança k, mostre que A ABC A DEF = k 2. 3. Na figura 1, ABCD e EF

Leia mais

Área das figuras planas

Área das figuras planas AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Matemática GEOMETRIA PLANA. Professor Dudan

Matemática GEOMETRIA PLANA. Professor Dudan Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

CENTRO EDUCACIONAL SESC CIDADANIA

CENTRO EDUCACIONAL SESC CIDADANIA CENTRO EDUCACIONAL SESC CIDADANIA Prof. (a): Heloísa Andréia LRR MATEMÁTICA III 2º TRIMESTRE Se não existe esforço, não existe progresso (F. Douglas) ENSINO MÉDIO Aluno(a): SÉRIE 3ª TURMA DATA: / /2017

Leia mais

MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à 188

MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à 188 MATEMÁTICA LIVRO Capítulo (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares Páginas: 68 à 88 Áreas de Figuras Planas toda área é uma medida de superfície [u] unidade padrão [u]² [u] I. ÁREA

Leia mais

MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à188

MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à188 MATEMÁTICA LIVRO Capítulo (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares Páginas: 68 à88 Áreas de Figuras Planas toda área é uma medida de superfície [u] unidade padrão [u]² [u] I. ÁREA

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

ÁREAS. Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

ÁREAS. Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1 A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade O quadrilátero ABCD,

Leia mais

NOÇÕES DE GEOMETRIA PLANA

NOÇÕES DE GEOMETRIA PLANA NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados o polígono

Leia mais

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos. ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do

Leia mais

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A Segmento: ENSINO MÉDIO Disciplina: GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/017 Turma: A POLÍGONOS REGULARES 1) Considere um quadrado com 3 cm de lado, inscrito em um círculo.

Leia mais

Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consócio CEDERJ Matemática 9º Ano 4º Bimestre/2013 Plano de Trabalho

Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consócio CEDERJ Matemática 9º Ano 4º Bimestre/2013 Plano de Trabalho Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consócio CEDERJ Matemática 9º Ano 4º Bimestre/2013 Plano de Trabalho POLÍGONOS E ÁREAS Tarefa 2 Grupo 1 Cursista: Tatiana Manhães da Costa. Tutora: Andréa

Leia mais

NOÇÕES DE GEOMETRIA PLANA

NOÇÕES DE GEOMETRIA PLANA NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS) A figura abaixo, formada por trapézios congruentes e triângulos equiláteros, representa a planificação de um sólido. Esse sólido é um (a) tronco de pirâmide. (b) tronco

Leia mais

Roteiro de Estudos - RECUPERAÇÃO FINAL

Roteiro de Estudos - RECUPERAÇÃO FINAL Roteiro de Estudos - RECUPERAÇÃO FINAL Nome completo: nº Disciplina: Geometria Ano: 9 Data: / / Professor: André Moreira Instruções Gerais: 1) Leia atentamente as questões. Confira sempre os resultados

Leia mais

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega

Leia mais

ÁREAS. Segmento: ENSINO MÉDIO. 06/2018 Turma: 2 A. Tipo de Atividade: LISTA DE EXERCÍCIOS. 20 m. 30 m. 40 m. 50 m

ÁREAS. Segmento: ENSINO MÉDIO. 06/2018 Turma: 2 A. Tipo de Atividade: LISTA DE EXERCÍCIOS. 20 m. 30 m. 40 m. 50 m Segmento: ENSINO MÉDIO Disciplina: MAT-GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/018 Turma: A ÁREAS 1) O quintal da casa de Manoel é formado por cinco quadrados ABKL, BCDE, BEHK,

Leia mais

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013 CÁLCULO DE ÁREA DAS FIGURAS PLANAS Professor: Marcelo Silva Natal-RN, agosto de 013 ÁREA A reunião de um polígono com sua região interior é denominada superfície do polígono. A medida da superfície é expressa

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: IRAN MARCELINO Ano: ª Data: / / 014 CONTEÚDO: LISTA DE RECUPERAÇÃO (MATEMÁTICA ) Equação modular Inequação modular Áreas de

Leia mais

Matemática - 3C12/14/15/16/26 Lista 2

Matemática - 3C12/14/15/16/26 Lista 2 Matemática - 3C12/14/15/16/26 Lista 2 Poliedros Convexos 1) Determine qual é o poliedro convexo e fechado que tem 6 vértices e 12 arestas. 2) Determine o nº de vértices de dodecaedro convexo que tem 20

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO

CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO CRONOGRAMA DE RECUPERAÇÃO SÉRIE: 1ª série do EM DISCIPLINA: MATEMÁTICA 2 Cadernos Assuntos 3 e 4 Áreas e perímetros de figuras planas Lei dos senos e cossenos Trigonometria no triângulo retângulo Teorema

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard. Cilindros. Aulas 01 a 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Packard Cilindros Aulas 01 a 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Sumário Cilindros... 1 Cilindro... 1 Elementos do cilindro... 1 O cilindro possui:... 1 Classificação... 1 O cilindro

Leia mais

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial

Leia mais

DESENHO TÉCNICO ( AULA 02)

DESENHO TÉCNICO ( AULA 02) DESENHO TÉCNICO ( AULA 02) Posições da reta e do plano no espaço A geometria, ramo da Matemática que estuda as figuras geométricas, preocupa-se também com a posição que os objetos ocupam no espaço. A reta

Leia mais

Resolução de Questões 9º Ano Áreas Prof. Túlio. Aplicação: Turmas A e C

Resolução de Questões 9º Ano Áreas Prof. Túlio. Aplicação: Turmas A e C Resolução de Questões 9º Ano Áreas Prof. Túlio Aplicação: Turmas A e C 1. Para decorar a fachada de um edifício, um arquiteto projetou a colocação de vitrais compostos de quadrados de lado medindo 1m,

Leia mais

INSTITUTO GEREMARIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II

INSTITUTO GEREMARIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II INSTITUTO GEREMARIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (21) 21087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): 9º Ano: Nº Professora: Marcos Vinício Data: / /2016 COMPONENTE CURRICULAR:

Leia mais

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE

Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Nome: Nº: Ano: 9º ano Ensino Fundamental II Data: / /2017 Disciplina: Matemática Professor: Sergio Monachesi a) Conteúdos : ROTEIRO DE ESTUDO REGULAÇÃO CONTEÚDO DO 4º BIMESTRE Polígonos: - nomenclatura.

Leia mais

A área construída da bandeirinha APBCD, em cm 2, é igual a: a) b) c) d)

A área construída da bandeirinha APBCD, em cm 2, é igual a: a) b) c) d) 1 Para confeccionar uma bandeirinha de festa junina, utilizou-se um pedaço de papel com 10 cm de largura e 15 cm de comprimento, obedecendo-se às instruções abaixo 1 Dobrar o papel ao meio, Dobrar a ponta

Leia mais

GGM /10/2010 Turma M2

GGM /10/2010 Turma M2 GGM00161-28/10/2010 Turma M2 Superfície retangular: Considere como unidade a superfície de um quadrado de lado u: E o retângulo de dimensão 5u e 3u: Superfície retangular: Considere como unidade a superfície

Leia mais

Áreas parte 1. Rodrigo Lucio Silva Isabelle Araújo

Áreas parte 1. Rodrigo Lucio Silva Isabelle Araújo Áreas parte 1 Rodrigo Lucio Silva Isabelle Araújo Introdução Desde os egípcios, que procuravam medir e demarcar suas terras, até hoje, quando topógrafos, engenheiros e arquitetos fazem seus mapeamentos

Leia mais

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas)

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) DEPARTAMENTO DE MATEMÁTICA PROFª VALÉRIA NAVARRO ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) 1. (G1 - cftrj 014) Na figura abaixo,

Leia mais

QUESTÃO 03 (OBMEP) Os quadrados abaixo tem todos o mesmo tamanho. Em qual deles a região sombreada tem a maior área?

QUESTÃO 03 (OBMEP) Os quadrados abaixo tem todos o mesmo tamanho. Em qual deles a região sombreada tem a maior área? / /017 QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. Considere que cada quadrícula da malha equivale

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

SOLUCÃO DAS ATIVIDADES COM GEOTIRAS

SOLUCÃO DAS ATIVIDADES COM GEOTIRAS SOLUCÃO DAS ATIVIDADES COM GEOTIRAS 1. Representação de retas nas seguintes posições: i. Retas paralelas ii. Retas concorrentes 2. Representação de poligonais: i. Aberta simples ii. Aberta não simples

Leia mais

Geometria Euclidiana Plana

Geometria Euclidiana Plana CURSO INTRODUTÓRIO DE MTEMÁTIC PR ENGENHRI 016. Geometria Euclidiana Plana Parte II Danielly Guabiraba Dantas - Engenharia Civil Rafael lves da Silva - Engenharia Civil Introdução Desde os egípcios, que

Leia mais

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 6 ano/e.f.

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 6 ano/e.f. Módulo Unidades de Medidas de Comprimentos e Áreas Unidades de Medida de Área e Exercícios. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 1 Exercícios

Leia mais

Conteúdos Exame Final e Avaliação Especial 2017

Conteúdos Exame Final e Avaliação Especial 2017 Componente Curricular: Matemática Série/Ano: 9º ANO Turma: 19 A, B, C, D Professora: Lisiane Murlick Bertoluci Conteúdos Exame Final e Avaliação Especial 017 1. Geometria: área de Figuras, Volume, Capacidade..

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. Módulo Inicial

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A. Módulo Inicial Escola Secundária com º ciclo D. Dinis 10º no de Matemática TPC nº Entregar no dia de outubro 1. Medidas importantes: 1.1. Considere um quadrado com lado, exprima em função de a medida da diagonal do quadrado.

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS) Na figura 1, BC é paralelo a DE e, na figura 2, GH é paralelo a IJ. x E y J a C H a (a) ab e a/b (b) ab e b/a (c) a/b e ab (d) b/a e ab (e) a/b e 1/b Então x e y valem,

Leia mais

RAZÃO PORCENTAGEM PROPORÇÃO

RAZÃO PORCENTAGEM PROPORÇÃO unifmu Nome: Curso de Design Matemática Aplicada Atividade Exploratória Turma: Professor: Márcia Stochi Veiga Data: _ FEV_2008 RAZÃO PORCENTAGEM PROPORÇÃO Objetivo: Rever o conceito de razão e proporção,

Leia mais

Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho

Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho Formação continuada em Matemática Fundação CECIERJ/Consórcio CEDERJ Matemática 2º ano 2º Bimestre de 2014 Plano de Trabalho Geometria Espacial Prismas e Cilindros Tarefa 2 Cursista: Maria Candida Pereira

Leia mais

Geometria Euclidiana Plana

Geometria Euclidiana Plana CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 014. Geometria Euclidiana Plana Parte II Joyce Danielle de Araújo - Engenharia de Produção Vitor Bruno - Engenharia Civil Introdução Desde os egípcios,

Leia mais

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA Poliedross 1.5 Superfície poliédrica fechada Uma superfície poliédrica fechada é composta de um número finito (quatro ou mais) de superfícies poligonais planas, de modo que cada lado de uma dessas superfícies

Leia mais

Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações.

Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações. FIGURAS BIDIMENSIONAIS Primeiramente é importante destacar um aspecto referente a definições, nomenclatura e classificações. O termo "polígono", por exemplo, aparece em alguns textos como uma figura plana

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

Aluno (a): LISTA 08. Unidade Barra. Leandro Figueira Freitas. Instruções:

Aluno (a): LISTA 08. Unidade Barra. Leandro Figueira Freitas. Instruções: EXERCÍCIOS DE REVISÃO: Quadriláteros Aluno (a): LISTA 08 Nº: Ano: 8º Unidade Barra Leandro Figueira Freitas Instruções: VOCÊ PODERÁ FAZER ESTAS QUESTÕES DIRETAMENTE NO CADERNO, OU, IMPRIMIR ESTAS FOLHAS

Leia mais

Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS

Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS Nome: nº Data: / / Professor: Lucas Factor Curso/Série 8º Ano Ensino Fundamental II Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS Os cálculos de perímetro e área são necessários, seja para a compra de um

Leia mais

Escola Secundária de Lousada

Escola Secundária de Lousada Escola Secundária de Lousada Matemática do 8º ano FT nº8 Data: / 0 / 01 Assunto: Triângulos, quadriláteros e outros polígonos Lição nº _ e _ Um Quadrilátero é um polígono com quatro lados. Os quadriláteros

Leia mais

MATEMÁTICA. 3 o Série Prof. Tiago. Aluno (a): Nº. a) 50,24 m² b) 25,12 m² c) 12,56 m² d) 100,48 m² e) 200,96 m². a) 50m 2

MATEMÁTICA. 3 o Série Prof. Tiago. Aluno (a): Nº. a) 50,24 m² b) 25,12 m² c) 12,56 m² d) 100,48 m² e) 200,96 m². a) 50m 2 p s MATEMÁTICA o Série Prof. Tiago Lista: 01 Data: 16 / 07 / 019 Aluno (: Nº A figura abaixo exibe um círculo de raio r que tangencia internamente um setor circular de raio R e ângulo central. Para = 60º,

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Unifesp 2004) As figuras A e B representam dois retângulos de perímetros iguais a 100 cm, porém de áreas diferentes, iguais a 400 cm e 600 cm, respectivamente. A figura C exibe

Leia mais

MATEMÁTICA OFICINA ALEXSANDRO KESLLER PAZ NA ESCOLA ÁLGEBRA

MATEMÁTICA OFICINA ALEXSANDRO KESLLER PAZ NA ESCOLA ÁLGEBRA ALEXSANDRO KESLLER MATEMÁTICA OFICINA ÁLGEBRA PAZ NA ESCOLA 14.03.2019 MATEMÁTICA BÁSICA Conhecimentos Álgebricos Medidas de comprimento Transformações de unidades de medidas de comprimento Conhecimentos

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

AM relativa ao vértice A que medem respectivamente 10 cm e 12 cm. Calcule a medida do raio. (R. 3 cm)

AM relativa ao vértice A que medem respectivamente 10 cm e 12 cm. Calcule a medida do raio. (R. 3 cm) LISTA GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 8. Na figura, a reta r é tangente às circunferências de centros A e B e raios cm e cm, respectivamente, nos pontos C e D, e a distância entre os centros

Leia mais

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material.

INSTRUÇÕES. Esta prova é individual e sem consulta à qualquer material. OPRM 07 Nível 3 (Ensino Médio) Primeira Fase 09/06/7 ou 0/06/7 Duração: 3 horas Nome: Escola: Aplicador(a): INSTRUÇÕES Escreva seu nome, o nome da sua escola e nome do APLICADOR nos campos acima. Esta

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA

VESTIBULAR UFPE UFRPE / ª ETAPA VSTIULR UFP UFRP / 1999 2ª TP NOM O LUNO: SOL: SÉRI: TURM: MTMÁTI 2 01. O triângulo da ilustração abaixo é isósceles ( = ) e = = (isto é,, trissectam ): nalise as afirmações: 0-0) Os ângulos, e são congruentes.

Leia mais

Módulo Unidades de Medidas de Comprimentos e Áreas. Áreas de outras Figuras Básicas e Primeiros Exercícios. 6 ano/e.f.

Módulo Unidades de Medidas de Comprimentos e Áreas. Áreas de outras Figuras Básicas e Primeiros Exercícios. 6 ano/e.f. Módulo Unidades de Medidas de Comprimentos e Áreas Áreas de outras Figuras Básicas e Primeiros Exercícios. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Áreas de outras Figuras Básicas e Primeiros

Leia mais

Roteiro Recuperação Geometria 3º trimestre- 1º ano

Roteiro Recuperação Geometria 3º trimestre- 1º ano Roteiro Recuperação Geometria 3º trimestre- 1º ano 1. Determine a área do trapézio isósceles de perímetro 26cm, que possui a medida de suas bases iguais a 4cm e 12cm. 2. O triângulo ABC está inscrito num

Leia mais

LISTA DE EXERCÍCIO GEOMETRIA PLANA

LISTA DE EXERCÍCIO GEOMETRIA PLANA QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. LISTA DE EXECÍCIO GEOMETIA PLANA Considere que

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

Mat. Monitor: Rodrigo Molinari

Mat. Monitor: Rodrigo Molinari Professor: Gabriel Miranda Monitor: Rodrigo Molinari Exercícios: Áreas (FUVEST, UNICAMP E UNESP) 04 jul EXERCÍCIOS 1. Renata pretende decorar parte de uma parede quadrada ABCD com dois tipos de papel de

Leia mais

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma

Leia mais

Nome N. Turma. Geometria (8º Ano Revisões) Compilação de Exercícios do Banco de Itens

Nome N. Turma. Geometria (8º Ano Revisões) Compilação de Exercícios do Banco de Itens A G R U P A M E N T O D E E S C O L A S 172 303 MÃES D ÁGUA SEDE - Escola Básica e Secundária Mães d Água Nome N. Turma Geometria (8º Ano Revisões) Compilação de Exercícios do Banco de Itens 1 1. Quais

Leia mais

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas. PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

1º Colegial - Matemática / Jeca

1º Colegial - Matemática / Jeca 1º olegial - Matemática / Jeca Relação da matéria para a Recuperação Final ula 3 - Trigonometria no triângulo retângulo. ula 31 - Trigonometria no triângulo retângulo. ula 3 - Trigonometria da meia volta.

Leia mais

Geometria Plana Exercícios de Áreas e Razão entre Áreas

Geometria Plana Exercícios de Áreas e Razão entre Áreas Prof. Marcelo ampos Silva - marcelocs00@gmail.com Geometria Plana Exercícios de Áreas e Razão entre Áreas 0 - s figuras abaixo representam, respectivamente, um terreno com área de.000 m e uma maquete do

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

Teorema de Pitágoras

Teorema de Pitágoras Teorema de Pitágoras Luan Arjuna 1 Introdução Uma das maiores preocupações dos matemáticos da antiguidade era a determinação de comprimentos: desde a altura de um edifício até a distância entre duas cidades,

Leia mais

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência Circunferência e círculo Circunferência de centro O e raio r é o lugar geométrico dos pontos do plano que estão a uma distância r do ponto O. Observação O conjunto constituído dos pontos de uma circunferência

Leia mais

COLÉGIO MARQUES RODRIGUES - SIMULADO

COLÉGIO MARQUES RODRIGUES - SIMULADO COLÉGIO MRQUES RODRIGUES - SIMULDO PROFESSOR HENRIQUE LEL DISCIPLIN MTEMÁTIC SIMULDO: P6 Estrada da Água Branca, 2551 Realengo RJ Tel: (21) 3462-7520 www.colegiomr.com.br LUNO TURM 901 Questão 1 Um feixe

Leia mais

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m.

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m. Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Volumes e o Princípio de Cavalieri. 3 ano/e.m. Volumes e o Princípio de Cavalieri. Geometria Espacial II - volumes e áreas de prismas

Leia mais

SOLUCÃO DAS ATIVIDADES COM POLÍGONOS

SOLUCÃO DAS ATIVIDADES COM POLÍGONOS SOLUCÃO DAS ATIVIDADES COM POLÍGONOS 1. Classificação das vinte figuras de Polígonos segundo o número dos seus lados. Representação em tabela. Número lados de Polígono Representação gráfica Três lados

Leia mais

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO

E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO E.E.M.FRANCISCO HOLANDA MONTENEGRO PLANO DE CURSO ENSINO MÉDIO DISCIPLINA: GEOMETRIA SÉRIE: 1º ANO (B, C e D) 2015 PROFESSORES: Crislany Bezerra Moreira Dias BIM. 1º COMPETÊNCIAS/ HABILIDADES D48 - Identificar

Leia mais

DISCIPLINA: Matemática SÉRIE: 9. Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

DISCIPLINA: Matemática SÉRIE: 9. Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: GOIÂNIA, / / 2017 PROFESSOR: Douglas Rezende DISCIPLINA: Matemática SÉRIE: 9 ALUNO(a): No Anhanguera você é + Enem Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: - É

Leia mais

EXERCICIOS - ÁREAS E ÂNGULOS:

EXERCICIOS - ÁREAS E ÂNGULOS: EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos

Leia mais

FÁTIMA HELENA COSTA DIAS. institucional: MATEMÁTICA NA ESCOLA, 2ª SÉRIE, 2º BIMESTRE. Tutor: Daiana da Silva Leite

FÁTIMA HELENA COSTA DIAS.  institucional: MATEMÁTICA NA ESCOLA, 2ª SÉRIE, 2º BIMESTRE. Tutor: Daiana da Silva Leite FÁTIMA HELENA COSTA DIAS e-mail institucional: fhelena@educacao.rj.gov.br MATEMÁTICA NA ESCOLA, 2ª SÉRIE, 2º BIMESTRE Tutor: Daiana da Silva Leite Grupo: 05 Tarefa 4 Duração Prevista: 290 minutos, distribuídos

Leia mais

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP

Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria. Resumo do Encontro 6, 22 de setembro de Questões de geometria das provas da OBMEP Grupo 1 - PIC OBMEP 2011 Módulo 2 - Geometria Resumo do Encontro 6, 22 de setembro de 2012 Questões de geometria das provas da OBMEP http://www.obmep.org.br/provas.htm 1. Área: conceito e áreas do quadrado

Leia mais

Resolução das atividades adicionais

Resolução das atividades adicionais PÍTULO 9 Resolução das atividades adicionais 65. Note que 7 + 4 5. Temos, portanto, que o triângulo é retângulo (Teorema de Pitágoras). Logo sua área é dada por 84. Então podemos dizer que a razão entre

Leia mais

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...

Leia mais

A triângulo equilátero = 3.R2. 3. A hexágono = 2. A triângulo equilátero. Letra B

A triângulo equilátero = 3.R2. 3. A hexágono = 2. A triângulo equilátero. Letra B GEOMETRIA PLANA ÁREAS QUESTÃO 01 QUESTÃO 03 A = 1 + 16/ -1 = 1 QUESTÃO 0 A hexágono = 3.R. 3 A triângulo equilátero = 3.R. 3 A hexágono =. A triângulo equilátero A triângulo equilátero A hexágono = 1 No

Leia mais

Professor: Pedro Ítallo (UFSCar SP) Em um terreno retangular com 20 m de comprimento por 15 m de largura, foi feito um gramado com área igual a

Professor: Pedro Ítallo (UFSCar SP) Em um terreno retangular com 20 m de comprimento por 15 m de largura, foi feito um gramado com área igual a Professor: Pedro Ítallo 01 - (UFSCar SP) Em um terreno retangular com 0 m de comprimento por 15 m de largura, foi feito um gramado com área igual a 1 4 da área de um círculo de 10 m de raio, conforme mostra

Leia mais

Áreas de Figuras Planas: Exercícios da OBMEP. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto

Áreas de Figuras Planas: Exercícios da OBMEP. Nono Ano. Autor: Prof. Ulisses Lima Parente Revisor: Prof. Antonio Caminha M. Neto Material Teórico - Módulo Áreas de Figuras lanas Áreas de Figuras lanas: Exercícios da OME Nono no utor: rof. Ulisses Lima arente Revisor: rof. ntonio aminha M. Neto de dezembro de 018 1 roblemas da OME

Leia mais

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura

Leia mais

Unidade 4 Geometria: áreas

Unidade 4 Geometria: áreas Sugestões de atividades Unidade 4 Geometria: áreas 7 MATEMÁTICA 1 Matemática 1. Na figura abaixo, a base do retângulo mede 6,4 cm, e a altura, 4,5 cm. Calcule a área do retângulo e do losango. Determine,

Leia mais

TRABALHO 2 o TRIMESTRE

TRABALHO 2 o TRIMESTRE TRABALHO 2 o TRIMESTRE Disciplina: Matemática 1 Série: 3 o Turma: Azul Data: 16.08.18 Professor: Sérgio Tambellini Ensino: Médio Trimestre: 2 o Valor: 1,5 pto. Nome: n o : Nome: n o : Nota: Nome: n o :

Leia mais

R.: R.: c) d) Página 1 de 8-17/07/18-15:06

R.: R.: c) d) Página 1 de 8-17/07/18-15:06 PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 9º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Em um triângulo retângulo, a

Leia mais