Lista de exercícios Prof. Ulisses Motta

Save this PDF as:

Tamanho: px
Começar a partir da página:

Download "Lista de exercícios Prof. Ulisses Motta"

Transcrição

1 Lista de exercícios Prof. Ulisses Motta 1. (Ufpe) Na figura a seguir, os retângulos ABCD e A'B'C'D' têm o mesmo centro e lados iguais a 5 cm e 9 cm. Qual o diâmetro da maior circunferência contida na região hachurada? a) 4 cm b) 5 cm c) 5 2 cm d) 9 cm e) 9 2 cm 2. Qual é o perímetro do quadrado em que a diagonal mede 3 6 m? a) 12 3 m b) 12 6 m c) 8 3 m d) 8 6 m e) 6 m 3. Num losango, a medida do ângulo obtuso é igual ao triplo da medida do ângulo agudo. Calcule as medidas dos ângulos desse losango. 4. Num paralelogramo ABCD, a diagonal BD forma com o ladobc um ângulo de 28 e com o lado DC um ângulo de 67. Calcule os ângulos desse paralelogramo. 5. Calcule o valor de x:

2 6. No losango calcule x. 7. Num paralelogramo, os ângulos agudos medem a metade dos ângulos obtusos. Determine as medidas dos ângulos desse paralelogramo. 8. A bissetriz de um losango forma 40 com um dos lados. Determine os quatro ângulos do losango. 9. Na figura tem-se o trapézio isósceles ABCD no qual as bases medem 15 cm e 27 cm. Os lados AB e CD foram divididos em 4 partes iguais, e pelos pontos de divisão, foram traçados 3 segmentos paralelos às bases. A soma das medidas dos três segmentos traçados é, em centímetros, a) 52 b) 58 c) 59 d) 61 e) (Cesgranrio) Em um círculo de raio 5 está inscrito um quadrilátero ABCD. Sobre a soma dos ângulos opostos BÂD e B µ C D, podemos afirmar que vale: a) 5 x 180. b) 3 x 180. c) 2 x 180. d) 180. e) (PUC) O ângulo x, na figura a seguir, mede:

3 a) 60 b) 80 c) 90 d) 100 e) Um ângulo inscrito é formado por uma corda e um diâmetro. O arco subentendido pela corda é o dobro do arco compreendido entre os lados. Determine o ângulo inscrito. 13. Calcule o valor de x na figura a seguir 14. Seja o pentágono PQRST da figura, inscrito na circunferência de centro 0. Sabe-se que POQ mede 70. Chamando de x e y os ângulos PTS e QRS, respectivamente, determine x + y. 15. (Fuvest) Um arco de circunferência mede 300, e seu comprimento é 2km. Qual o número inteiro mais próximo da medida do raio em metros? a) 157 b) 284 c) 382 d) 628 e) 764

4 16. (Ufmg) Observe a figura. Nessa figura, BD é um diâmetro da circunferência circunscrita ao triângulo ABC, e os ângulos A ˆB D e AÊD medem, respectivamente, 20 e 85. Assim sendo, o ângulo C ˆB D mede a) 25 b) 35 c) 30 d) (Ufes) Na figura, A, B, C e D são pontos de uma circunferência, a corda CD é bissetriz do ângulo A Ĉ B e as cordas AB e AC têm o mesmo comprimento. Se o ângulo BÂD mede 40, a medida á do ângulo BÂC é a) 10 b) 15 c) 20 d) 25 e) (Enem) As cidades de Quito e Cingapura encontram-se próximas à linha do equador e em pontos diametralmente postos no globo terrestre. Considerando o raio da Terra igual a 6370km, pode-se afirmar que um avião saindo de Quito, voando em média 800km/h, descontando as paradas de escala, chega a Cingapura em aproximadamente a) 16 horas. b) 20 horas. c) 25 horas. d) 32 horas. e) 36 horas. 19. (cftmg) Na figura, os triângulos ABC e BCD estão inscritos na circunferência. A soma das medidas m + n, em graus, é

5 a) 70 b) 90 c) 110 d) (FUVEST) Deseja-se construir um anel rodoviário circular em torno da cidade de São Paulo, distando aproximadamente 20 km da Praça da Sé. a) Quantos quilômetros deverá ter essa rodovia? b) Qual a densidade demográfica da região interior do anel (em habitantes por km 2 ), supondo que lá residam 12 milhões de pessoas, adote o valor ð = Determine x nos casos a seguir, onde os segmentos são tangentes às circunferências: 22. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo que o perímetro do triângulo ABC é 46 cm. 23. (Fei) Três circunferências de raio r estão dispostas no interior de outra circunferência de raio R conforme a figura a seguir. Qual o valor da razão K = R r?

6 2 3 a) b) c) d) e) (Ufla) Um automóvel percorreu uma distância de 125,6km. Sabendo-se que os pneus têm 0,5m de diâmetro, o número de voltas dadas por um pneu foi aproximadamente: a) b) c) d) e) (Ufc) A figura a seguir mostra quatro rodas circulares, tangentes duas a duas, todas de mesmo raio r e circundadas por uma correia ajustada. Determine o comprimento da correia, em termos de r. Obs.: despreze a espessura da correia. 26. (Pucrs) A figura a seguir mostra uma janela em que a parte superior é formada por um semicírculo, e a parte inferior, por um retângulo cuja altura h possui o dobro da medida da base b. A medida da altura total da janela é

7 a) 3b 2 b) 5b 2 c) b 2 d) 2b e) b 27. (cftmg) Na figura, os círculos de centros A, B e C são tangentes. Os raios medem, respectivamente, 10 cm, 4 cm e 2 cm. O perímetro do triângulo ABC, em cm, é: a) 30 b) 24 c) 20 d) (Ufrj) Uma roda de 10 cm de diâmetro gira em linha reta, sem escorregar, sobre uma superfície lisa e horizontal. Determine o menor número de voltas completas para a roda percorrer uma distância maior que 10 m. 29. (Ufscar) Os satélites de comunicação são posicionados em sincronismo com a Terra, o que significa dizer que cada satélite fica sempre sobre o mesmo ponto da superfície da Terra. Considere um satélite cujo raio da órbita seja igual a 7 vezes o raio da Terra. Na figura, P e Q representam duas cidades na Terra, separadas pela maior distância possível em que um sinal pode ser enviado e recebido, em linha reta, por esse satélite.

8 Se R é a medida do raio da Terra, para ir de P até Q, passando pelo satélite, o sinal percorrerá, em linha reta, a distância de a) 6( 3 )R. b) 7( 3 )R. c) 8( 3 )R. d) 10( 2 )R. e) 11( 2 )R. 30. (Unifesp) A figura mostra duas roldanas circulares ligadas por uma correia. A roldana maior, com raio 12 cm, gira fazendo 100 rotações por minuto, e a função da correia é fazer a roldana menor girar. Admita que a correia não escorregue. Para que a roldana menor faça 150 rotações por minuto, o seu raio, em centímetros, deve ser a) 8. b) 7. c) 6. d) 5. e) 4. Gabarito: Resposta da questão 1: Resposta da questão 2: [A] Resposta da questão 3: 45, 45, 135 e 135 Resposta da questão 4: 85, 85, 95, 95 Resposta da questão 5: a) 15 b) 32 Resposta da questão 6: 80

9 Resposta da questão 7: 60, 60, 120 e 120 Resposta da questão 8: 80, 80, 100, 100 Resposta da questão 9: [E] Resposta da questão 10: [D] Resposta da questão 11: [B] Resposta da questão 12: O ângulo inscrito vale 30 Resposta da questão 13: x = 75 Resposta da questão 14: x + y = 215 Resposta da questão 15: Resposta da questão 16: [A] Resposta da questão 17: Resposta da questão 18: Resposta da questão 19: [A] Resposta da questão 20: a) 40π km 125,6 km b) h/km 2 Resposta da questão 21: a) x = 15 b) x = 2 Resposta da questão 22: a) x = 20 cm b) AN = 3 cm Resposta da questão 23: [D] Resposta da questão 24: Resposta da questão 25: C = 2r (4 + π)

10 Resposta da questão 26: [B] Resposta da questão 27: Resposta da questão 28: O menor número de voltas completas procurado é 32. Resposta da questão 29: Resposta da questão 30: [A]

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir.

Exercícios Propostos. Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercícios Propostos Exercício 1: Cinco retas distintas em um plano cortam-se em n pontos. Determine o maior valor que n pode assumir. Exercício 2: As bissetrizes de dois ângulos adjacentes AÔB e BÔC são,

Leia mais

LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE

LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE LISTA DE RECUPERAÇÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) Na figura a seguir, o ponto O é o centro da circunferência, AB e AC são segmentos tangentes e o raio da circunferência mede o dobro de x. O perímetro

Leia mais

Polígonos PROFESSOR RANILDO LOPES 11.1

Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos PROFESSOR RANILDO LOPES 11.1 Polígonos Polígono é uma figura geométrica plana e fechada formada apenas por segmentos de reta que não se cruzam no mesmo plano. Exemplos 11.1 Elementos de um polígono

Leia mais

Roteiro Recuperação Geometria 3º trimestre- 1º ano

Roteiro Recuperação Geometria 3º trimestre- 1º ano Roteiro Recuperação Geometria 3º trimestre- 1º ano 1. Determine a área do trapézio isósceles de perímetro 26cm, que possui a medida de suas bases iguais a 4cm e 12cm. 2. O triângulo ABC está inscrito num

Leia mais

a) 64. b) 32. c) 16. d) 8. e) 4.

a) 64. b) 32. c) 16. d) 8. e) 4. GEOMETRIA PLANA 1 1) (UFRGS) Observe com atenção o retângulo ABCD, na figura abaixo. Considerando as relações existentes entre as sua dimensões e a diagonal, a área desse retângulo será igual a ) (UFRGS)

Leia mais

LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE

LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE LISTA DE REVISÃO DE GEOMETRIA 1º ANO 2º TRIMESTRE 1) (Eear) Duas cordas se cruzam num ponto distinto do centro da circunferência, conforme esboço. A partir do conceito de ângulo excêntrico interior, a

Leia mais

Lista de Exercícios 1 - Caio Milani e Gabriel Mendes (1º Ano)

Lista de Exercícios 1 - Caio Milani e Gabriel Mendes (1º Ano) Lista de Exercícios 1 - Caio Milani e Gabriel Mendes (1º Ano) Polígonos 1. Calcule o número de diagonais de um icoságono (20 lados). 2. Determine o polígono cujo número de diagonais é o triplo do número

Leia mais

BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL

BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL PROFESSOR: EQUIPE E TEÁTI O E QUESTÕES - GEOETRI - 8º O - ESIO FUETL ============================================================================ 01- Um polígono de 4 lados chama-se: () quadrado. () paralelogramo.

Leia mais

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2.

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2. 1. Encontre a área de um losango qualquer em função de suas diagonais. 2. Se dois triângulos ABC e DEF são semelhantes com razão de semelhança k, mostre que A ABC A DEF = k 2. 3. Na figura 1, ABCD e EF

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

01- Quais são as medidas dos ângulos de um quadrilátero cujas medidas são expressas por X , 3X, X e 2X ? R.: x + 30º x + y R.

01- Quais são as medidas dos ângulos de um quadrilátero cujas medidas são expressas por X , 3X, X e 2X ? R.: x + 30º x + y R. PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - GEOMETRIA - 8º ANO - ENSINO FUNDAMENTAL ============================================================================ 01- Quais são as medidas dos ângulos

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 99 / 00 PROVA DE CIÊNCIAS EXATAS DA. 1 a é equivalente a a 13 1 a PARTE - MATEMÁTICA MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES À ESQUERDA Item 01. Se a R e a 0, a expressão: 1 a é equivalente a a a.( ) 1 b.( ) c.( ) a

Leia mais

Lista de exercícios sobre triângulos. (Comitê olímpico)

Lista de exercícios sobre triângulos. (Comitê olímpico) Lista de exercícios sobre triângulos. (Comitê olímpico) 1. (Ufpe) Na figura ilustrada abaixo, os segmentos AB, BC, CD, DE e EA são congruentes. Determine, em graus, a medida do ângulo CAD. 2. (Ufrj) O

Leia mais

CIRCUNFERÊNCIA E CÍRCULO

CIRCUNFERÊNCIA E CÍRCULO IRUNFRÊNI ÍRUL 01 ( FUVST) medida do ângulo ˆ inscrito na circunferência de centro é, em graus, ) 100 ) 110 ) 10 ) 15 35º 0 0 ( U ) bserve a figura. la mostra dois círculos de mesmo raio com centros em

Leia mais

Geometria Plana 1 (UEM-2013) Em um dia, em uma determinada região plana, o Sol nasce às 7 horas e se põe às 19 horas. Um observador, nessa região, deseja comparar a altura de determinados objetos com o

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação:

13. (Uerj) Em cada ponto (x, y) do plano cartesiano, o valor de T é definido pela seguinte equação: 1. (Ufc) Considere o triângulo cujos vértices são os pontos A(2,0); B(0,4) e C(2Ë5, 4+Ë5). Determine o valor numérico da altura relativa ao lado AB, deste triângulo. 2. (Unesp) A reta r é perpendicular

Leia mais

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante.

Lista 3. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. MA13 Exercícios das Unidades 4 e 5 2014 Lista 3 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 2.5, pág. 81 em diante. 1) Seja ABCD um quadrilátero qualquer. Prove que os pontos médios

Leia mais

LISTA DE RECUPERAÇÃO GEOMETRIA 3 ANO 3º TRIMESTRE

LISTA DE RECUPERAÇÃO GEOMETRIA 3 ANO 3º TRIMESTRE LISTA DE RECUPERAÇÃO GEOMETRIA 3 ANO 3º TRIMESTRE 1) Na figura, a circunferência de centro O está inscrita no triângulo ABC. A medida do ângulo inscrito x é: A) 126º B) 63º C) 62º D) 54º E) 108º 2) O triângulo

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 2 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Unifesp 2004) As figuras A e B representam dois retângulos de perímetros iguais a 100 cm, porém de áreas diferentes, iguais a 400 cm e 600 cm, respectivamente. A figura C exibe

Leia mais

Aluno (a): LISTA 08. Unidade Barra. Leandro Figueira Freitas. Instruções:

Aluno (a): LISTA 08. Unidade Barra. Leandro Figueira Freitas. Instruções: EXERCÍCIOS DE REVISÃO: Quadriláteros Aluno (a): LISTA 08 Nº: Ano: 8º Unidade Barra Leandro Figueira Freitas Instruções: VOCÊ PODERÁ FAZER ESTAS QUESTÕES DIRETAMENTE NO CADERNO, OU, IMPRIMIR ESTAS FOLHAS

Leia mais

Área das figuras planas

Área das figuras planas AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados:

GEOMETRIA: REVISÃO PARA O TSE Marque, com um X, as propriedades que possuem cada um dos quadriláteros indicados: Atividade: Quadriláteros (ECA: Atividade REMARCADA para 15/06/2015) Série: 1ª Série do Ensino Médio Etapa: 2ª Etapa 2015 Professor: Cadu Pimentel GEOMETRIA: REVISÃO PARA O TSE 05 01. Marque, com um X,

Leia mais

SEMELHANÇA DE TRIÂNGULOS

SEMELHANÇA DE TRIÂNGULOS SEMELHANÇA DE TRIÂNGULOS 01. Na figura as retas r, s, t e u são paralelas. Sabendo que AB = 8; BC = 9; CD = 10; CG = x; CF = y e EF = k (x + y), determine k. a) 19 8 b) 19 9 c) 1 17 d) 7 7 8 0. Na figura,

Leia mais

esquerda e repetia esse processo até chegar ao ponto A novamente. a) Faça um esboço dessa figura com os três primeiros segmentos.

esquerda e repetia esse processo até chegar ao ponto A novamente. a) Faça um esboço dessa figura com os três primeiros segmentos. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 8º ANO REVISÃO 1) A medida de um ângulo interno de um polígono é o dobro da medida do seu ângulo externo. Qual

Leia mais

LISTA DE REVISÃO MENSAL 1º ANO 2º TRIMESTRE PROF. JADIEL

LISTA DE REVISÃO MENSAL 1º ANO 2º TRIMESTRE PROF. JADIEL LISTA DE REVISÃO MENSAL 1º ANO º TRIMESTRE PROF. JADIEL 1) (Unesp 016) Em um terreno retangular ABCD, de 0 m, serão construídos um deque e um lago, ambos de superfícies retangulares de mesma largura, com

Leia mais

NOÇÕES DE GEOMETRIA PLANA

NOÇÕES DE GEOMETRIA PLANA NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. De acordo com o número de lados o polígono

Leia mais

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos. ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do

Leia mais

Trigonometria no triângulo retângulo

Trigonometria no triângulo retângulo COLÉGIO PEDRO II CAMPUS REALENGO II LISTA DE APROFUNDAMENTO - ENEM MATEMÁTICA PROFESSOR: ANTÔNIO ANDRADE COORDENADOR: DIEGO VIUG Trigonometria no triângulo retângulo Questão 01 A figura a seguir é um prisma

Leia mais

LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA 1º ANO 2º TRIMESTRE ÁLGEBRA

LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA 1º ANO 2º TRIMESTRE ÁLGEBRA LISTA DE REVISÃO PROVA MENSAL MATEMÁTICA 1º ANO º TRIMESTRE ÁLGEBRA 1) Se o preço de um produto aumentou 0% anteontem e 0% hoje, então, de anteontem para hoje, esse preço aumentou: A) 50% B) 54% C) 55%

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior

1 POTÊNCIA DE PONTO 2 CIRCUNFERÊNCIAS TANGENTES. 1.1 Potência de ponto interior. 1.2 Potência de ponto exterior Matemática 2 Pedro Paulo GEOMETRIA PLANA XV 1 POTÊNCIA DE PONTO Sejam um ponto interior ou exterior a uma circunferência e uma reta que passa por e corta a circunferência nos pontos e. A potência do ponto

Leia mais

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência

Circunferência e círculo. Posições relativas de ponto e circunferência. Posições relativas de reta e circunferência Circunferência e círculo Circunferência de centro O e raio r é o lugar geométrico dos pontos do plano que estão a uma distância r do ponto O. Observação O conjunto constituído dos pontos de uma circunferência

Leia mais

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles

AB AC BC. k PQ PR QR GEOMETRIA PLANA CONCEITOS BÁSICOS SEMELHANÇA DE TRIÂNGULOS. Triângulos isósceles GEOMETRIA PLANA Triângulos isósceles CONCEITOS BÁSICOS Retas paralelas cortadas por uma transversal São aqueles que possuem dois lados iguais. Ligando o vértice A ao ponto médio da base BC, geramos dois

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

20/12/2017 ATIVIDADE DE AVALIAÇÃO FINAL

20/12/2017 ATIVIDADE DE AVALIAÇÃO FINAL Geometria Gilberto Gualberto 9º 0/1/017 ATIVIDADE DE AVALIAÇÃO FINAL 1. A figura abaixo apresenta duas circunferências concêntricas, uma de raio m e outra de raio 4 m. Calcule a área da parte hachurada

Leia mais

NOÇÕES DE GEOMETRIA PLANA

NOÇÕES DE GEOMETRIA PLANA NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de

Leia mais

As distâncias*, em linha reta e em km, entre Johannesburgo e as demais cidades localizadas no mapa, estão corretamente indicadas em:

As distâncias*, em linha reta e em km, entre Johannesburgo e as demais cidades localizadas no mapa, estão corretamente indicadas em: 1. (Ufpr 2012) Utilizando o celular e um programa de acesso a mapas on line, você localizou um ponto de interesse a aproximadamente 2,5 cm de distância do local onde se encontrava. Considerando que o programa

Leia mais

PA = 1,2 m. Após uma tacada na bola, ela se

PA = 1,2 m. Após uma tacada na bola, ela se 1. (Unifor 014) Sobre uma rampa de m de comprimento e inclinação de 0 com a horizontal, devem-se construir degraus de altura 0cm. Quantos degraus devem ser construídos? a) 4 b) c) 6 d) 7 e) 8. (Efomm 016)

Leia mais

LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio

LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio LISTA 2 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 11. Em cada uma das figuras, o centro da circunferência é O. Calcule o valor de x. (a) 35 b) 70 ) a) b) 01. Qual é o polígono cuja soma dos ângulos

Leia mais

Matemática Professor Diego. Tarefa 12

Matemática Professor Diego. Tarefa 12 Matemática Professor Diego Tarefa 1 01. (UFRRJ/005) Na figura abaixo, o ponto 0 significa o centro de uma região circular de raio r = 5m. O arco BC é igual ao arco CD e a medida do seguimento AB é 8m.

Leia mais

Exercícios Obrigatórios

Exercícios Obrigatórios Exercícios Obrigatórios 1) (UFRGS) Na figura 1, BC é paralelo a DE e, na figura 2, GH é paralelo a IJ. x E y J a C H a (a) ab e a/b (b) ab e b/a (c) a/b e ab (d) b/a e ab (e) a/b e 1/b Então x e y valem,

Leia mais

NOME: ANO: 3º Nº: PROFESSOR(A):

NOME: ANO: 3º Nº: PROFESSOR(A): NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições Triângulos: REVISÃO Lista 06 Triângulos e Quadriláteros Classificação quanto aos lados: Escaleno (todos os lados diferentes), Isósceles

Leia mais

PROFESSOR FLABER 2ª SÉRIE Circunferência

PROFESSOR FLABER 2ª SÉRIE Circunferência PROFESSOR FLABER ª SÉRIE Circunferência 01. (Fuvest SP) A reta s passa pelo ponto (0,3) e é perpendicular à reta AB onde A=(0,0) e B é o centro da circunferência x + y - x - 4y = 0. Então a equação de

Leia mais

Geometria Gilberto Gualberto 9º 21/12/2016 ATIVIDADE DE AVALIAÇÃO FINAL. Geometria - 9 Ano- Prof Gilberto Gualberto

Geometria Gilberto Gualberto 9º 21/12/2016 ATIVIDADE DE AVALIAÇÃO FINAL. Geometria - 9 Ano- Prof Gilberto Gualberto Geometria Gilberto Gualberto 9º 1/1/016 ATIVIDADE DE AVALIAÇÃO FINAL Geometria - 9 Ano- Prof Gilberto Gualberto 1. Uma folha de papel retangular foi dobrada como mostra a figura abaixo. De acordo com as

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web POLÍGONOS REGULARES 1. No estudo da distribuição de torres em uma rede de telefonia celular, é comum se encontrar um modelo no qual as torres de transmissão estão localizadas nos centros de hexágonos regulares,

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A

POLÍGONOS REGULARES. Segmento: ENSINO MÉDIO. Tipo de Atividade: LISTA DE EXERCÍCIOS. 06/2017 Turma: 2 A Segmento: ENSINO MÉDIO Disciplina: GEOMETRIA Tipo de Atividade: LISTA DE EXERCÍCIOS Prof. Marcelo 06/017 Turma: A POLÍGONOS REGULARES 1) Considere um quadrado com 3 cm de lado, inscrito em um círculo.

Leia mais

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO

EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO EXERCÍCIOS DE REVISÃO MATEMÁTICA II CONTEÚDO: Relações Métricas nos Triãngulos 3 a SÉRIE ENSINO MÉDIO ======================================================================= 1) (FUVEST-SP) - Dados: MÔB

Leia mais

CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO

CRONOGRAMA DE RECUPERAÇÃO ATIVIDADE DE RECUPERAÇÃO CRONOGRAMA DE RECUPERAÇÃO SÉRIE: 1ª série do EM DISCIPLINA: MATEMÁTICA 2 Cadernos Assuntos 3 e 4 Áreas e perímetros de figuras planas Lei dos senos e cossenos Trigonometria no triângulo retângulo Teorema

Leia mais

Aula 11 Polígonos Regulares

Aula 11 Polígonos Regulares MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre

Leia mais

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante.

Lista 5. Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. MA13 Exercícios das Unidades 8, 9 e 10 2014 Lista 5 Geometria, Coleção Profmat, SBM. Problemas selecionados da seção 4.1, pág. 147 em diante. 1) As retas r, s e t são paralelas com s entre r e t. As transversais

Leia mais

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas)

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) DEPARTAMENTO DE MATEMÁTICA PROFª VALÉRIA NAVARRO ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) 1. (G1 - cftrj 014) Na figura abaixo,

Leia mais

COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA 9 B 25 C

COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA 9 B 25 C COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: GEOMETRIA TRABALHO Data: /1/018 Nota: Estudante :. No. 1) O valor de no triângulo retângulo abaio é: a) 10. b) 1.

Leia mais

1. Com base nos dados da Figua 1, qual é o maior dos segmentos AB, AE, EC, BC e ED? Figura 1: Exercício 1. Figura 2: Exercício 2

1. Com base nos dados da Figua 1, qual é o maior dos segmentos AB, AE, EC, BC e ED? Figura 1: Exercício 1. Figura 2: Exercício 2 UFF - Universidade Federal Fluminense Instituto de Matemática GGM - Departamento de Geometria Professora: Andréa 2 o semestre de 2018 Atividades IV de Geometria I 1. Com base nos dados da Figua 1, qual

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

Grupo de exercícios I - Geometria plana- Professor Xanchão

Grupo de exercícios I - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- 1. (G1 - ifce 01) Na figura abaixo, R, S e T são pontos sobre a circunferência de centro O. Se x é o número real, tal que a = 5x e b = 3x + 4 são as medidas dos

Leia mais

Matemática Professor Diego. Tarefas 09 e 10

Matemática Professor Diego. Tarefas 09 e 10 Matemática Professor Diego Tarefas 09 e 10 01. (UFMA/2003) Na figura abaixo, A, B, C e D são quadrados. O perímetro do quadrado A vale 16 m e o perímetro o quadrado B vale 24 m. Calcule o perímetro do

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

LISTA DE ATIVIDADES III UNIDADE - REVISÃO

LISTA DE ATIVIDADES III UNIDADE - REVISÃO LISTA DE ATIVIDADES III UNIDADE - REVISÃO 01) (F.C.CHAGAS-SP) Um observador, no ponto A, vê o topo de um poste (B) e o topo de um prédio (C), conforme a figura. Se as alturas do poste e do prédio são,

Leia mais

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO

REVISÃO UNIOESTE 2016 MATEMÁTICA GUSTAVO REVISÃO UNIOESTE 01 MATEMÁTICA GUSTAVO 1 Considere a figura: Uma empresa produz tampas circulares de alumínio para tanques cilíndricos a partir de chapas quadradas de metros de lado, conforme a figura

Leia mais

MATEMÁTICA FRENTE IV. Capítulo 2 LIVRO 1. Triângulos

MATEMÁTICA FRENTE IV. Capítulo 2 LIVRO 1. Triângulos MATEMÁTICA FRENTE IV LIVRO 1 Capítulo 2 Triângulos I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A α γ C Deseja-se

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 98/99 1ª P A R T E - MATEMÁTICA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 98/99 1ª P A R T E - MATEMÁTICA 21 1ª P A R T E - MATEMÁTICA ITEM 01. O produto do MMC entre 30, 60 e 192 pelo MDC entre 144, 180 e 640 pode ser expresso por 2 a x 3 x 5. O valor do expoente a é a.( ) 1 b.( ) 2 c.( ) 4 d.( ) 6 e.( )

Leia mais

MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169

MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169 MATEMÁTICA LIVRO 1 Capítulo 2 Triângulos Páginas: 157 à169 I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A γ

Leia mais

30's Volume 15 Matemática

30's Volume 15 Matemática 30's Volume 1 Matemática www.cursomentor.com 9 de junho de 014 Q1. Considere os segmentos AB = x, BC =, CD = x + 1 e DE = x 18 e que AB = CD. Encontre x. BC DE Q. Em um triângulo ABC, AM é bissetriz interna

Leia mais

RETAS E CIRCUNFERÊNCIAS

RETAS E CIRCUNFERÊNCIAS RETAS E CIRCUNFERÊNCIAS Diâmetro Corda que passa pelo centro da circunferência [EF] e [GH] Raio Segmento de reta que une o centro a um ponto da circunferência [OD] [AB], [IJ], [GH], são cordas - segmentos

Leia mais

RECUPERAÇÃO FINAL DE MATEMÁTICA PROFESSOR GILMAR BORNATTO

RECUPERAÇÃO FINAL DE MATEMÁTICA PROFESSOR GILMAR BORNATTO 1. (Unesp) Seja A = [a Œ] a matriz 2 x 2 real definida por a Œ = 1 se i j e a Œ = -1 se i > j. Calcule A. 2. (Unesp) Seja A=[a Œ] a matriz real 2 x 2 definida por a Œ=1 se i j e a Œ=-1 se i>j. Calcule

Leia mais

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico UNIVERSIDADE ESTADUAL VALE DO ACARAÚ- UVA DEPARTAMENTO DE MATEMÁTICA Desenho Geométrico Desenho Geométrico Desenho Geométrico Desenho Geometrico Daniel Caetano de Figueiredo Daniel Caetano de Figueiredo

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Ano: º Ensino Médio Professor: Elias Bittar Atividade para Estudos Autônomos Data: 6 / 3 / 017 Valor: xxx pontos Aluno(a): Nº: Turma: QUESTÃO 1 (UFMG) Observe

Leia mais

Unidade 6 Geometria: quadriláteros

Unidade 6 Geometria: quadriláteros Sugestões de atividades Unidade 6 Geometria: quadriláteros 8 MTEMÁTI 1 Matemática 1. onsidere o retângulo representado a seguir. Indique o valor da medida do ângulo correspondente a α 1 β. 40 β 4. onsidere

Leia mais

( Marque com um X, a única alternativa certa )

( Marque com um X, a única alternativa certa ) (PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 1ª SÉRIE CMB ANO 004/0) MÚLTIPLA-ESCOLHA ( Marque com um X, a única alternativa certa ) QUESTÃO 01. Na figura abaixo, o círculo tem centro O, OT = 6 unidades

Leia mais

Prof. Luiz Carlos Moreira Santos. Questão 01)

Prof. Luiz Carlos Moreira Santos. Questão 01) Questão 01) A figura abaixo representa o perfil de uma escada cujos degraus têm todos a mesma extensão (vide figura), além de mesma altura. Se AB = m e BCA mede 0º, então a medida da extensão de cada degrau

Leia mais

AM relativa ao vértice A que medem respectivamente 10 cm e 12 cm. Calcule a medida do raio. (R. 3 cm)

AM relativa ao vértice A que medem respectivamente 10 cm e 12 cm. Calcule a medida do raio. (R. 3 cm) LISTA GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio 8. Na figura, a reta r é tangente às circunferências de centros A e B e raios cm e cm, respectivamente, nos pontos C e D, e a distância entre os centros

Leia mais

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera.

c) o volume do cone reto cujo vértice é o centro da esfera e a base é o círculo determinado pela intersecção do plano com a esfera. Esferas forças armadas 1 (FUVEST) Uma superfície esférica de raio 1 é cortada por um plano situado a uma distância de 1 do centro da superfície esférica, determinando uma circunferência O raio dessa circunferência

Leia mais

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles

Leia mais

LISTA DE EXERCÍCIO GEOMETRIA PLANA

LISTA DE EXERCÍCIO GEOMETRIA PLANA QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. LISTA DE EXECÍCIO GEOMETIA PLANA Considere que

Leia mais

TRABALHO 2 o TRIMESTRE

TRABALHO 2 o TRIMESTRE TRABALHO 2 o TRIMESTRE Disciplina: Matemática 1 Série: 3 o Turma: Azul Data: 16.08.18 Professor: Sérgio Tambellini Ensino: Médio Trimestre: 2 o Valor: 1,5 pto. Nome: n o : Nome: n o : Nota: Nome: n o :

Leia mais

Média, Mediana e Distância entre dois pontos

Média, Mediana e Distância entre dois pontos Média, Mediana e Distância entre dois pontos 1. (Pucrj 01) Se os pontos A = ( 1, 0), B = (1, 0) e C = (, ) são vértices de um triângulo equilátero, então a distância entre A e C é a) 1 b) c) 4 d) e). (Ufrgs

Leia mais

MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à 188

MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à 188 MATEMÁTICA LIVRO Capítulo (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares Páginas: 68 à 88 Áreas de Figuras Planas toda área é uma medida de superfície [u] unidade padrão [u]² [u] I. ÁREA

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 5 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 5 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Uerj 97) Observe as regiões hachuradas do plano cartesiano, que correspondem aos pontos que satisfazem o sistema de inequações a seguir: Calcule: a) o ângulo formado entre as

Leia mais

Exercícios de Geometria Plana Tchê Concursos Prof. Diego

Exercícios de Geometria Plana Tchê Concursos Prof. Diego (001). Se a diferença entre o número de diagonais de dois polígonos convexos é 30 e um deles tem 5 lados a mais que o outro, então o número de lados de cada um dos polígonos é: (A) 5 e 10 (B) 6 e 11 (C)

Leia mais

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta

1ª Aula. Introdução à Geometria Plana GEOMETRIA. 3- Ângulos Consecutivos: 1- Conceitos Primitivos: a) Ponto A. b) Reta c) Semi-reta 1ª Aula 3- Ângulos Consecutivos: Introdução à Geometria Plana 1- Conceitos Primitivos: a) Ponto A Na figura, os ângulos AÔB e BÔC são consecutivos, portanto AÔC=AÔB+AÔC b) Reta c) Semi-reta d) Segmento

Leia mais

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3. 1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o

Leia mais

Matemática GEOMETRIA PLANA. Professor Dudan

Matemática GEOMETRIA PLANA. Professor Dudan Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A

Leia mais

2. (Ita 2016) Um triângulo está inscrito numa circunferência de raio 1cm. O seu maior

2. (Ita 2016) Um triângulo está inscrito numa circunferência de raio 1cm. O seu maior DEPARTAMENTO DE MATEMÁTICA ALUNO (A): TURMA: Nº: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 1- I UNIDADE GEOMETRIA PLANA 1. (Espcex (Aman) 016) Na figura abaixo, a circunferência de raio cm tangencia três

Leia mais

EPUFABC Geometria I Profa. Natália Rodrigues. Lista 3 Aulas 7, 8, 9, 10.

EPUFABC Geometria I Profa. Natália Rodrigues. Lista 3 Aulas 7, 8, 9, 10. EPUFABC Geometria I Profa. Natália Rodrigues Lista 3 Aulas 7, 8, 9, 10. 1) Sabendo que a, b e c são paralelas, resolva: A. B. C D a b 2) No desenho Ao lado, as frentes para a rua A dos quarteirões I e

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

CENTRO EDUCACIONAL SESC CIDADANIA

CENTRO EDUCACIONAL SESC CIDADANIA CENTRO EDUCACIONAL SESC CIDADANIA Prof. (a): Heloísa Andréia LRR MATEMÁTICA III 2º TRIMESTRE Se não existe esforço, não existe progresso (F. Douglas) ENSINO MÉDIO Aluno(a): SÉRIE 3ª TURMA DATA: / /2017

Leia mais

Professor: Pedro Ítallo (UFSCar SP) Em um terreno retangular com 20 m de comprimento por 15 m de largura, foi feito um gramado com área igual a

Professor: Pedro Ítallo (UFSCar SP) Em um terreno retangular com 20 m de comprimento por 15 m de largura, foi feito um gramado com área igual a Professor: Pedro Ítallo 01 - (UFSCar SP) Em um terreno retangular com 0 m de comprimento por 15 m de largura, foi feito um gramado com área igual a 1 4 da área de um círculo de 10 m de raio, conforme mostra

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

QUESTÃO 03 (OBMEP) Os quadrados abaixo tem todos o mesmo tamanho. Em qual deles a região sombreada tem a maior área?

QUESTÃO 03 (OBMEP) Os quadrados abaixo tem todos o mesmo tamanho. Em qual deles a região sombreada tem a maior área? / /017 QUESTÃO 01 A parte sombreada da malha quadriculada representa um terreno de propriedade do senhor Josias. Ele quer construir algumas casas nesse terreno. Considere que cada quadrícula da malha equivale

Leia mais

MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à188

MATEMÁTICA. Capítulo 3 LIVRO 2. (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares. Páginas: 168 à188 MATEMÁTICA LIVRO Capítulo (I) Áreas das Figuras Planas (II) Áreas de Polígonos Regulares Páginas: 68 à88 Áreas de Figuras Planas toda área é uma medida de superfície [u] unidade padrão [u]² [u] I. ÁREA

Leia mais

Plano de Recuperação Semestral EF2

Plano de Recuperação Semestral EF2 Série/Ano: 9º ANO MATEMÁTICA Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para

Leia mais