Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho"

Transcrição

1 Desenho Técnico

2 Material de aula Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho

3 Geometria Conversão de unidades Polígonos e sólidos Escala Desenho Geométrico Construção de retas paralelas Construção de retas perpendiculares Construção de polígonos Desenho Técnico Perspectivas Projeções CAD

4 Conversão de Unidades Comprimento X 10 X 10 X 10 X 10 X 10 X 10 Km hm dam m dm cm mm : 10 : 10 : 10 : 10 : 10 : 10

5 1 milha = 1, km 1 pé = 30,48 cm 1 polegada = 2,54 cm 1 micrômetro (µm) = 10-6 m 1 angstron (Å) = m

6 Conversão de Unidades Área X 100 X 100 X 100 X 100 X 100 X 100 Km 2 hm 2 dam 2 m 2 dm 2 cm 2 mm 2 : 100 : 100 : 100 : 100 : 100 : 100

7 Conversão de Unidades Volume X 1000 X 1000 X 1000 X 1000 X 1000 X 1000 Km 3 hm 3 dam 3 m 3 dm 3 cm 3 mm 3 : 1000 : 1000 : 1000 : 1000 : 1000 : 1000

8 Conversão de Unidades Volume X 10 X 10 X 10 X 10 X 10 X 10 Kl hl dal L dl cl ml : 10 : 10 : 10 : 10 : 10 : 10

9 1 dm 3 = 1 L

10 1) Transforme em metros: a) 7 Km b) 3,4 km c) 8,16 km d) 4 dam e) 6,8 hm f) 0,3 km g) 39 dm h) 98,7 dm i) 746,3 cm j) 59,4 cm l) 43,8 dm m) 380 mm

11 1) Transforme em metros: a) 7 Km (R: 7000 m) b) 3,4 km (R: 3400 m) c) 8,16 km (R: 8160 m) d) 4 dam (R: 40 m) e) 6,8 hm (R:680m) f) 0,3 km (R: 300 m) g) 39 dm (R: 3,9 m) h) 98,7 dm (R: 9,87 m) i) 746,3 cm (R: 7,463 m) j) 59,4 cm (R: 0,594 m) l) 43,8 dm (R: 4,38 m) m) 380 mm (R: 0,380m)

12 2) Faça a conversão de: a) 7,3 km em m b) 8,9 m em cm c) 74 dm em cm d) 2,3 cm em mm e) 681 cm em dm f) 4786 m em km g) 836 cm em dm h) 2,73 dm em cm i) 154 cm em m j) 0,94 m em cm l) 0,81 cm em dm m) 3,97 cm em m

13 2) Faça a conversão de: a) 7,3 km em m (R: 7300 m) b) 8,9 m em cm (R:890 cm) c) 74 dm em cm (R: 740 cm) d) 2,3 cm em mm (R: 23 mm) e) 681 cm em dm (R: 68,1 dm) f) 4786 m em km (R: 4,786 km) g) 836 cm em dm (R: 83,6 dm) h) 2,73 dm em cm (R: 27,3 cm) i) 154 cm em m (R: 1,54 m) j) 0,94 m em cm (R: 94 cm) l) 0,81 cm em dm (R: 0,081 dm) m) 3,97 cm em m (R: 0,0397 m)

14 Lembrando que perímetro é a soma dos lados de um polígono, resolva os exercícios a seguir Os lados de um triângulo medem 4 cm, 3cm e 5 cm. Qual é o seu perímetro? Um quadrado tem 7 cm de lado. Qual o seu perímetro? Um retângulo tem 4 cm de base e 2,5 cm de altura. Qual o seu perímetro? Um retângulo tem 10 de base e sua altura mede a metade da base. Qual o perímetro desse retângulo? O perímetro de um quadrado mede 20 cm. Calcule a medida do lado do quadrado. Calcule a medida do lado de um triângulo equilátero cujo perímetro mede 18 m O perímetro de um losango mede 30 cm. Calculo a medida do lado do losango.

15 Lembrando que perímetro é a soma dos lados de um polígono, resolva os exercícios a seguir Os lados de um triângulo medem 4 cm, 3cm e 5 cm. Qual é o seu perímetro? (R: 12 cm) Um quadrado tem 7 cm de lado. Qual o seu perímetro? (R: 28 cm) Um retângulo tem 4 cm de base e 2,5 cm de altura. Qual o seu perímetro? (R: 13 cm) Um retângulo tem 10 de base e sua altura mede a metade da base. Qual o perímetro desse retângulo? (R: 30 ) O perímetro de um quadrado mede 20 cm. Calcule a medida do lado do quadrado. (R: 5 cm) Calcule a medida do lado de um triângulo equilátero cujo perímetro mede 18 m (R: 6 m) O perímetro de um losango mede 30 cm. Calculo a medida do lado do losango.

16 circunferência Numa circunferência: Diâmetro: é o segmento que une dois pontos de uma circunferência e que passa pelo centro. Raio: é o segmento que une o centro a qualquer ponto da circunferência. Vamos indicar: r a medida do raio; d a medida do diâmetro Observe que a medida do diâmetro é igual ao dobro da medida do raio O comprimento da circunferência ( o perímetro) é expresso por 2πr d r

17 1) O raio de uma circunferência mede 4 cm. Quanto mede o seu comprimento? 2) O raio de uma circunferência mede 2,5 cm. Quanto medo o seu comprimento? 3) O diâmetro de uma circunferência mede 3 cm. Quanto mede o seu comprimento? 4) O comprimento de uma circunferência mede 18,84 cm. Quanto mede o raio? 5) O comprimento de uma circunferência mede 12,56 m. Quanto mede o raio?

18 1) O raio de uma circunferência mede 4 cm. Quanto mede o seu comprimento? (R: 25,12 cm) 2) O raio de uma circunferência mede 2,5 cm. Quanto medo o seu comprimento? (R: 15,70 cm) 3) O diâmetro de uma circunferência mede 3 cm. Quanto mede o seu comprimento? (R: 9,42) 4) O comprimento de uma circunferência mede 18,84 cm. Quanto mede o raio? (R: 3 cm) 5) O comprimento de uma circunferência mede 12,56 m. Quanto mede o raio (R: 2 m)

19 1) Transforme em m² a) 7 km² b) 8 dam² c) 6,41 km² d) 5,3 hm² e) 87,20 dm² f) 44,93 cm² g) 0,0095 hm² h) 524,16 cm²

20 1) Transforme em m² a) 7 km² (R: m²) b) 8 dam² (R: 800 m²) c) 6,41 km² (R: m²) d) 5,3 hm² (R: m²) e) 87,20 dm² (R: 0,8720 m²) f) 44,93 cm² (R: 0, m²) g) 0,0095 hm² ( R: 95 m²) h) 524,16 cm² (R: 0, m²)

21 2) Faça a conversão de: a) 15 m² em dm² b) 30 hm² em km² c)0,83 cm² em mm² d) 3200 mm² em cm² e) 0,07 m² em cm² f) 581,4 m² em dm² g) 739 dam² em km² h) 0,85 m² em hm²

22 2) Faça a conversão de: a) 15 m² em dm² (15000 dm²) b) 30 hm² em km² ( 0,30 km²) c)0,83 cm² em mm² (83 mm²) d) 3200 mm² em cm² (32 cm² ) e) 0,07 m² em cm² (700 cm²) f) 581,4 m² em dm² (58140 dm²) g) 739 dam² em km² (0,0739 km²) h) 0,85 m² em hm² (0,00085 hm²)

23

24 1) Qual é a área de um azulejo quadrado de 15 cm de lado? 2) O perímetro de um quadrado mede 20 cm. Calcule a área do quadrado. 3) O perímetro de um quadrado mede 14 m. Calcule a área do quadrado.

25 1) Qual é a área de um azulejo quadrado de 15 cm de lado? (R: 225 cm²) 2) O perímetro de um quadrado mede 20 cm. Calcule a área do quadrado. (25 cm²) 3) O perímetro de um quadrado mede 14 m. Calcule a área do quadrado. (12,25 m²)

26

27 1) Um campo de futebol tem 90 m de comprimento por 60m de largura. Qual é a área desse campo? 2) Calcule a área de um retângulo cuja base mede 6 cm e a altura é igual à terça parte da base. 3) A altura de um retângulo é 2 cm e o seu perímetro 18 cm. Qual a área desse retângulo?

28 1) Um campo de futebol tem 90 m de comprimento por 60m de largura. Qual é a área desse campo? (R: 5400 m²) 2) Calcule a área de um retângulo cuja base mede 6 cm e a altura é igual à terça parte da base. (R: 12 cm²) 3) A altura de um retângulo é 2 cm e o seu perímetro 18 cm. Qual a área desse retângulo? (R: 14 cm²)

29 1) Expresse em litros: a) 70 dm³ b) 853 dm³ c) 72,6 dm³ d) 4 m³ e) 1,3 m³ f) 2,78 m³ g) 15 m³ h) 1,4 dam³ i) 58 cm³

30 Aproveitando uma promoção de uma loja de materiais para construção, uma família resolve trocar o piso da sala de sua residência. Sabem que a sala mede 4 metros de largura e possui um comprimento de 5,5 metros. Sabem também que o ladrilho desejado é quadrado, com 25 cm de lado. Quantos ladrilhos serão necessários para ladrilhar o piso da sala inteira? Os lados de um triângulo equilátero medem 5 mm. Qual é a área deste triângulo equilátero? A lente de uma lupa tem 10 cm de diâmetro. Qual é a área da lente desta lupa?

31 Aproveitando uma promoção de uma loja de materiais para construção, uma família resolve trocar o piso da sala de sua residência. Sabem que a sala mede 4 metros de largura e possui um comprimento de 5,5 metros. Sabem também que o ladrilho desejado é quadrado, com 25 cm de lado. Quantos ladrilhos serão necessários para ladrilhar o piso da sala inteira? (352 ladrilhos) Os lados de um triângulo equilátero medem 5 mm. Qual é a área deste triângulo equilátero? (10,75 mm 2 ) A lente de uma lupa tem 10 cm de diâmetro. Qual é a área da lente desta lupa? (78,5 cm 2 )

32 O projeto de uma casa é apresentado em forma retangular e dividido em quatro cômodos, também retangulares, conforme ilustra a figura. Sabendo que a área do banheiro (wc) é igual a 3m² e que as áreas dos quartos 1 e 2 são, respectivamente, 9m² e 8m², então a área total do projeto desta casa, em metros quadrados, é igual a:

33 O projeto de uma casa é apresentado em forma retangular e dividido em quatro cômodos, também retangulares, conforme ilustra a figura. Sabendo que a área do banheiro (wc) é igual a 3m² e que as áreas dos quartos 1 e 2 são, respectivamente, 9m² e 8m², então a área total do projeto desta casa, em metros quadrados, é igual a: (A área da cozinha é 24 m 2 e a área total é 44 m 2 )

34 2) Quantos mililitros tem 1 litro de água? 3) O hidrômetro da minha casa registrou nesse mês o consumo de 27 m³ de água. Qual a quantidade consumida em litros? 4) Uma caixa d' água de forma cúbica tem, internamente, 1,3 m de aresta. Qual é a sua capacidade? 5) Um reservatório apresenta as seguintes dimensões internas 4 m, 2,5 m e 1,5 m a) Calcule o volume desse reservatório em m³ b) Calcule a capacidade desse reservatório em litros

35 2) Quantos mililitros tem 1 litro de água? (1000 ml) 3) O hidrômetro da minha casa registrou nesse mês o consumo de 27 m³ de água. Qual a quantidade consumida em litros? (27000 l) 4) Uma caixa d' água de forma cúbica tem, internamente, 1,3 m de aresta. Qual é a sua capacidade? (2197 l ou 2, 197 m 3 ) 5) Um reservatório apresenta as seguintes dimensões internas 4 m, 2,5 m e 1,5 m a) Calcule o volume desse reservatório em m³ (15 m 3 ) b) Calcule a capacidade desse reservatório em litros (15000 l)

36 EXERCÍCIOS 1) Qual o volume de um paralelepípedo de 8 cm de comprimento, 3 cm de altura e 4 cm de largura? 2) As dimensões de um paralelepípedo são 3cm,4cm e 5 cm. Qual é o seu volume? 3) Calcular o volume de u m paralelepipedo retângulo cuja base mede 18 cm² e altura 4 cm

37 Exercícios 1) Calcule o volume de um cubo que tem 5 cm de aresta 2) Qual é o volume de um cubo que tem 2,5 m de aresta? 3) Qual é o volume ocupado por 50 caixas, em forma de cubo, com 20 cm de aresta?

singular Exercícios-Paralelepípedo

singular Exercícios-Paralelepípedo singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma

Leia mais

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento.

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. MEDIDAS Comprimento O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. Existem várias unidades que podem ser utilizadas

Leia mais

Ano: 7ºA EF II Data: / / LISTA DE EXERCÍCIO PRÉ AVALIAÇÃO BIMESTRAL 3º BIMESTRE

Ano: 7ºA EF II Data: / / LISTA DE EXERCÍCIO PRÉ AVALIAÇÃO BIMESTRAL 3º BIMESTRE Aluno(a): Ano: 7ºA EF II Data: / / Conteúdo: Área, Perímetro e Volume LISTA DE EXERCÍCIO PRÉ AVALIAÇÃO BIMESTRAL 3º BIMESTRE 1. Sei que o lado de um quadrado mede 18 cm, calcule o seu perímetro. 2. D e

Leia mais

COLÉGIO SHALOM 8 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.

COLÉGIO SHALOM 8 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº. COLÉGIO SHALOM 8 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho De Recuperação final E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

Área das figuras planas

Área das figuras planas AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:

Leia mais

Colégio Jardim Paulista

Colégio Jardim Paulista Colégio Jardim Paulista Nome: Nº Série: Profª:_ Roberto Salgado Período: 4º Bimestre Data: / / Trabalho de Matemática 6 º ano A Nota Medidas de comprimento: 1) Ana e Antônia fizeram algumas medições e

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de

Leia mais

Matemática/15 6ºmat303r 6º ano Turma: 3º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano

Matemática/15 6ºmat303r 6º ano Turma: 3º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano Matemática/15 6ºmat303r 6º ano Turma: 3º trimestre Nome: Data: / / Roteiro de Estudos para Recuperação Final de Matemática - 6 ano Os conteúdos estão abaixo selecionados e deverão ser estudados pelo caderno

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 6 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Fgv 97) No plano cartesiano, os vértices de um triângulo são A (5,2), B (1,3) e C (8,-4). a) Obtenha a medida da altura do triângulo, que passa por A. b) Calcule a área do triângulo

Leia mais

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No.

COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. COLÉGIO SHALOM Ensino Fundamental 8 Ano Prof.º: Wesley Disciplina Geometria Aluno (a):. No. Trabalho de Recuperação Data: / 12/2016 Valor: Orientações: -Responder manuscrito; -Cópias de colegas, entrega

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

Matéria: Matemática Assunto: Volume Prof. Dudan

Matéria: Matemática Assunto: Volume Prof. Dudan Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como

Leia mais

Curso de Professores do Ensino Básico Variante de Português, História e Ciências Sociais. Disciplina: Matemática Data: Ficha de trabalho: 15

Curso de Professores do Ensino Básico Variante de Português, História e Ciências Sociais. Disciplina: Matemática Data: Ficha de trabalho: 15 Instituto Politécnico de Bragança Escola Superior de Educação Curso de Professores do Ensino Básico Variante de Português, História e Ciências Sociais Conteúdos: grandezas e medidas 1. Resolva cada um

Leia mais

Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS

Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS Nome: nº Data: / / Professor: Lucas Factor Curso/Série 8º Ano Ensino Fundamental II Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS Os cálculos de perímetro e área são necessários, seja para a compra de um

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL 1 - Medida de comprimento SISTEMA MÉTRICO DECIMAL No sistema métrico decimal, a unidade fundamental para medir comprimentos é o metro, cuja abreviação é m. Existem os múltiplos e os submúltiplos do metro,

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a

Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a CILINDRO Definição A figura geométrica formada pela reunião de todos os segmentos de reta paralelos à reta r, com uma extremidade num ponto do círculo R e a outra no plano, denomina-se cilindro circular.

Leia mais

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido

Leia mais

Matemática - 3C12/14/15/16/26 Lista 2

Matemática - 3C12/14/15/16/26 Lista 2 Matemática - 3C12/14/15/16/26 Lista 2 Poliedros Convexos 1) Determine qual é o poliedro convexo e fechado que tem 6 vértices e 12 arestas. 2) Determine o nº de vértices de dodecaedro convexo que tem 20

Leia mais

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no

Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Tema 6 Sólidos geométricos 15 Exercícios e problemas propostos 1. A fotografia é de uma escultura, o Cubo da Ribeira, no Porto. O cubo tem metros de aresta. Determina: 1.1 o volume do cubo, em m ; 1. a

Leia mais

MATEMÁTICA LISTA DE PRISMAS

MATEMÁTICA LISTA DE PRISMAS NOME: MÊS: SÉRIE:: 1 a TURMA: ENSINO: MÉDIO LISTA DE PRISMAS MATEMÁTICA 1) Observe o prisma regular hexagonal ilustrado na figura a seguir. A medida da aresta da base é 6 cm e a medida da altura é 10 cm.

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio

Leia mais

Matemática 2 LEIA COM ATENÇÃO

Matemática 2 LEIA COM ATENÇÃO LEI COM TENÇÃO Matemática 2 01. Só abra este caderno após ler todas as instruções e quando for autorizado pelos fiscais da sala. 02. Preencha os dados pessoais. 03. utorizado o início da prova, verifique

Leia mais

OS PRISMAS. 1) Conceito :

OS PRISMAS. 1) Conceito : 1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Roteiro de Estudos - RECUPERAÇÃO FINAL

Roteiro de Estudos - RECUPERAÇÃO FINAL Roteiro de Estudos - RECUPERAÇÃO FINAL Nome completo: nº Disciplina: Geometria Ano: 9 Data: / / Professor: André Moreira Instruções Gerais: 1) Leia atentamente as questões. Confira sempre os resultados

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

MÓDULO VII SISTEMAS DE UNIDADES DE MEDIDA 2ª PARTE

MÓDULO VII SISTEMAS DE UNIDADES DE MEDIDA 2ª PARTE MÓDULO VII SISTEMAS DE UNIDADES DE MEDIDA 2ª PARTE No módulo anterior, estudamos os Sistemas de Unidades de Comprimento, Massa e de Tempo. Nesse módulo iremos estudar outros Sistemas de Unidades de Medidas,

Leia mais

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...

Leia mais

3ª Ficha de Trabalho

3ª Ficha de Trabalho SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado

Leia mais

COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016

COLÉGIO MILITAR DO RIO E JANEIRO. Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 2016 COLÉGIO MILITR DO RIO E JNEIRO LIST 3 DE EXERCÍCIOS COMPLEMENTRES GEOMETRI ESPCIL º NO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Zamboti e Prof Fernando 3º TRIMESTRE DE 016 CILINDRO Sejam

Leia mais

C) D) E) A) 410,00 B) 460,00 C) 425,00 D) 435,00 E) 420,00 A) ,00 B) ,00 C) 2.400,00 D) ,00 E) 21.

C) D) E) A) 410,00 B) 460,00 C) 425,00 D) 435,00 E) 420,00 A) ,00 B) ,00 C) 2.400,00 D) ,00 E) 21. MATEMÁTICA NÍVEL FUNDAMENTAL I. PORCENTAGEM 1.Fração Percentual 20%= 0,2 35%= 0,35 4%= 0,04 2. Cálculo da porcentagem de um número Exs: a) Calcular 25% de 600 0,25 x 600 = 150 b) Calcular 8% de 50 0,08

Leia mais

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos. ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do

Leia mais

a) b) c) x 3 x 2- O perímetro de um quadrado é 20 cm. Determine sua diagonal.

a) b) c) x 3 x 2- O perímetro de um quadrado é 20 cm. Determine sua diagonal. 1- Calcule x nos triângulos abaixo: a) b) c) 12 13 x 3 x x 5 13 2- O perímetro de um quadrado é 20 cm. Determine sua diagonal. 4 3- A diagonal de um quadrado tem 7 2 cm. Determine o perímetro do quadrado.

Leia mais

Cubo, prismas, cilindro

Cubo, prismas, cilindro A UUL AL A Cubo, prismas, cilindro Qual é a quantidade de espaço que um sólido ocupa? Esta é uma das principais questões quando estudamos as figuras espaciais. Para respondê-la, a geometria compara esse

Leia mais

Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016)

Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016) singular Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016) 1. (Ita) Dado um prisma hexagonal regular, sabe-se que sua altura mede 3 cm e que sua área lateral é o dobro da área de sua base.

Leia mais

Segunda Etapa 2ª ETAPA 2º DIA 11/12/2006

Segunda Etapa 2ª ETAPA 2º DIA 11/12/2006 Segunda Etapa ª ETP º DI 11/1/006 CDERNO DE PROVS FÍSIC MTEMÁTIC GEOMETRI GRÁFIC IOLOGI GEOGRFI PORTUGUÊS LITERTUR INGLÊS ESPNHOL FRNCÊS TEORI MUSICL COMISSÃO DE PROCESSOS SELETIVOS E TREINMENTOS Geometria

Leia mais

Lista de Recuperação Bimestral de Matemática 2

Lista de Recuperação Bimestral de Matemática 2 Lista de Recuperação Bimestral de Matemática NOME Nº SÉRIE: DATA / /01 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática VISTO COORDENAÇÃO INSTRUÇÕES EM Visto: 1) Preencha seu nome número e série

Leia mais

9 0 Fund. II Disciplina Professora Natureza Trimestre/Ano Data Valor Roteiro de estudo Matemática Vânia e exercícios de revisão

9 0 Fund. II Disciplina Professora Natureza Trimestre/Ano Data Valor Roteiro de estudo Matemática Vânia e exercícios de revisão Nome Nº Ano Ensino Turma 9 0 Fund. II Disciplina Professora Natureza Trimestre/Ano Data Valor Roteiro de estudo Matemática Vânia e exercícios de revisão 0 /016 0 a 05/08/016 5,0 Introdução Querido(a) aluno(a),

Leia mais

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 6 ano/e.f.

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 6 ano/e.f. Módulo Unidades de Medidas de Comprimentos e Áreas Unidades de Medida de Área e Exercícios. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Unidades de Medida de Área e Exercícios. 1 Exercícios

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA

VESTIBULAR UFPE UFRPE / ª ETAPA VSTIULR UFP UFRP / 1999 2ª TP NOM O LUNO: SOL: SÉRI: TURM: MTMÁTI 2 01. O triângulo da ilustração abaixo é isósceles ( = ) e = = (isto é,, trissectam ): nalise as afirmações: 0-0) Os ângulos, e são congruentes.

Leia mais

Matemática Geometria Espacial. Professor Bacon

Matemática Geometria Espacial. Professor Bacon Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas

Leia mais

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios

UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios UNIVERSIDADE FEDERAL DE OURO PRETO - DEMAT 3 a Lista de Exercícios 1. Um triângulo isósceles tem base medindo 8cm e lados iguais com medidas de 5cm. Qual é a área do triângulo? 2. Em um triângulo retângulo,

Leia mais

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013 CÁLCULO DE ÁREA DAS FIGURAS PLANAS Professor: Marcelo Silva Natal-RN, agosto de 013 ÁREA A reunião de um polígono com sua região interior é denominada superfície do polígono. A medida da superfície é expressa

Leia mais

Professor: MARA BASTOS E SÔNIA VARGAS Turma: 61 Nota: Questão 5. a) 0,1692 km b) 16,92 km. c) 169,2 km d) 1,692 km. Questão 6. a) 270 km b) 260 km

Professor: MARA BASTOS E SÔNIA VARGAS Turma: 61 Nota: Questão 5. a) 0,1692 km b) 16,92 km. c) 169,2 km d) 1,692 km. Questão 6. a) 270 km b) 260 km ATENÇÃO Esta é uma avaliação individual e não são permitidas consultas a nenhum tipo de material didático. Utilize caneta azul ou preta, respostas à lápis não serão consideradas para efeito de revisão,

Leia mais

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m.

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m. Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Volumes e o Princípio de Cavalieri. 3 ano/e.m. Volumes e o Princípio de Cavalieri. Geometria Espacial II - volumes e áreas de prismas

Leia mais

Conteúdos Exame Final

Conteúdos Exame Final Componente Curricular: Matemática Série/Ano: 6º ANO Professora Fernanda S. Hamerski Conteúdos Exame Final. Frações * Comparação de frações e representação por desenho * Operações com frações (adição, subtração,

Leia mais

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é:

Numa circunferência está inscrito um triângulo equilátero cujo apótema mede 3cm. A medida do diâmetro dessa circunferência é: EXERCÍCIO COMPLEMENTARES - MATEMÁTICA - 9º ANO - ENSINO FUNDAMENTAL - 3ª ETAPA ============================================================================================== 01- Assunto: Função Polinomial

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e

Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e Lista de exercícios - 2os anos - matemática 2 - prova 7-2013 Professores: Cebola, Figo, Guilherme, Rod e Sandra 1 - Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e 5 cm

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

Roteiro de estudos 3º trimestre. GEOMETRIA. Orientação de estudos

Roteiro de estudos 3º trimestre. GEOMETRIA. Orientação de estudos Roteiro de estudos 3º trimestre. GEOMETRIA O roteiro foi montado especialmente para reforçar os conceitos dados em aula. Com os exercícios você deve fixar os seus conhecimentos e encontrar dificuldades

Leia mais

Grandeza superfície Outras medidas de comprimento

Grandeza superfície Outras medidas de comprimento Noções de medida As primeiras noções de medida foram adquiridas com o auxílio de algumas partes do corpo humano, tornandoseunidades de medida o pé, o passo, o palmo, os dedos. É importante ressaltar que

Leia mais

Pirâmide, cone e esfera

Pirâmide, cone e esfera A UA UL LA Pirâmide, cone e esfera Introdução Dando continuidade à unidade de Geometria Espacial, nesta aula vamos estudar mais três dos sólidos geométricos: a pirâmide, o cone e a esfera. Nossa aula A

Leia mais

a) R$ 8,20 b) R$ 8,40 c) R$ 8,60 d) R$ 8,80 e) R$ 9,00

a) R$ 8,20 b) R$ 8,40 c) R$ 8,60 d) R$ 8,80 e) R$ 9,00 Aula n ọ 03 01. Um engenheiro, precisando calcular a área de um terreno com forma quadrangular (conforme a figura abaixo), utilizou como referencial as duas ruas, A e B, que se cruzavam perpendicularmente.

Leia mais

COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO

COLÉGIO CARDEALARCOVERDE REDE REDE DIOCESANA DE EDUCAÇÃO Série: 9ºANO Turma: Disciplina: GEOMETRIA Professor: Mozart William EXERCÍCIO DE FIXAÇÃO II SEMESTRE 1) Num triângulo retângulo, a razão entre as projeções dos catetos sobre a hipotenusa é 16 9. Sabendo

Leia mais

Revisional 3 Bim - MARCELO

Revisional 3 Bim - MARCELO 6º Ano Revisional 3 Bim - MARCELO 1) Represente no papel quatro pontos distintos e, por eles, determine dois segmentos de reta distintos. 2) Observe os segmentos de reta na figura. Escreva quantos são

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 9R Ensino Médio Equipe de Matemática Data: Áreas de Figuras Planas MATEMÁTICA O estudo da área de figuras planas está ligado aos conceitos relacionados à Geometria

Leia mais

Hewlett-Packard PRISMAS. Aulas 01 e 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard PRISMAS. Aulas 01 e 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard PRISMAS Aulas 01 e 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2016 Sumário PRISMAS... 1 CLASSIFICAÇÃO DE UM PRISMA... 1 ÁREAS EM UM PRISMA... 1 EXERCÍCIOS FUNDAMENTAIS...

Leia mais

Grandezas geométricas: perímetros, áreas e volumes

Grandezas geométricas: perímetros, áreas e volumes Grandezas geométricas: perímetros, áreas e volumes Aula 12 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Meta Apresentar as grandezas geométricas: perímetro, área e volume. Objetivos Após

Leia mais

UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI FACULDADE DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE AGRONOMIA

UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI FACULDADE DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE AGRONOMIA UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI FACULDADE DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE AGRONOMIA LISTA EXERCÍCIOS CONVERSÃO MÉTRICA, ESCALA E COTAS Disciplina: Desenho Técnico Código: AGR069/AGR012

Leia mais

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes

Circunferência. MA092 Geometria plana e analítica. Interior e exterior. Circunferência e círculo. Francisco A. M. Gomes Circunferência MA092 Geometria plana e analítica Francisco A. M. Gomes UNICAMP - IMECC Setembro de 2016 A circunferência é o conjunto dos pontos de um plano que estão a uma mesma distância (denominada

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA

Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Aula 31.1 Conteúdo: Fundamentos da Geometria: Ponto, Reta e Plano. 2 CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA Habilidades: Identificar

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

UNITAU APOSTILA CILINDROS PROF. CARLINHOS

UNITAU APOSTILA CILINDROS PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA CILINDROS PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: 1 CILINDROS Na figura abaixo, temos: - Dois planos paralelos α e β; - Um círculo contido em

Leia mais

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é:

Lista de Exercícios: Geometria Plana. Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: Lista de Exercícios: Geometria Plana Questão 1 Um triângulo isósceles tem base medindo 8 cm e lados iguais com medidas de 5 cm. A área deste triângulo é: A( ) 20 cm 2. B( ) 10 cm 2. C( ) 24 cm 2. D( )

Leia mais

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3.

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3. Matemática Pedro Paulo GEOMETRIA ESPACIAL VIII 1 TRONCO DE PIRÂMIDE Chamaremos de tronco de pirâmide de bases paralelas a porção da pirâmide limitada por sua base e por uma secção transversal qualquer

Leia mais

2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume

2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume Matemática Pedro Paulo GEOMETRIA ESPACIAL VI são 1 TETRAEDRO REGULAR É uma piramide regular triangular, cujas faces triângulos equiláteros de lado 2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 2.1 Área lateral

Leia mais

Colégio de Santa Teresinha Exercícios globais de Matemática 6ºano. 1 VOLUMES - exercícios

Colégio de Santa Teresinha Exercícios globais de Matemática 6ºano. 1 VOLUMES - exercícios Colégio de Santa Teresinha Exercícios globais de Matemática 6ºano 1 VOLUMES - exercícios 1 Determina o volume do paralelepípedo da figura: 2 Qual é o volume de ar existente numa sala vazia com 5 metros

Leia mais

Matemática Régis Cortes SISTEMA MÉTRICO

Matemática Régis Cortes SISTEMA MÉTRICO SISTEMA MÉTRICO 1 Unidades de medida ou sistemas de medida Para podermos comparar um valor com outro, utilizamos uma grandeza predefinida como referência, grandeza esta chamada de unidade padrão. As unidades

Leia mais

QUESTÃO 16 A figura abaixo representa um pentágono regular, do qual foram prolongados os lados AB e DC até se encontrarem no ponto F.

QUESTÃO 16 A figura abaixo representa um pentágono regular, do qual foram prolongados os lados AB e DC até se encontrarem no ponto F. Nome: N.º: endereço: data: Telefone: E-mail: Colégio PARA QUEM CURSA O 8 Ọ ANO EM 0 Disciplina: MaTeMÁTiCa Prova: desafio nota: QUESTÃO 6 A figura abaixo representa um pentágono regular, do qual foram

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

Apostila De Matemática ESFERA

Apostila De Matemática ESFERA Apostila De Matemática ESFERA ESFERA Consideremos um ponto O e um segmento de medida r. Chama-se esfera de centro O e raio r ao conjunto dos pontos P do espaço, tais que a distancia OP seja menor ou igual

Leia mais

01- Suzana precisa fazer uma caixa para presente na forma da figura abaixo. Quantos cm 2 de papelão serão necessários para fabricar essa caixa?

01- Suzana precisa fazer uma caixa para presente na forma da figura abaixo. Quantos cm 2 de papelão serão necessários para fabricar essa caixa? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 6º ANO - ENSINO FUNDAMENTAL ============================================================================================== MEDIDAS DE SUPERFÍCIE

Leia mais

Módulo Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Medidas de Comprimento. 6 ano/e.f.

Módulo Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Medidas de Comprimento. 6 ano/e.f. Módulo Unidades de Medidas de Comprimentos e Áreas Exercícios Diversos de Medidas de Comprimento. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Medidas de Comprimento.

Leia mais

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de

Leia mais

LEIA ATENTAMENTE AS INSTRUÇÕES

LEIA ATENTAMENTE AS INSTRUÇÕES Matemática e suas Tecnologias CÓDIGO DA PROVA / SIMULADO Aluno(a): POMA - 3 Matemática Questões Professores: Guilherme Neydiwan 01-5 6-45 ª Série 3º Bimestre - N 30 / 09 / 016 LEIA ATENTAMENTE AS INSTRUÇÕES

Leia mais

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto

Inscrição e circunscrição de sólidos geométricos. Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Inscrição e circunscrição de sólidos geométricos Esfera e cubo Esfera e cilindro Esfera e cone reto Cilindro e cone reto Introdução Nosso último estudo em Geometria será destinado aos sólidos inscritos

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

CENPRO - CONCURSOS MILITARES E TÉCNICOS 4ª REVISÃO DE MATEMÁTICA - CURSO PREPARATÓRIO CMBH Nome Completo: 22/10/12

CENPRO - CONCURSOS MILITARES E TÉCNICOS 4ª REVISÃO DE MATEMÁTICA - CURSO PREPARATÓRIO CMBH Nome Completo: 22/10/12 4ª REVISÃO DE MATEMÁTICA - CURSO PREPARATÓRIO CMBH 013 Nome Completo: /10/1 Instruções ao candidato: * Esta prova é composta de 0 questões de múltipla escolha; * A duração da prova é de horas, incluindo

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

UERJ/EsFAO/APM D.JoãoVI

UERJ/EsFAO/APM D.JoãoVI UERJ/EsFAO/APM D.JoãoVI Neste caderno você encontrará um conjunto de 32 (trinta e duas) páginas numeradas seqüencialmente, contendo 15 (quinze) questões de cada uma das seguintes disciplinas:, Química,

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

MEDIDAS LINEARES. Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/ segundo.

MEDIDAS LINEARES. Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/ segundo. MEDIDAS LINEARES Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/299.792.458 segundo. Nome e símbolo As unidades do Sistema Internacional podem ser escritas

Leia mais

Não efetues arredondamentos nos cálculos intermédios.

Não efetues arredondamentos nos cálculos intermédios. COLÉGIO DE SANTA TERESINHA Ficha de Avaliação n.º1- Matemática 6.ºAno Caderno 1-40 minutos (com recurso à calculadora) Nome: N.º Turma: Class: Enc.Educ.: Prof: 1. Considera a figura ao lado, composta por

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Como planificação da superfície lateral de cilindro é um retângulo, cujas medidas

Leia mais

Conceitos Básicos de Desenho Técnico

Conceitos Básicos de Desenho Técnico Conceitos Básicos de Desenho Técnico 1. Conceitos Básicos de Desenho Técnico: exemplos e prática das Aulas 02 e 03 Esta aula tem por objetivos exercitar e aprimorar: Conhecimento de escalas numéricas;

Leia mais

MATERIAIS E REVESTIMENTOS CST DESIGN DE INTERIORES

MATERIAIS E REVESTIMENTOS CST DESIGN DE INTERIORES MATERIAIS E REVESTIMENTOS CST DESIGN DE INTERIORES DOCENTE: Júlio Cesar e Márcia Silva CÁLCULO PARA PISOS E AZULEJOS CÁLCULO DE PISO Deve-se levar em conta o tamanho das placas e da área. Quanto maior

Leia mais

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma

Leia mais

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos) MATEMÁTICA 3º CICLO FICHA 16 Geometria regular inscrito numa circunferência Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) é uma figura plana limitada por segmentos de

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

Geometria Espacial: Sólidos Geométricos

Geometria Espacial: Sólidos Geométricos Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução MTEMÁTI - 3o ciclo Teorema de Pitágoras (8 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. omo a base do prisma é um quadrado, os lados adjacentes são perpendiculares,

Leia mais