OS PRISMAS. 1) Conceito :

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "OS PRISMAS. 1) Conceito :"

Transcrição

1 1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito : Dados dois planos paralelos α e β, um polígono convexo qualquer contido em β e uma reta r concorrente com α e β, chamamos de PRISMA o conjunto de todos os segmentos de reta paralelos a r, com uma extremidade pertencente ao polígono e outra pertencente a α. Exemplo : Na figura abaixo, o polígono considerado, pertencente a β é um pentágono. Observe como será a figura resultante : Parece uma caixa, é um prisma pentagonal.

2 Outros exemplos de prismas : ) Elementos dos prismas : Tomemos como exemplo o prisma abaixo para definirmos os elementos principais dos prismas em geral : a) As bases são os dois polígonos congruentes contidos nos planos paralelos que geraram o prisma : ABCDEF e A B C D E F (hexágonos).

3 3 b) As arestas são todos os segmentos que limitam o prisma. Então, temos arestas da base (AB, BC, CD, DE, EF, FA e A B, B C, C D, D E, E F, F A ) e as arestas laterais ( AA, BB, CC, DD, EE e FF ). c) Os vértices são todos os pontos onde as arestas se cruzam, ou seja A, B, C, D, E, F, A, B, C, D, E e F. d) A altura é a distância entre as bases. e) As faces laterais são os paralelogramos que têm como lados opostos duas arestas das bases e duas arestas laterais. No nosso caso : ABB A, BCC B, CDD C, DEE D, EFF E e FAA F. 3) Classificação dos Prismas : Se as arestas laterais de um prisma são perpendiculares aos planos das bases, então esse prisma é RETO. Se as arestas laterais não são perpendiculares aos planos das bases, então o prisma é INCLINADO ou OBLÍQUO. Exemplos :

4 4 Um prisma é REGULAR quando é reto e tem base regular ( O que significa ter base regular? ) : Exemplos : 4) Prismas Notáveis : O paralelepípedo e o Cubo a) O prisma cujas faces são paralelogramos é chamado de Paralelepípedo. Exemplos :

5 5 b) Se num paralelepípedo todas as faces são quadradas, então esse paralelepípedo é um Cubo. 5) Cálculo da diagonal do paralelepípedo : Observe que na figura temos um paralelepípedo cujo comprimento,largura e altura medem, respectivamente a, b e c, a diagonal do paralelepípedo mede D e digamos que a diagonal da base inferior mede x. Então, temos pelo teorema de pitágoras : D = x + c, mas também x = a + b. Então, temos D = a + b + c e, finalmente : D = a + b + c

6 6 Para o cubo teremos a = b = c : E como o cubo é um paralelepípedo, temos : AG = a + + a a = 3a = a 3 Exemplos : a) Calcule a diagonal do paralelepípedo mostrado na figura a seguir, Considerando que as medidas são dadas em metros : Resolução : Como a = 4 m, b = 3 m e c = m, temos : D = (4) + (3) + () = = 9 m b) Calcule a aresta de um cubo e a diagonal de uma de suas faces, sabendo que sua diagonal mede 75 cm.

7 7 Resolução : Consideremos que a medida da aresta do cubo é a, a diagonal da face inferior é d 1 e a diagonal do cubo é d = 75 cm. Então temos : a) a 3 = 75. Então a = = = 5 3 cm. 3 3 b) Aplicando o teorema de Pitágoras ao triângulo ABD : 1 = a + a a Então d1 = a = d = 5 3. = 5 6 cm 6) Áreas relacionadas aos prismas : a) Área da base : É a área do polígono que representa a base. Exemplos : 1) Se um prisma tem base triangular com as arestas da base medindo cm, 5 cm e 6 cm, calcule a área da base do prisma. 5 6 A base é irregular, mas como as arestas são conhecidas, podemos usar a fórmula de Heron, vista no último trabalho : Seja A b a área da base. Como o semi perímetro da base é p = = cm, Temos : ( A b ) = ( )( 5)( 6) 3 e A b = 39 4 cm

8 8 ) Se um prisma regular tem base hexagonal com arestas da base medindo cm, então calcule a área da base desse prisma. cm Como a área do hexagono regular é dada em função do lado pela fórmula já conhecida 3a 3 A hex =, temos no caso do prisma : 3() 3 A b = = 6 3 cm b) Área Lateral : Você já deve ter percebido que : As faces laterais de um prisma oblíquo são paralelogramos, e As faces laterais de um prisma reto são retângulos. retângulo paralelogramo Então : - No prisma reto : Área de uma face = Área de retângulo. - No prisma oblíquo : Área de uma face = Área de paralelogramo

9 9 Área lateral de um prisma é a soma das áreas de todas as faces laterais do prisma. Exemplos : 1) A figura abaixo mostra um prisma hexagonal regular com aresta com aresta da base medindo = 8 cm e altura h = 10 cm. Calcule a área da base e a área lateral do prisma. A base é mostrada na figura da direita. Sua área é 3(8) 3 A b = = 96 3 cm Como o prisma é regu lar, cada uma de suas faces laterais é um retângulo xh e tem área = 8.10 = 80 cm. Logo, como são 6 faces laterais, A L = =480cm.. ) Calcule a área lateral do paralelepípedo mostrado na figura a seguir, sabendo que o comprimento é o quíntuplo da altura, a largura é o dobro da altura e a diagonal mede 30 cm. a)cálculo das dimensões do paralelogramo :Como a diagonal foi dada, te - P x mos: 30 = (5x) + (x) + ( x) Elevando ambos os lados ao quadrado, temos 10 = 30x de onde x = cm.as dimensões do paralelogramo são 10 cm, 4cm e cm. 5x Q x b) Cálculo da área lateral do paralelepípedo : A área lateral compreende : retângulos 10x e retângulos 4x. Então : A L = = = = 56 cm.

10 10 c) Área total do prisma : É a soma das áreas das bases com a área lateral. Então, temos : A T = A L +. A b Exemplo : Calcule a área total do prisma reto abaixo. 1) Como a base é um triângulo retângulo isósceles, temos : ( 3 ) = a + a a = 9 e a = 3 cm ) A b = = cm. 3) A L =. ( 3. 6) + ( 3. 6) = cm. 9 4) A T = A L +. A b = ( ) +. = = = 9( 5 + ) cm. EM ALGUNS CASOS ESPECIAIS É POSSÍVEL CRIAR FÓRMULAS GERAIS! VEJA! 1) Se o prisma é regular com aresta da base a e altura h, podemos ter : A L = n. ah e A T = n.ah +. A b, onde n é o número de arestas da base.

11 11 ) Num paralelepípedo retângulo, em geral, temos as dimensões in- dicadas na figura abaixo. Então vale a fórmula : c A T =.(ab + ac + bc) a b 3) No cubo, temos 6 faces quadradas e congruentes com arestas de medida a. Vale então a fórmula : A T = 6 a a a a

12 1 7) VOLUME DOS PRISMAS : A secção transversal de um prisma é a intersecção não vazia, desse prisma com qualquer plano, paralelo às suas bases. Veja figura : Num prisma, todas as secções transversais têm mesma área já que todas as secções transversais são paralelas às bases e as arestas laterais são paralelas entre sí. Isso significa que, se você empilhar várias porções congruentes do plano, terá um sólido de volume equivalente às áreas de todas as porções juntas, no caso do prisma, a área de um polígono várias vezes. Em outras palavras, podemos fatiar um prisma em prismas congruentes de altura unitária :

13 13 Como todas as fatias têm altura unitária, e todas elas têm a mesma área que é A b, podemos enunciar o seguinte : O VOLUME DE UM PRISMA É O PRODUTO DA ÁREA DE SUA BASE POR SUA ALTURA* * A altura do prisma é a soma das alturas unitárias dos prismas menores (fatias). Em linguagem matemática teremos : Exemplos : V PRISMA = A b. h 1) Calcule a área total e o volume do paralelepípedo retângulo da figura a seguir : ( medidas dadas em cm ) A B D E 5 13 C H 3 G F Resolução : a) O triângulo EGH é retângulo em H. Então : (5) = (3) + (EH), de onde sai que EH = 4 cm b) O triângulo AEG é retângulo em E. Então : (13) = (5) + (AE), de onde sai que AE = 1 cm c) A T =.( ) = 19 cm d) V = A b. h = = 144 cm 3 ) Na figura seguinte, a base do prisma regular está inscrito na circunferência de perímetro igual 6π cm. Se a altura do prisma é igual a 8 cm, calcule seu volume.

14 14 Resolução : Sabemos que o perímetro de uma circunferência de raio r é igual a πr que, neste caso, é igual a 6π. Então : π = 6π, de onde = 3 cm Como a base é um hexágono regular, temos : A b = Logo V = A b. h = = cm 3(3) = 3) Se a diagonal de um cubo mede 6 dm, calcule sua área total e seu volume. Resolução : cm 6 dm a a Sabemos que a diagonal de um cubo com aresta a é a 3. Então temos a 3 = 6 a = 3 dm e teremos ainda : a) A T = 6. ( 3) = 7 dm b) V = A b. h = a.a. a = a 3 = ( 3) 3 = 4 3 dm 3 a AQUI TAMBÉM É POSSÍVEL CRIAR FÓRMULAS PARA OS PARALELEPÍPEDOS Como, nos paralelepípedos de dimensões a, b e c, a base pode ter área ab, bc ou ac com alturas c, a ou b, respectiva mente, podemos registrar : V paral = abc Então, para os cubos de aresta a, teremos V cubo = a 3

15 15

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Hewlett-Packard PRISMAS. Aulas 01 e 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard PRISMAS. Aulas 01 e 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard PRISMAS Aulas 01 e 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2016 Sumário PRISMAS... 1 CLASSIFICAÇÃO DE UM PRISMA... 1 ÁREAS EM UM PRISMA... 1 EXERCÍCIOS FUNDAMENTAIS...

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

Geometria Espacial: Sólidos Geométricos

Geometria Espacial: Sólidos Geométricos Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.

Leia mais

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :...

SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE 2) NOME :...NÚMERO :... TURMA :... SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS (PARTE ) 1 NOME :...NÚMERO :... TURMA :... 6) Áres relcionds os prisms : ) Áre d bse : É áre do polígono que represent bse.

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO

Leia mais

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido

Leia mais

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma

Leia mais

Volume e Área de Superfície, Parte I

Volume e Área de Superfície, Parte I AULA 14 14.1 Introdução Nesta aula vamos trabalhar com os conceitos que você, aluno já está habituado: volume e área de superfície. Nesta aula, trataremos de volumes de sólidos simples como cilindros,

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

Aula 21 - Baiano GEOMETRIA PLANA

Aula 21 - Baiano GEOMETRIA PLANA Aula 21 - Baiano GEOMETRIA PLANA Definição: Polígono de quatro lados formado por quatro vértices não colineares dois a dois. A D S i = 180º (n 2)= 180º (4 2)= 360º S e = 360º B C d = n. (n - 3) 2 = 4.

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m.

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m. Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Pirâmide ano/em Pirâmide Geometria Espacial II - volumes e áreas de prismas e pirâmides 1 Exercícios Introdutórios Exercício 1 Determine

Leia mais

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! 1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,

Leia mais

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles

Leia mais

AVF - MA Gabarito

AVF - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL AVF - MA13-016.1 - Gabarito Questão 01 [,00 pts ] Em um triângulo ABC de perímetro 9, o lado BC mede 3 e a distância entre os pés das bissetrizes interna

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS)

SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS) SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS) 56. Exame de 1998 Prova Modelo (código 109) Represente, no sistema de dupla projecção ortogonal, dois segmentos de recta concorrentes, [AE] e [AI]. Os

Leia mais

singular Exercícios-Paralelepípedo

singular Exercícios-Paralelepípedo singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

MATEMÁTICA LISTA DE PRISMAS

MATEMÁTICA LISTA DE PRISMAS NOME: MÊS: SÉRIE:: 1 a TURMA: ENSINO: MÉDIO LISTA DE PRISMAS MATEMÁTICA 1) Observe o prisma regular hexagonal ilustrado na figura a seguir. A medida da aresta da base é 6 cm e a medida da altura é 10 cm.

Leia mais

Matemática - 3C12/14/15/16/26 Lista 2

Matemática - 3C12/14/15/16/26 Lista 2 Matemática - 3C12/14/15/16/26 Lista 2 Poliedros Convexos 1) Determine qual é o poliedro convexo e fechado que tem 6 vértices e 12 arestas. 2) Determine o nº de vértices de dodecaedro convexo que tem 20

Leia mais

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I

Escola Secundária com 3º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I. 2º Teste de avaliação versão1 Grupo I Escola Secundária com º ciclo D. Dinis 10º Ano de Matemática A TEMA 1 GEOMETRIA NO PLANO E NO ESPAÇO I º Teste de avaliação versão1 Grupo I As cinco questões deste grupo são de escolha múltipla. Para cada

Leia mais

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.

Leia mais

EXERCÍCIOS COMPLEMENTARES

EXERCÍCIOS COMPLEMENTARES Questão 01) EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL PROF.: GILSON DUARTE d) Se e são perpendiculares entre-si, então é perpendicular a todas as retas contidas em. Todas as afirmações abaixo estão

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:

Leia mais

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR

SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR SOLUCÃO DAS ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida

Leia mais

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas)

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) DEPARTAMENTO DE MATEMÁTICA PROFª VALÉRIA NAVARRO ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) 1. (G1 - cftrj 014) Na figura abaixo,

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m.

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m. Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Volumes e o Princípio de Cavalieri. 3 ano/e.m. Volumes e o Princípio de Cavalieri. Geometria Espacial II - volumes e áreas de prismas

Leia mais

Lista de exercícios 08 Aluno (a):

Lista de exercícios 08 Aluno (a): Lista de exercícios 08 Aluno (a): Turma: 3º série (Ensino médio) Professores: Flávio Disciplina: Matemática Prismas e pirâmides Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

Leia mais

Avaliação 2 - MA Gabarito

Avaliação 2 - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL Avaliação - MA1-015 - Gabarito Questão 01 [,00 ] Considere um cilindro sólido de altura R, cujas bases são dois círculos de raio R, do qual são retirados

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V MATEMÁTICA II LISTA DE GEOMETRIA PLANA - V 1) (PUC/MG) Na figura, ABCD é paralelogramo, BE AD e BF CD. Se BE = 1, BF = 6 e BC = 8, então AB mede a) 1 b) 13 c) 14 d) 15 e) 16 ) (CESGRANRIO) O losango ADEF

Leia mais

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3. 1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o

Leia mais

Resumo. Maria Bernardete Barison apresenta Prisma em Geometria Descritiva. Geométrica vol.2 n PRISMA

Resumo. Maria Bernardete Barison apresenta Prisma em Geometria Descritiva. Geométrica vol.2 n PRISMA 1 PRISMA: DEFINIÇÃO PRISMA O prisma é um poliedro irregular compreendido entre dois polígonos iguais e paralelos, e cujas faces laterais são paralelogramos. Os dois polígonos iguais e paralelos são as

Leia mais

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro Poliedros 1 Os poliedros são sólidos cujo volume é definido pela interseção de quatro ou mais planos (poli + edro). A superfície poliédrica divide o espaço em duas regiões: uma região finita, que é a parte

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

LISTA DE EXERCÍCIOS COMPLEMENTAR 1ª PROVA

LISTA DE EXERCÍCIOS COMPLEMENTAR 1ª PROVA MINISTÉRI DA EDUCAÇÃ UNIVERSIDADE FEDERAL D PARANÁ SETR DE CIÊNCIAS EXATAS DEPARTAMENT DE EXPRESSÃ GRÁFICA Professora Elen Andrea Janzen Lor Representação de Retas LISTA DE EXERCÍCIS CMPLEMENTAR 1ª PRVA

Leia mais

Aula 3 Polígonos Convexos

Aula 3 Polígonos Convexos MODULO 1 - AULA 3 Aula 3 Polígonos Convexos Conjunto convexo Definição: Um conjunto de pontos chama-se convexo se, quaisquer que sejam dois pontos distintos desse conjunto, o segmento que tem esses pontos

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Série: ª - Ensino Médio Professor: Elias Atividades para Estudos Autônomos Data: 8 / 3 / 016 QUESTÃO 1 (UEMG) O desenho ao lado representa uma caixa de madeira

Leia mais

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula.

CM127 - Lista 3. Axioma da Paralelas e Quadriláteros Notáveis. 1. Faça todos os exercícios dados em aula. CM127 - Lista 3 Axioma da Paralelas e Quadriláteros Notáveis 1. Faça todos os exercícios dados em aula. 2. Determine as medidas x e y dos ângulos dos triângulos nos itens abaixo 3. Dizemos que um triângulo

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 07/08/10 PROFESSORES: CARIBÉ E ROBERTO CIDREIRA Observe a tabela abaixo. Seja n o número da quadrícula em que, pela primeira vez, o número

Leia mais

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G

a média de gols da primeira rodada, M G a média de gols das duas primeiras rodadas e x o número de gols da segunda rodada, tem-se 15 + x 15 M G MATEMÁTICA O número de gols marcados nos 6 jogos da primeira rodada de um campeonato de futebol foi 5,,,, 0 e. Na segunda rodada, serão realizados mais 5 jogos. Qual deve ser o número total de gols marcados

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE

Questão 1. C (ABCD) = AB. BC AB. 2 = 6 AB = 3cm (BCFE) = BC. BE Resolução Ficha 13 Questão 1. C (ABCD) = AB. BC AB. = 6 AB = 3cm (BCFE) = BC. BE. BE = 10 BE = 5cm. Logo, aplicando o Teorema de Pitágoras no triângulo ABE, obtemos AE = 4cm. O resultado pedido é AB. AE.

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Uff 99) Considere o cubo de vértices A, B, C, D, E, F, G e H representando na figura abaixo. Sabendo que a área do triângulo DEC é Ë2/2m, calcule o volume da pirâmide cujos vértices são D, E, G e C.

Leia mais

Matemática 2 LEIA COM ATENÇÃO

Matemática 2 LEIA COM ATENÇÃO LEI COM TENÇÃO Matemática 2 01. Só abra este caderno após ler todas as instruções e quando for autorizado pelos fiscais da sala. 02. Preencha os dados pessoais. 03. utorizado o início da prova, verifique

Leia mais

Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e

Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e Lista de exercícios - 2os anos - matemática 2 - prova 7-2013 Professores: Cebola, Figo, Guilherme, Rod e Sandra 1 - Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e 5 cm

Leia mais

MA13 Geometria I Avaliação

MA13 Geometria I Avaliação 13 eometria I valiação 011 abarito Questão 1 (,0) figura abaixo mostra um triângulo equilátero e suas circunferências inscrita e circunscrita. circunferência menor tem raio 1. alcule a área da região sombreada.

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

ATIVIDADES COM GEOPLANO QUADRANGULAR

ATIVIDADES COM GEOPLANO QUADRANGULAR ATIVIDADES COM GEOPLANO QUADRANGULAR Observações. Os pinos do geoplano quadrangular são chamados de pontos. A distância horizontal ou vertical entre dois pontos consecutivos é estabelecida como a unidade

Leia mais

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de

Leia mais

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho

MATEMÁTICA MÓDULO 16 CONE E CILINDRO. Professor Haroldo Filho MATEMÁTICA Professor Haroldo Filho MÓDULO 16 CONE E CILINDRO 1. CILINDRO CIRCULAR Considere dois planos paralelos, α e β, seja R um círculo no plano α, seja s uma reta secante aos dois planos que não intersecta

Leia mais

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2014 1ª. SÉRIE 1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: 2.-Ao fazer uma

Leia mais

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos. ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do

Leia mais

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2.

GGM Geometria Básica - UFF Lista 4 Profa. Lhaylla Crissaff. 1. Encontre a área de um losango qualquer em função de suas diagonais. = k 2. 1. Encontre a área de um losango qualquer em função de suas diagonais. 2. Se dois triângulos ABC e DEF são semelhantes com razão de semelhança k, mostre que A ABC A DEF = k 2. 3. Na figura 1, ABCD e EF

Leia mais

Banco de questões. 25 Poliedros ( ) ( ) ( ) ( ) ( ) geometria UNIDADE V I I I

Banco de questões. 25 Poliedros ( ) ( ) ( ) ( ) ( ) geometria UNIDADE V I I I UNIDADE V I I I geometria CAPÍTULO 5 Poliedros 1 (UEL PR) Um retângulo é inscrito no triângulo eqüilátero de lado a, de modo que a base do retângulo está contida na base do triângulo, como ilustra a figura

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

1. Área do triângulo

1. Área do triângulo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Plana II Prof.:

Leia mais

DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar

DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar DEPARTAMENTO DE MATEMÁTICA Matemática 7 MA07A TURMA T51 Prof. Luiz Antonio Kretzschmar PARTE 2 PONTO, RETA, PLANO Def. : Uma reta é paralela a um plano se, e somente se, eles não têm ponto comum Uma reta

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

Exercícios de Aprofundamento Mat Geom Espacial

Exercícios de Aprofundamento Mat Geom Espacial 1. (Fuvest 015) No cubo ABCDEFGH, representado na figura abaixo, cada aresta tem medida 1. Seja M um ponto na semirreta de origem A que passa por E. Denote por θ o ângulo BMH e por x a medida do segmento

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011

GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011 GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2 Dirce Uesu Pesco Geometria Espacial 08/11/2011 Definição : Considere dois planos paralelos α e β e um segmento de reta PQ, cuja reta suporte r intercepta o plano

Leia mais

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução

MATEMÁTICA - 3o ciclo Áreas e Volumes (9 o ano) Propostas de resolução MATEMÁTICA - o ciclo Áreas e Volumes (9 o ano) Propostas de resolução Exercícios de provas nacionais e testes intermédios 1. Considerando a expressão para o volume, V, de um tronco de pirâmide quadrangular

Leia mais

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas.

GEOMETRIA PLANA. Segmentos congruentes: Dois segmentos ou ângulos são congruentes quando têm as mesmas medidas. PARTE 01 GEOMETRIA PLANA Introdução A Geometria está apoiada sobre alguns postulados, axiomas, definições e teoremas, sendo que essas definições e postulados são usados para demonstrar a validade de cada

Leia mais

Soluções do Capítulo 8 (Volume 2)

Soluções do Capítulo 8 (Volume 2) Soluções do Capítulo 8 (Volume 2) 1. Não. Basta considerar duas retas concorrentes s e t em um plano perpendicular a uma reta r. As retas s e t são ambas ortogonais a r, mas não são paralelas entre si.

Leia mais

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III

MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III MATEMÁTICA II LISTA DE GEOMETRIA PLANA - III 0 Dois círculos de centros A e B são tangentes exteriormente e tangenciam interiormente um círculo de centro C. Se AB = cm, AC = 7 cm e BC = 3 cm, então o raio

Leia mais

esquerda e repetia esse processo até chegar ao ponto A novamente. a) Faça um esboço dessa figura com os três primeiros segmentos.

esquerda e repetia esse processo até chegar ao ponto A novamente. a) Faça um esboço dessa figura com os três primeiros segmentos. ATIVIDADES PARA RECUPERAÇÃO PARALELA - MATEMÁTICA PROFESSOR: CLAUZIR PAIVA NASCIMENTO TURMA: 8º ANO REVISÃO 1) A medida de um ângulo interno de um polígono é o dobro da medida do seu ângulo externo. Qual

Leia mais

Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares.

Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. GABARITO MA1 Geometria I - Avaliação - 01/ Questão 1. (pontuação: ) Os pentágonos regulares ABCDE e EF GHI da figura abaixo estão em posição tal que as retas CD e GH são perpendiculares. Calcule a medida

Leia mais

ATIVIDADES COM GEOPLANO ISOMÉTRICO

ATIVIDADES COM GEOPLANO ISOMÉTRICO ATIVIDADES COM GEOPLANO ISOMÉTRICO Observações. Os pinos ou pregos do geoplano isométrico são chamados de pontos. A menor distância entre dois pontos consecutivos é estabelecida como a unidade de comprimento

Leia mais

Grupo de exercícios II.2 - Geometria plana- Professor Xanchão

Grupo de exercícios II.2 - Geometria plana- Professor Xanchão Grupo de exercícios II. - Geometria plana- Professor Xanchão 1. (Pucrj 015) A medida da área, em círculo de raio igual a 5 cm é? a) 0 b) 5 c) 5 d) 50 e) 50 cm, de um quadrado que pode ser inscrito em um.

Leia mais

SOLUCÃO DAS ATIVIDADES COM VARETAS

SOLUCÃO DAS ATIVIDADES COM VARETAS SOLUCÃO DAS ATIVIDADES COM VARETAS Em todas as atividades é usado o Material: Varetas. Nos casos específicos onde o trabalho é realizado com varetas congruentes será especificado como Material: varetas

Leia mais

Área das figuras planas

Área das figuras planas AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:

Leia mais

Conceitos básicos de Geometria:

Conceitos básicos de Geometria: Conceitos básicos de Geometria: Os conceitos de ponto, reta e plano não são definidos. Compreendemos estes conceitos a partir de um entendimento comum utilizado cotidianamente dentro e fora do ambiente

Leia mais

RECURSO PARA AS QUESTÕES DE MATEMÁTICA DO CONCURSO SEEMG 2015 PROFESSOR DE MATEMÁTICA (COLÉGIO TIRADENTES)

RECURSO PARA AS QUESTÕES DE MATEMÁTICA DO CONCURSO SEEMG 2015 PROFESSOR DE MATEMÁTICA (COLÉGIO TIRADENTES) RECURSO PARA AS QUESTÕES DE MATEMÁTICA DO CONCURSO SEEMG 2015 PROFESSOR DE MATEMÁTICA (COLÉGIO TIRADENTES) 11) Com relação a uma pirâmide de base eneagonal é correto afirmar que: a) O número de arestas

Leia mais

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática 17/05/2012 Trigonometria; Espaço Outra Visão 9.º Ano

Escola Secundária/2,3 da Sé-Lamego Ficha de Trabalho de Matemática 17/05/2012 Trigonometria; Espaço Outra Visão 9.º Ano Escola Secundária/2, da Sé-Lamego Ficha de Trabalho de Matemática 17/05/2012 Trigonometria Espaço Outra Visão 9.º Ano Nome: N.º: Turma: 1. Na figura, está representado um triângulo retângulo em que: a,

Leia mais

3. São dadas as coordenadas de u e v em relação a uma base ortonormal fixada. Calcule a medida angular entre u e v.

3. São dadas as coordenadas de u e v em relação a uma base ortonormal fixada. Calcule a medida angular entre u e v. 1 a Produto escalar, produto vetorial 2 a Lista de Exercícios MAT 105 1. Sendo ABCD um tetraedro regular de aresta unitária, calcule AB, DA. 2. Determine x de modo que u e v sejam ortogonais. (a) u = (x

Leia mais

Associamos a esse paralelepípedo um número real, chamado volume, e definido por. V par = a b c.

Associamos a esse paralelepípedo um número real, chamado volume, e definido por. V par = a b c. Volumes Paralelepípedo Retângulo Dado um retângulo ABCD num plano α, consideremos um outro plano β paralelo à α. À reunião de todos os segmentos P Q perpendiculares ao plano α, com P sobre ABCD e Q no

Leia mais

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa

Projeto Jovem Nota 10 Áreas de Figuras Planas Lista 4 Professor Marco Costa 1 Projeto Jovem Nota 10 1. (Ufscar 2001) Considere o triângulo de vértices A, B, C, representado a seguir. a) Dê a expressão da altura h em função de c (comprimento do lado AB) e do ângulo A (formado pelos

Leia mais

Matemática. 3-3) As diagonais do cubo medem x / ) As diagonais da face do cubo medem 2 y 1/3. Resposta: VFFVV.

Matemática. 3-3) As diagonais do cubo medem x / ) As diagonais da face do cubo medem 2 y 1/3. Resposta: VFFVV. Matemática 01. Seja x a área total da superfície de um cubo, e y, o volume do mesmo cubo. Analise as afirmações a seguir, considerando essas informações. 0-0) Se x = 54 então y = 27. 1-1) 6y = x 3 2-2)

Leia mais

3ª Ficha de Trabalho

3ª Ficha de Trabalho SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado

Leia mais

Aula 11 Polígonos Regulares

Aula 11 Polígonos Regulares MODULO 1 - AULA 11 Aula 11 Polígonos Regulares Na Aula 3, em que apresentamos os polígonos convexos, vimos que um polígono regular é um polígono convexo tal que: a) todos os lados são congruentes entre

Leia mais

Cones, cilindros, esferas e festividades, qual a ligação?

Cones, cilindros, esferas e festividades, qual a ligação? Cones, cilindros, esferas e festividades, qual a ligação? Helena Sousa Melo hmelo@uac.pt Professora do Departamento de Matemática da Universidade dos Açores Publicado no jornal Correio dos Açores em 5

Leia mais

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem

Leia mais

Lista Recuperação Paralela II Unidade Parte I - Trigonometria

Lista Recuperação Paralela II Unidade Parte I - Trigonometria Aluno(a) Turma N o Série a Ensino Médio Data / / 06 Matéria Matemática Professor Paulo Sampaio Lista Recuperação Paralela II Unidade Parte I - Trigonometria 01. Sendo secx = n 1 e x 3 o quadrante, determine

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a. GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014

2 a Lista de Exercícios de MAT2457 Escola Politécnica 1 o semestre de 2014 a Lista de Eercícios de MAT4 Escola Politécnica o semestre de 4. Determine u tal que u = e u é ortogonal a v = (,, ) e a w = (, 4, 6). Dos u s encontrados, qual é o que forma um ângulo agudo com o vetor

Leia mais

UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS

UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br 1 PIRÂMIDES Pirâmide é o poliedro convexo tal que uma face é um

Leia mais

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico

Desenho Geométrico. Desenho Geométrico. Desenho Geométrico. Desenho Geometrico UNIVERSIDADE ESTADUAL VALE DO ACARAÚ- UVA DEPARTAMENTO DE MATEMÁTICA Desenho Geométrico Desenho Geométrico Desenho Geométrico Desenho Geometrico Daniel Caetano de Figueiredo Daniel Caetano de Figueiredo

Leia mais