Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO"

Transcrição

1 Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva os problemas: a) Qual o número de vértices de um poliedro convexo constituído por doze faces triangulares? b) Calcule o número de vértices de um poliedro convexo constituído por doze faces triangulares. c) Num poliedro convexo de 10 arestas, o número de faces é igual ao número de vértices. Quantas faces têm este poliedro? d) Calcule o número de vértices de um poliedro convexo que possui 12 faces triangulares. V = 8 e) Um poliedro cujas faces são triangulares tem 30 arestas. Determine o número de vértices desse poliedro. V = 12 f) Num poliedro convexo, o número de vértices é 5 e o de aresta é 10. Qual é o número de faces? F = 7 g) Em um poliedro convexo, o número de arestas é 30 e o número de faces é 20. Calcule o número de vértices desse poliedro. h) Em um poliedro convexo de 20 arestas, o número de faces é igual ao número de vértices. Quantas faces têm esse poliedro? i) Num poliedro convexo, o número de arestas excede o número de vértices em 6 unidades. Calcule o número de faces deste poliedro. j) (PUCCamp-SP) Calcule o número de vértices de um poliedro convexo que possui 16 faces triangulares. 2) Resolva os problemas: a) Calcule o número de arestas de um sólido que possui 8 vértices e 6 faces. A = 12 b) Um sólido geométrico tem 6 vértices e 10 arestas. Calcule o número de faces desse sólido. 6 c) Determine o número de vértices de um poliedro convexo que tem três faces triangulares, uma face quadrangular, uma face pentagonal e duas faces hexagonais. V = 10 d) Um poliedro é formado por 4 faces pentagonais e 5 faces hexagonais. Quantos vértices têm esse poliedro? V = 18 e) Um poliedro convexo apresenta uma face hexagonal e seis faces triangulares. Quantos vertices têm esse poliedro? V = 7 f) Um poliedro convexo é formado por 4 faces triangulares, 2 faces quadrangulares e 1 face hexagonal. Calcule o número de vértices desse poliedro. 8 g) Um poliedro convexo tem 15 faces triangulares, 1 face quadrangular, 7 faces pentagonais e 2 faces hexagonais. Calcule o número de vértices desse poliedro. 25 h) Um poliedro convexo só tem faces triangulares e quadrangulares. Se ele tem 20 arestas e 10 vértices, então, o número de faces triangulares é? 8 faces triangulares i) Calcule o número de faces triangulares e o número de faces quadrangulares de um poliedro com 20 arestas e 10 vértices. F 3 = 8 e F 4 = 4 j) Um poliedro convexo tem 6 faces triangulares e 4 faces hexagonais. Quantas arestas e quantos vértices têm esse poliedro? A = 21 e V = 13 3) Resolva os problemas: a) Considere um poliedro convexo em que a soma dos ângulos internos de todas as faces é O número de vértices desse poliedro é igual a? V = 22 b) Um poliedro convexo tem três faces triangulares, uma quadrangular, uma pentagonal e duas hexagonais. Calcule a soma dos ângulos de todas as faces desse poliedro. c) Num poliedro convexo, 4 faces são quadriláteros e as outras triângulos. O número de arestas é o dobro do número de faces triangulares. Quantas são as faces? 20

2 d) (PUC-PR) Calcule o número de vértices de um poliedro de 8 faces triangulares e de 4 faces quadrangulares. e) Em um poliedro convexo o número de vértices corresponde a 2/3 do número de arestas e o número de faces é três unidades menos que o de vértices. Calcule quantas são as faces, os vértices e as arestas desse poliedro. A = 15, V = 10 e F = 7 f) (CEFET-PR) Calcule o número de vértices de um poliedro convexo de 10 faces quadrangulares. g) (FAAP-SP) Num poliedro convexo, o número de arestas excede o número de vértices em 8 unidades. Calcule o número de faces. F = 8 h) (PUC-PR) Se a soma dos ângulos das faces de um poliedro regular é 1440º, calcule o número de arestas desse poliedro. i) (PUC-SP) Um poliedro convexo tem 3 faces pentagonais e algumas faces triangulares. Qual o número de faces desse poliedro, sabendo-se que o número de arestas é o quádruplo do número de faces triangulares? j) (PUC-PR) O tetra-hexaedro é um sólido convexo limitado por 4 faces triangulares e 6 hexagonais, todas regulares. Determine o número de faces, arestas e vértices deste sólido. 4) Resolva os problemas: a) (CESGRANRIO-RJ) Um poliedro convexo é formado por 4 faces triangulares, 2 faces quadrangulares e 1 face hexagonal. Determine o número de vértices desse poliedro. b) (PUC-PR) Calcule o número de vértices de um poliedro de 8 faces triangulares e de 4 faces quadrangulares. c) (ACAFE-SC) Um poliedro convexo tem 15 faces triangulares, 1 face quadrangular, 7 faces pentagonais e 2 faces hexagonais. Calcule o número de vértices desse poliedro. d) (PUC-SP) Calcule o número de vértices de um poliedro convexo que tem 8 faces triangulares e 4 faces quadrangulares. e) Calcule o número de faces triangulares e o número de faces quadrangulares de um poliedro com 20 arestas e 10 vértices. T = 8 e Q = 4 f) (UFPE) Determine o número de arestas e de vértices de um poliedro convexo com seis faces quadrangulares e quatro faces triangulares. A = 18 e V = 10 g) Um poliedro tem duas faces hexagonais e 12 faces quadrangulares. Calcule o número de arestas e o número de vértices. h) Quantos vértices têm o poliedro convexo, sabendo-se que ele apresenta uma face hexagonal e seis faces triangulares? i) Um poliedro convexo é formado por 4 faces triangulares e cinco quadrangulares. Calcule o número de arestas e vértices desse poliedro. A = 16 e V = 9 j) (Fatec-SP) Um poliedro convexo tem 3 faces com 4 lados, 2 faces com 3 lados e 4 faces com 5 lados. Qual é o número de vértices desse poliedro? V = 12 5) Resolva os problemas: a) Um poliedro convexo possui oito faces triangulares, cinco faces quadrangulares, seis pentagonais e quatro hexagonais. Calcule o número de vértices deste poliedro. b) Um poliedro convexo tem 20 faces triangulares e 6 faces pentagonais. Calcule o número de arestas e o número de vértices. c) Um poliedro convexo possui 10 faces com três lados, 10 faces com quatro lados e 1 face com dez lados. Determine o número de vértices deste poliedro. V = 21 d) Qual é o número de vértices de um poliedro convexo que tem 6 faces triangulares, 6 retangulares e uma hexagonal? e) Um poliedro convexo possui seis faces quadrangulares e duas hexagonais. Calcule o número de vértices desse poliedro. V = 12 f) Qual é o número de faces de um poliedro convexo de 20 vértices tal que em cada vértice concorrem 5 arestas? g) Um poliedro convexo tem 6 faces triangulares e 4 faces hexagonais. Quantas arestas e quantos vértices têm esse poliedro? h) Um poliedro convexo possui quatro faces pentagonais, seis triangulares e cinco quadrangulares. Determine o número total de vértices desse poliedro. V = 16

3 i) Determine o número de vértices de um poliedro convexo que tem três faces triangulares, uma face quadrangular, uma face pentagonal e duas faces hexagonais. j) Em poliedro convexo, o número de faces é igual a três quartos do número de vértices, e o número de vértices é dois terços do número de arestas. Calcule o número de faces desse poliedro. F = 6 6) Resolva os problemas: a) Calcule, em graus, a soma dos ângulos das faces de um tetraedro. 720º b) A soma dos ângulos das faces de um poliedro convexo é 2520º. Dê o número de faces desse poliedro, sabendo que ele possui 17 arestas. c) (Unitau) A soma dos ângulos das faces de um poliedro convexo vale 720. Sabendo-se que o número de faces vale 2/3 do número de arestas, calcule o número de faces. d) (CEFET-PR) Um poliedro convexo possui duas faces triangulares, duas quadrangulares e quatro pentagonais. Calcule a soma dos ângulos internos de todas as faces 3240º e) A soma dos ângulos das faces de um poliedro convexo é 1080º. Determine o número de faces, sabendo que o poliedro tem 8 arestas. F = 5 f) (UFRGS) Um poliedro convexo de onde faces têm seis faces triangulares e cinco faces quadrangulares. Calcule o número de arestas e de vértices do poliedro. A = 19 e V = 10 g) (PUC-MG) Um poliedro convexo tem 3 faces pentagonais e algumas faces triangulares. Qual o número de faces desse poliedro, sabendo que o número de arestas é o quádruplo do número de faces triangulares. F = 6 h) Um poliedro convexo apresenta faces quadrangulares e triangulares. Calcule o número de faces deste poliedro, sabendo que o número de arestas é o quádruplo do número de faces triangulares e o número de faces quadrangulares é igual a 5. 9 i) Sabendo que em um poliedro o número de vértices corresponde a 2/3 do número de arestas e o número de faces é três unidades menos que o número de vértices. Calcule o número de faces, de vértices e arestas desse poliedro. F = 7, A = 15 e V = 10 j) Um poliedro convexo tem 11 vértices, o número de faces triangulares e igual ao de faces quadrangulares e uma face é pentagonal. Calcule o número de faces deste poliedro. 11 7) Resolva os problemas: a) Sabendo que um poliedro possui 20 vértices e que em cada vértice se encontram 5 arestas, determine o número de faces desse sólido. F = 32 b) Calcule o número de faces triangulares e quadrangulares de um poliedro convexo com 20 arestas e 10 vértices. c) Um poliedro convexo possui apenas faces triangulares e quadrangulares. Se a soma dos ângulos das faces é igual 1800 e existem exatamente 12 arestas, qual o numero de faces de cada tipo? d) O poliedro convexo de 20 arestas e 10 vértices só possui faces triangulares e quadrangulares. Determine quantas faces triangulares e quantas faces quadrangulares ele possui. e) Um poliedro convexo tem 16 faces. De um de seus vértices partem 5 arestas, dos outros 5 vértices partem 4 arestas e de cada um dos vértices restantes, 3 arestas. Qual o número de vértices do poliedro? f) Um poliedro convexo de onze faces tem seis faces triangulares e cinco faces quadrangulares. Calcule o número de arestas e de vértices do poliedro. A = 19 e V = 10 g) Um poliedro convexo apresenta faces quadrangulares e triangulares. Calcule o número de faces desse poliedro, sabendo-se que o número de arestas é o quádruplo do número de faces triangulares e o número de faces quadrangulares é igual a 5. h) Um poliedro convexo apresenta faces triangulares, quadrangulares e pentagonais. O número de faces triangulares excede o número de faces pentagonais de duas unidades. Calcule o número de faces de cada espécie, sabendo que o poliedro tem sete vértices. F 3 = 3, F 4 = 4 e F 5 = 1 i) Um poliedro convexo tem 6 vértices. De cada vértice partem 4 arestas. Qual o número de faces do poliedro? Se todas as faces forem polígonos do mesmo tipo, que polígono será esse? j) (ITA-SP) Um poliedro convexo tem 13 faces. De um dos seus vértices partem 6 arestas; de 6 outros vértices partem, de cada um, 4 arestas, e finalmente, de cada um dos vértices restantes partem 3 arestas. Calcule o número de arestas desse poliedro.

4 8) Sobre cubos, responda: a) Calcule o volume de um cubo de 36 m 2 de área total. b) Um cubo possui uma área total de 54 m 2. Qual o volume desse cubo? 27 m 3 c) Qual a quantidade de água necessária para preencher uma forma de gelo, que contém12 cubos de 2 cm por 3 cm e 1,5 cm. d) A área total de um cubo é 24 m 2. Calcule o volume desse cubo. 480 m 3 e) Um cubo possui uma área total de 150 m 2. Qual o volume desse cubo? 125 m 3 f) A diagonal de uma face de um cubo tem medida 5 2 cm. Qual a área do cubo? 150 m 2 g) Calcule o volume de um cubo cuja diagonal mede raiz de 6 cm? h) Sendo a área lateral de um cubo igual 144 cm 2, calcule a área total e o volume. i) Sendo a diagonal de um cubo igual a 12 3 cm, calcule a área total e o volume. j) Enche-se um recipiente cúbico de metal com água. Dado que um galão do líquido tem um volume de cm 3 e sendo 120 cm a aresta do recipiente, calcule o número de galões que o recipiente pode conter. 80 galões 9) Sobre paralelepípedos, responda: a) A piscina de um clube tem 2 m de profundidade, 12 m de comprimento e 8 m de largura. Quantos litros de água são necessários para enchê-la? b) Uma piscina possui a forma de um paralelepípedo com 6 m de comprimento, 3 m de largura e 1,7 m de profundidade. Calcule a capacidade, em litros, dessa piscina litros c) As dimensões de uma piscina olímpica são: 50m de comprimento, 25m de largura e 3m de profundidade. Calcule o seu volume em litros litros d) (UFOP-MG) Uma caixa d'água, em forma de paralelepípedo retângulo, tem dimensões de 1,8 m, 15 dm e 80 cm. Determine sua capacidade litros e) Num paralelepípedo retângulo, o comprimento é o dobro da largura, e a altura é 15 cm. Sabendo que a área total é 424 cm 2, calcule o volume desse paralelepípedo. 8 m 3 f) Um paralelepípedo retângulo tem 142 cm 2 de área total e a soma dos comprimentos de suas arestas vale 60 cm. Calcule seu volume, sabendo que os seus lados estão em PA. 105 m 3 g) Para encher uma laje de formato retangular, com 4 m de largura por 6 m de comprimento foi utilizado 2,88 m 3 de cimento. Qual a espessura do concreto dessa laje? 12 cm h) Calcule o volume do paralelepípedo retângulo cuja diagonal mede 7 cm e duas de suas dimensões medem, respectivamente, 2 cm e 3 cm. 36 cm 3 i) Calcule o volume de um paralelepípedo de área total de 184 m 2, sabendo que elas são proporcionais aos números 1, 3 e m 3 j) Calcule o volume de um paralelepípedo retângulo de diagonal igual a 116 m, sendo as dimensões proporcionais aos números 2, 3 e m 3 10) Sobre primas, responda: a) Calcule o volume de um prisma triangular de altura 10 cm, cuja base é um triângulo equilátero de aresta 4 cm. b) Em um prisma hexagonal regular a altura mede 5 cm e a área lateral, 60 cm 2. Calcule, em cm 3, o volume desse prisma. c) Calcule a área total de um prisma reto de altura 12 cm e base quadrada, com aresta 5 cm. d) (FATEC-SP) Sendo um prisma triangular regular cuja aresta da base mede 3 e a altura é de 8, Calcule o seu volume. e) Um prisma regular triangular tem 10 cm de altura. Sabendo que a medida da aresta da base é de 6 cm, determine a área total do prisma. Use 3 = 1, ,14 cm 2 f) Calcule a área lateral e o volume de um prisma reto de base triangular, cujas arestas da base medem 6 cm, 8 cm e 10 cm e cuja aresta lateral mede 20 cm. 480 cm 2 g) Calcule o volume de um prisma triangular, cuja base é um triângulo eqüilátero de aresta 2 cm cm e que sua área lateral é 30 cm 2. h) Calcule volume e a área da superfície total de um prisma hexagonal regular, sabendo-se que uma aresta de base mede 3 cm e a área lateral vale 90 cm 2.

5 i) (PUC-PR) O volume de um prisma hexagonal regular de altura 4 3 m é 72 m 3. Calcule a área total do prisma. j) Considerando um prisma reto de 20 cm de altura, cuja base é um triângulo retângulo de cateto 8 cm e hipotenusa 17 cm. Determine a área lateral e o volume desse prisma? 11) Resolva os problemas: a) Deseja-se cimentar um quintal retangular com 10 m de largura e 14 m de comprimento. O revestimento será feito com 3 cm de espessura. Qual o volume de cimento utilizado nesse revestimento? 4,2 m 3 b) Calcule a área total de um prisma quadrangular regular, cuja base é um quadrado de lado igual a 4 cm e altura 6. c) Determine o volume de um paralelepípedo retângulo, sabendo que são proporcionais aos números 1, 2 e 3 e que a área total do paralelepípedo é 352 cm 2. d) Calcular o volume de ar contido em uma sala de aula que tem a forma de um ortoedro cujas dimensões são proporcionais aos números 2, 5 e 7 cuja soma das arestas vale 112 m. 560 m 3 e) O volume de um paralelepípedo retângulo é 1620 m³. Calcule área total, sabendo que suas medidas são proporcionais aos números 3, 4 e 5. f) (UFSC) O volume de um paralelepípedo retângulo é 24 m 3. Sabendo-se que suas dimensões são proporcionais aos números 4, 3 e 2, calcule, em metros quadrados, a área total desse paralelepípedo. g) Calcular o volume de um prisma quadrangular regular cuja área total tem 144 m 2, sabendose que sua área lateral é igual ao dobro da área da base. 108 m 3 h) Calcular as dimensões de um paralelepípedo retângulo sabendo-se que a soma de duas delas é 25 m, o volume 900 m 3 e a área total 600 m 2. 6 m, 10 m e 15 m i) (PUC-SP) Uma caixa d'água em forma de prisma reto tem aresta lateral igual a 6 dm e por base um losango cujas diagonais medem 7 m e 10 m. Calcule o volume dessa caixa, em litros. j) Sejam dois prismas regulares de mesma altura. O primeiro de base triangular e o segundo de base hexagonal. A aresta da base de ambos mede 2 cm. Calcule a razão entre seus volumes. 12) Sabendo que a diagonal de um cubo mede 12 cm, determine: a) sua aresta. 4 3 cm b) a área total. 288 m 2 3 c) o volume cm 13) Seja um paralelepípedo retângulo em que as dimensões da base são 20 m e 5 m e a altura é 2 m. Calcule: a) a área total. 300 m 2 b) o volume. 14) A soma dos comprimentos de todas as arestas de um cubo é igual a 60 m. Calcule: a) a medida da aresta. c) a área total. b) a diagonal. d) o volume. 15) Considere o bloco retangular abaixo. Calcule: a) a área total. b) o volume. 720 cm 3 16) Determine a área total e o volume de um prisma reto triangular de altura igual a 12 cm e cuja base é um triângulo retângulo de catetos 6 cm e 8 cm. A T = 336 cm 2 e V = 288 cm 3

6 17) Considere um prisma reto de base quadrada, cuja altura mede 3 m e que tem área total de 80 m 2. Calcule o volume desse prisma. 18) Sabendo que o segmento AB mede 50 cm, calcule: a) a área total; b) o volume do sólido. 19) Qual é o volume do prisma triangular da figura abaixo, sabendo que suas bases são formadas por triângulos equiláteros de lados 6 cm? Use 3 = 1,73 20) De um cubo de madeira de 6 cm de aresta foi cortado um prisma de base triangular, como mostra a figura. Qual é o volume desse prisma? 21) Duas das dimensões de um paralelepípedo retângulo são 4 cm e 5 cm e uma diagonal mede 105 cm. Calcule: a) a terceira dimensão. 8 cm b) a área total. c) o volume. 22) A diagonal de um paralelepípedo retângulo mede 5 21 cm e suas dimensões são expressas por x, x + 3 e x + 6. Calcule: a) a área total. A T = 996 cm 2 b) o volume desse sólido. 23) Num prisma hexagonal regular de altura 5 cm e aresta da base 4 cm. Calcule: 2 2 a) a área da base cm c) a área total cm 2 b) a area lateral cm d) o volume. 360 cm 3 24) (UFCE) Em um reservatório na forma de um paralelepípedo retângulo foram colocados 1800 litros de água que corresponde a 4/5 de sua capacidade total. Se i reservatório possui 3 m de largura por 5 m de comprimento, qual a medida de sua altura? h = 1,5 m

7 25) (Fuvest-SP) Dois blocos de alumínio, em forma de cubo, com arestas medindo 10 cm e 6 cm, são levados juntos à fusão e em seguida o alumínio líquido é moldado como um paralelepípedo reto de arestas 8 cm, 8 cm e x cm. O valor de x é: a) 16 m b) 17 m c) 18 m Xd) 19 m e) 20 m 26) (UEFS) Um reservatório na forma de um paralelepípedo reto retangular, que tem 10 m de comprimento, 15 m de largura e 3 m de altura, está completamente cheio de água. Após serem utilizados litros, o nível da água restante no reservatório atingirá a altura de: a) 1,20 m b) 1,60 m c) 1,80 m d) 2,10 m e) 2,40 m 27) (UNEB) Um paralelepípedo retângulo tem 132 m 2 de área total, e as medidas de suas arestas são termos consecutivos de uma progressão aritmética de razão 3.Com base nessas informações, pode-se afirmar que o volume desse paralelepípedo mede, em m 3, é: a) 100 b) 90 c) 85 d) 80 e) 60 28) (FUVEST-SP) O volume de um paralelepípedo é 240 cm 3. As áreas de duas de suas faces são 30 cm 2 e 48 cm 2. A área total do paralelepípedo, em cm 2, é: a) 96 b) 118 c) 236 d) 240 e) ) Um tanque em forma de paralelepípedo tem por base um retângulo de lados 0,8 m por 1,2 m e está parcialmente cheio de água. Um objeto maciço, de formato indeterminado, ao ser mergulhado completamente no tanque, faz o nível da água subir 7,5cm. Determine, em m³, o volume desse objeto. 30) As dimensões a, b e c de um paralelogramo são proporcionais aos números 2, 4 e 7. Sabendo que a área total desse sólido é de 900 cm 2, determine o seu volume. 31) Um prisma reto tem por base um triângulo isóscele de 8 cm de base por 3 cm de altura. Sabendo que a altura do prisma é igual a 1/3 do perímetro da base, calcule: a) sua superfície total. b) o volume do prisma. 32) Em um prisma hexagonal regular a altura mede 5 cm e a área lateral, 60 cm 2. Calcule, em cm 3, o volume desse prisma. 33) (FEI-SP) De uma viga de madeira de seção quadrada de lado 10 cm extrai-se uma cunha de altura h = 15 cm, conforme a figura. O volume da cunha é: a) 250 cm 2 b) 500 cm 2 c) 750 cm 2 d) 1000 cm 2 e) 1250 cm 2

Matemática - 3C12/14/15/16/26 Lista 2

Matemática - 3C12/14/15/16/26 Lista 2 Matemática - 3C12/14/15/16/26 Lista 2 Poliedros Convexos 1) Determine qual é o poliedro convexo e fechado que tem 6 vértices e 12 arestas. 2) Determine o nº de vértices de dodecaedro convexo que tem 20

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016)

Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016) singular Lista2 de exercícios-prismas- 3C17/3C27- Prof. Liana-(20/06/2016) 1. (Ita) Dado um prisma hexagonal regular, sabe-se que sua altura mede 3 cm e que sua área lateral é o dobro da área de sua base.

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre/2013 Aluno(a): Número: Turma: 1) Coloque V ou F, conforme

Leia mais

Lista de exercícios 05. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 05. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 05 Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 29/08/2015. A lista deverá apresentar

Leia mais

singular Exercícios-Paralelepípedo

singular Exercícios-Paralelepípedo singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO

Leia mais

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER

LISTA DE EXERCÍCIOS PRISMAS, PIRÂMIDES, CILINDROS E CONES PROF. FLABER ALUNO(A): TURMA: Nº Caro aluno, Esta lista de exercícios tem como objetivo auxiliá-lo e orientá-lo no estudo para que possa melhorar seu desempenho na Prova Oficial. Resolva os exercícios com dedicação.

Leia mais

Lista de exercícios 08 Aluno (a):

Lista de exercícios 08 Aluno (a): Lista de exercícios 08 Aluno (a): Turma: 3º série (Ensino médio) Professores: Flávio Disciplina: Matemática Prismas e pirâmides Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

Leia mais

Geometria Espacial: Sólidos Geométricos

Geometria Espacial: Sólidos Geométricos Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.

Leia mais

MATEMÁTICA LISTA DE PRISMAS

MATEMÁTICA LISTA DE PRISMAS NOME: MÊS: SÉRIE:: 1 a TURMA: ENSINO: MÉDIO LISTA DE PRISMAS MATEMÁTICA 1) Observe o prisma regular hexagonal ilustrado na figura a seguir. A medida da aresta da base é 6 cm e a medida da altura é 10 cm.

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e

Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e Lista de exercícios - 2os anos - matemática 2 - prova 7-2013 Professores: Cebola, Figo, Guilherme, Rod e Sandra 1 - Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e 5 cm

Leia mais

Exercícios de Matemática Poliedros

Exercícios de Matemática Poliedros Exercícios de Matemática Poliedros 3. (Unitau) Se dobrarmos convenientemente as linhas tracejadas das figuras a seguir, obteremos três modelos de figuras espaciais cujos nomes são: 1. (Uerj) O poliedro

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de

Leia mais

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI 01.: (Acafe SC) Num paralelepípedo reto, as arestas da base medem 8 dm e 6dm, e a altura mede 4dm. Calcule a área da figura determinada pela diagonal do paralelepípedo com a diagonal da base e a aresta

Leia mais

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c

Onde: É no triângulo retângulo que vale a máxima Pitagórica: O quadrado da. a b c 1 Sumário TRIGONOMETRIA... GEOMETRIA ESPACIAL...8 Geometria Plana Fórmulas Básicas...8 Prismas... 11 Cilindro... 18 Pirâmide... 1 Cone... 4 Esferas... 7 REFERÊNCIAS BIBLIOGRÁFICAS... TRIGONOMETRIA Trigonometria

Leia mais

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3.

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3. Matemática Pedro Paulo GEOMETRIA ESPACIAL VIII 1 TRONCO DE PIRÂMIDE Chamaremos de tronco de pirâmide de bases paralelas a porção da pirâmide limitada por sua base e por uma secção transversal qualquer

Leia mais

(Unifor CE/1999/Julho) Considere caixas iguais com a forma de um prisma retangular como a representada na figura.

(Unifor CE/1999/Julho) Considere caixas iguais com a forma de um prisma retangular como a representada na figura. (UEPB PB/005) Para se fabricar uma caixa de sabão em pó com 5 cm de altura, 16 cm de largura e 5 cm comprimento serão necessários quantos cm de papelão? a) 1 10 b) 1 100 c) 605 d) 550 e) 1 500 (Unifor

Leia mais

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m.

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. Volumes e o Princípio de Cavalieri. 3 ano/e.m. Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Volumes e o Princípio de Cavalieri. 3 ano/e.m. Volumes e o Princípio de Cavalieri. Geometria Espacial II - volumes e áreas de prismas

Leia mais

GEOMETRIA: POLÍGONOS

GEOMETRIA: POLÍGONOS Atividade: Polígonos (ECA 05 Atividade para 13/04/2015) Série: 1ª Série do Ensino Médio Etapa: 1ª Etapa 2014 Professor: Cadu Pimentel GEOMETRIA: POLÍGONOS ATENÇÃO: Estimados alunos, venho lembrar que somente

Leia mais

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3. 1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o

Leia mais

2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume

2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume Matemática Pedro Paulo GEOMETRIA ESPACIAL VI são 1 TETRAEDRO REGULAR É uma piramide regular triangular, cujas faces triângulos equiláteros de lado 2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 2.1 Área lateral

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m.

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m. Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Pirâmide ano/em Pirâmide Geometria Espacial II - volumes e áreas de prismas e pirâmides 1 Exercícios Introdutórios Exercício 1 Determine

Leia mais

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido

Leia mais

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V):

1) Em cada Prisma representado a seguir, calcule a área da base (A b ), a área lateral (A L ), a área total (A T ) e o volume (V): EXERCÍCIOS DE FIXAÇÃO GEOMETRIA SÓLIDA ÁREAS E VOLUMES DE PRISMAS, CILINDROS E CONES 2 a SÉRIE ENSINO MÉDIO 2011 ==========================================================================================

Leia mais

Roteiro de Estudos - RECUPERAÇÃO FINAL

Roteiro de Estudos - RECUPERAÇÃO FINAL Roteiro de Estudos - RECUPERAÇÃO FINAL Nome completo: nº Disciplina: Geometria Ano: 9 Data: / / Professor: André Moreira Instruções Gerais: 1) Leia atentamente as questões. Confira sempre os resultados

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem

Leia mais

Lista de exercícios 06. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 06. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 06 Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 26/09/2015. A lista deverá apresentar

Leia mais

Matemática Geometria Espacial. Professor Bacon

Matemática Geometria Espacial. Professor Bacon Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Disciplina: Série: ª - Ensino Médio Professor: Elias Atividades para Estudos Autônomos Data: 8 / 3 / 016 QUESTÃO 1 (UEMG) O desenho ao lado representa uma caixa de madeira

Leia mais

Geometria Espacial - AFA

Geometria Espacial - AFA Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS

UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br 1 PIRÂMIDES Pirâmide é o poliedro convexo tal que uma face é um

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Analítica 3º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio

Leia mais

Poliedros Teoria. Superfície Poliédrica é um conjunto finito de polígonos planos cuja disposição no espaço satisfaz as seguintes propriedades:

Poliedros Teoria. Superfície Poliédrica é um conjunto finito de polígonos planos cuja disposição no espaço satisfaz as seguintes propriedades: Poliedros Teoria Superfície Poliédrica é um conjunto finito de polígonos planos cuja disposição no espaço satisfaz as seguintes propriedades: P1. Todo polígono da Superfície Poliédrica possui algum lado

Leia mais

Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m.

Módulo de Geometria Espacial I - Fundamentos. Poliedros. 3 ano/e.m. Módulo de Geometria Espacial I - Fundamentos Poliedros. ano/e.m. Geometria Espacial I - Fundamentos Poliedros. 1 Exercícios Introdutórios Exercício 1. Um poliedro convexo tem 6 faces e 1 arestas. Determine

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

Disciplina: Matemática Data da entrega: 21/11/2014.

Disciplina: Matemática Data da entrega: 21/11/2014. Lista de Exercícios - 08 Aluno (a): Nº. Professor: Flávio Série: 2º (Ensino médio) Disciplina: Matemática Data da entrega: 21/11/2014. Observação: A lista deverá apresentar capa e enunciados. 1. Uma pirâmide

Leia mais

UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS

UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br 1 PIRÂMIDES Pirâmide é o poliedro convexo tal que uma face é um

Leia mais

1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3.

1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3. Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL II 1 POLIEDROS Na Geometria Espacial, como o nome diz, o nosso assunto são as figuras espaciais (no espaço). Vamos estudar sólidos e corpos geométricos que possuem

Leia mais

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

Hewlett-Packard PRISMAS. Aulas 01 e 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard PRISMAS. Aulas 01 e 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard PRISMAS Aulas 01 e 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2016 Sumário PRISMAS... 1 CLASSIFICAÇÃO DE UM PRISMA... 1 ÁREAS EM UM PRISMA... 1 EXERCÍCIOS FUNDAMENTAIS...

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança

Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança Geometria Espacial: Poliedros, Prismas, Pirâmides e Semelhança 1. Maria quer inovar sua loja de embalagens e decidiu vender caixas com diferentes

Leia mais

OS PRISMAS. 1) Conceito :

OS PRISMAS. 1) Conceito : 1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :

Leia mais

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano.

CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. CONE Considere uma região plana limitada por uma curva suave (sem quinas), fechada e um ponto P fora desse plano. Denominamos cone ao sólido formado pela reunião de todos os segmentos de reta que têm uma

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Uff 99) Considere o cubo de vértices A, B, C, D, E, F, G e H representando na figura abaixo. Sabendo que a área do triângulo DEC é Ë2/2m, calcule o volume da pirâmide cujos vértices são D, E, G e C.

Leia mais

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2014 1ª. SÉRIE 1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: 2.-Ao fazer uma

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Fuvest 99) Considere uma caixa sem tampa com a forma de um paralelepípedo reto de altura 8 m e base quadrada de lado 6 m. Apoiada na base, encontra-se uma pirâmide sólida reta de altura 8m e base quadrada

Leia mais

COLÉGIO SHALOM 8 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº.

COLÉGIO SHALOM 8 ANO Professora: Bethânia Rodrigues 65 Geometria. Aluno(a):. Nº. COLÉGIO SHALOM 8 ANO Professora: Bethânia Rodrigues 65 Geometria Aluno(a):. Nº. Trabalho De Recuperação final E a receita é uma só: fazer as pazes com você mesmo, diminuir a expectativa e entender que

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia Colégio Santa Dorotéia Área de Matemática Disciplina: Matemática Série: 2 a - Ensino Médio Professor: Elias Bittar Atividades para Estudos Autônomos Data: 11 / 5 / 2016 Caro(a) aluno(a), Aluno(a): N o

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU MATEMÁTICA-PROF. CARLINHOS/KOBA-2º ENSINO MÉDIO

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU MATEMÁTICA-PROF. CARLINHOS/KOBA-2º ENSINO MÉDIO ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU ATEÁTICA-PROF. CARLINHOS/KOBA-º ENSINO ÉDIO EXERCÍCIOS PARA ESTUDO DE RECUPERAÇÃO DO º SEESTRE ATEÁTICA I ) Um corretor de imóveis pretende vender o terreno

Leia mais

Sólidos Inscritos e Circunscritos 3.º Ano

Sólidos Inscritos e Circunscritos 3.º Ano Sólidos Inscritos e Circunscritos 3.º Ano 1. (Fuvest 2013) Os vértices de um tetraedro regular são também vértices de um cubo de aresta 2. A área de uma face desse tetraedro é a) 2 3 b) 4 c) 3 2 d)3 3

Leia mais

VESTIBULAR UFPE UFRPE / ª ETAPA

VESTIBULAR UFPE UFRPE / ª ETAPA VSTIULR UFP UFRP / 1999 2ª TP NOM O LUNO: SOL: SÉRI: TURM: MTMÁTI 2 01. O triângulo da ilustração abaixo é isósceles ( = ) e = = (isto é,, trissectam ): nalise as afirmações: 0-0) Os ângulos, e são congruentes.

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Desenho Técnico Material de aula Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Geometria Conversão de unidades Polígonos e sólidos Escala Desenho

Leia mais

NOÇÕES DE GEOMETRIA PLANA

NOÇÕES DE GEOMETRIA PLANA NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de

Leia mais

Unidade 9 Geometria Espacial. Poliedros Volume de sólidos geométricos Princípio de Cavalieri

Unidade 9 Geometria Espacial. Poliedros Volume de sólidos geométricos Princípio de Cavalieri Unidade 9 Geometria Espacial Poliedros Volume de sólidos geométricos Princípio de Cavalieri Poliedros palavra poliedro tem sua origem no idioma grego (poly significa, muitos, e hedra, faces). Poliedro

Leia mais

Lista de exercícios Prisma e cilindro

Lista de exercícios Prisma e cilindro Lista de exercícios Prisma e cilindro 1. Na figura a seguir, que representa um cubo, o perímetro do quadrilátero ABCD mede 8(1 + Ë2) cm. Calcule o volume do cubo em cm. 4. Em um tanque cilíndrico com raio

Leia mais

NDMAT Núcleo de Desenvolvimentos Matemáticos

NDMAT Núcleo de Desenvolvimentos Matemáticos 01) Determine o número de vértices de um poliedro convexo que tem 3 faces triangulares, 1 face quadrangular, 1 pentagonal e 2 hexagonais. 07) Um poliedro de sete vértices tem cinco ângulos tetraédricos

Leia mais

Polígonos Regulares. 1. (G1 - cftrj 2014) Na figura abaixo, ABCE é um retângulo e CDE é um triângulo equilátero.

Polígonos Regulares. 1. (G1 - cftrj 2014) Na figura abaixo, ABCE é um retângulo e CDE é um triângulo equilátero. Polígonos Regulares 1. (G1 - cftrj 2014) Na figura abaixo, ABCE é um retângulo e CDE é um triângulo equilátero. Sabendo que o perímetro do polígono ABCDE é 456 cm e CD mede 68 cm, qual é a medida do lado

Leia mais

01. (UEPB) A capacidade de um cilindro obtido através da rotação em torno do lado menor de um retângulo de dimensões 3 cm e 4 cm é:

01. (UEPB) A capacidade de um cilindro obtido através da rotação em torno do lado menor de um retângulo de dimensões 3 cm e 4 cm é: singular Lista de exercícios-(cubo-cilindro- cone)-c17-prof.liana (0/06/016) 01. (UEPB) A capacidade de um cilindro obtido através da rotação em torno do lado menor de um retângulo de dimensões cm e 4

Leia mais

Recursos para Estudo / Atividades

Recursos para Estudo / Atividades COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Final 3ª Etapa 2014 Disciplina: Matemática Série: 2ª Professor (a): Ana Cristina Turma: FG Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

Colégio FAAT Ensino Fundamental e Médio

Colégio FAAT Ensino Fundamental e Médio Colégio FAAT Ensino Fundamental e Médio Recuperação do 4 Bimestre Matemática Prof. Leandro Conteúdo: Cilindro. Pirâmide e Cone. Esfera. Posições relativas entre retas. Equação geral da circunferênc Distância

Leia mais

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma

Leia mais

2.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:

2.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2012 1ª. SÉRIE 1.- A média das notas dos 21 alunos do 1º Ano do Ensino Médio, em Matemática é 5,80. Se a nota de Álvaro que é 1,80 for excluída, então qual

Leia mais

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos ª PROA SUBSTITUTIA DE MATEMÁTICA 01 Aluno(a): Nº Ano: º Turma: Data: Nota: Professor(a): Cláudia e Gustavo alor da Prova: 5 pontos Orientações gerais: 1) Número de questões desta prova: 17 ) alor das questões:

Leia mais

3 PIRÂMIDE RETA 1 ELEMENTOS DA PIRÂMIDE 4 PIRÂMIDE REGULAR 2 CLASSIFICAÇÃO DE PIRÂMIDES. Matemática Pedro Paulo GEOMETRIA ESPACIAL V

3 PIRÂMIDE RETA 1 ELEMENTOS DA PIRÂMIDE 4 PIRÂMIDE REGULAR 2 CLASSIFICAÇÃO DE PIRÂMIDES. Matemática Pedro Paulo GEOMETRIA ESPACIAL V Matemática Pedro Paulo GEOMETRIA ESPACIAL V 1 ELEMENTOS DA PIRÂMIDE Pirâmide é um poliedro formado por um polígono que é a base e um ponto fora do plano da base que é o vértice. Cada lado do polígono da

Leia mais

1. (Uece) Se, em um polígono convexo, o número de lados n é um terço do número de diagonais, então o valor de n é a) 9. b) 11. c) 13. d) 15.

1. (Uece) Se, em um polígono convexo, o número de lados n é um terço do número de diagonais, então o valor de n é a) 9. b) 11. c) 13. d) 15. 1. (Uece) Se, em um polígono convexo, o número de lados n é um terço do número de diagonais, então o valor de n é a) 9. b) 11. c) 13. d) 15. 2. (Espm) Na figura abaixo, ABCD é um quadrado, BDE é um triângulo

Leia mais

Cubo, prismas, cilindro

Cubo, prismas, cilindro A UUL AL A Cubo, prismas, cilindro Qual é a quantidade de espaço que um sólido ocupa? Esta é uma das principais questões quando estudamos as figuras espaciais. Para respondê-la, a geometria compara esse

Leia mais

(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo.

(UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. (UFG GO/2005/1ª Fase) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. Sabendo que toda a quantidade de gelatina que foi preparada coube em

Leia mais

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura

Leia mais

Lista de exercícios sobre PRISMAS Prof. Ulisses Motta ESTUDE...

Lista de exercícios sobre PRISMAS Prof. Ulisses Motta ESTUDE... Lista de exercícios sobre PRISMAS Prof. Ulisses Motta ESTUDE... 1. (Unifesp 017) Um sólido é formado por 4 cubos idênticos, conforme a figura. O contato entre dois cubos contíguos sempre se dá por meio

Leia mais

3ª Ficha de Trabalho

3ª Ficha de Trabalho SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado

Leia mais

Exercícios sobre Estudo dos Polígonos

Exercícios sobre Estudo dos Polígonos Exercícios sobre Estudo dos Polígonos Material de apoio do Extensivo 1. (Uerj) Ao observar, em seu computador, um desenho como o apresentado a seguir, um estudante pensou tratar-se de uma curva. Porém,

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:

Leia mais

Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca

Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca Relação da matéria para a recuperação final. º olegial / eometria / Jeca ula 33 - eometria métrica do espaço - Prisma reto. ula 34 - Paralelepípedo retorretângulo. ula 35 - ubo. ula 36 - Prisma regular.

Leia mais

Recursos para Estudo / Atividades

Recursos para Estudo / Atividades COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela ª Etapa 1 Disciplina: Matemática Ano: 1 Professor (a): Ana Cristina Turma: o FG/TI Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON

MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON MATEMÁTICA APLICADA À AGRIMENSURA PROF. JORGE WILSON PROFJWPS@GMAIL.COM DEFINIÇÕES GEOMETRIA PLANA Ponto: Um elemento do espaço que define uma posição. Reta: Conjunto infinito de pontos. Dois pontos são

Leia mais

Plano de Recuperação Semestral 1º Semestre 2016

Plano de Recuperação Semestral 1º Semestre 2016 Disciplina: MATEMÁTICA 1 Série/Ano: 2º ANO - EM Professores: CEBOLA, FIGO, GUILHERME, MARCELO, RAFAEL, ROD, SABDRA, TAMMY Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados

Leia mais

GEOMETRIA ESPACIAL CONTEÚDOS. Capacidade e volume Poliedros Pirâmides Cilindros Cone Esfera AMPLIANDO SEUS CONHECIMENTOS

GEOMETRIA ESPACIAL CONTEÚDOS. Capacidade e volume Poliedros Pirâmides Cilindros Cone Esfera AMPLIANDO SEUS CONHECIMENTOS GEOMETRIA ESPACIAL CONTEÚDOS Capacidade e volume Poliedros Pirâmides Cilindros Cone Esfera AMPLIANDO SEUS CONHECIMENTOS Capacidade e volume Na receita de bolo estava indicado 500 ml de leite ou 500 cm³?

Leia mais

Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS

Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS Nome: nº Data: / / Professor: Lucas Factor Curso/Série 8º Ano Ensino Fundamental II Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS Os cálculos de perímetro e área são necessários, seja para a compra de um

Leia mais

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos. ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do

Leia mais

Prof. Paulo Cesar Costa

Prof. Paulo Cesar Costa 01. (UFPA) Uma pirâmide regular, cuja base é um quadrado de diagonal 6 6 cm, e altura igual a / do lado da base, tem área total igual a: 96 cm b) 5 cm 88 cm 8 cm e) 576 cm 06. (ITA) A aresta de um cubo

Leia mais

Geometria Espacial. Parte I. Página 1

Geometria Espacial. Parte I.  Página 1 Geometria Espacial Parte I 1. (Insper 014) Uma empresa fabrica porta-joias com a forma de prisma hexagonal regular, com uma tampa no formato de pirâmide regular, como mostrado na figura. As faces laterais

Leia mais

Matéria: Matemática Assunto: Volume Prof. Dudan

Matéria: Matemática Assunto: Volume Prof. Dudan Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 50 POLIEDROS

MATEMÁTICA - 3 o ANO MÓDULO 50 POLIEDROS MATEMÁTICA - 3 o ANO MÓDULO 50 POLIEDROS Tetraedro regular Hexaedro regular Octaedro regular Dodecaedro regular Icosaedro regular B C A F D G E H Como pode cair no enem O poliedro da figura (uma invenção

Leia mais

7) (F.C.CHAGAS) Determine a área da região hachurada nos casos:

7) (F.C.CHAGAS) Determine a área da região hachurada nos casos: EXERCÍCIOS - PARTE 1 1) (PUC) Se a área do retângulo é de 32 cm 2 e os triângulos formados são isósceles, então o perímetro do pentágono hachurado, em cm, é: 39 a) b) 10+7 2 c) 10 + 12 2 d) 32 e) 70 2

Leia mais

Sólidos Inscritos e Circunscritos

Sólidos Inscritos e Circunscritos Sólidos Inscritos e Circunscritos 1. (Fuvest 01) Os vértices de um tetraedro regular são também vértices de um cubo de aresta. A área de uma face desse tetraedro é a) b) 4 c) d) e) 6. (Uerj 01) Um cristal

Leia mais

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas)

ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº 2 GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) DEPARTAMENTO DE MATEMÁTICA PROFª VALÉRIA NAVARRO ALUNO (A): TURMA: CURSO: DATA: / / LISTA DE EXERCÍCIO Nº GEOMETRIA PLANA (Quadriláteros e Áreas de Figuras Planas) 1. (G1 - cftrj 014) Na figura abaixo,

Leia mais