LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI

Tamanho: px
Começar a partir da página:

Download "LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI"

Transcrição

1 01.: (Acafe SC) Num paralelepípedo reto, as arestas da base medem 8 dm e 6dm, e a altura mede 4dm. Calcule a área da figura determinada pela diagonal do paralelepípedo com a diagonal da base e a aresta lateral: 0 dm b)4 dm c) 3 dm d) 40 dm e) 48 dm 0. (Udesco - SC) Aumentando-se em 1 metro a aresta de um cubo, sua área lateral aumenta em 164 metros quadrado. Então o volume, o volume do cubo original, em metros, era: a) b) c) d) e) (UFGO) Um pedaço de cano, de 30 cm de comprimento e 10 cm de diâmetro interno, encontra-se na posição vertical e tem a parte inferior vedada. Colocando-se litros de água em seu interior, a água: a) Ultrapassa o meio do cano b) transborda c) não chega ao meio do cano d) enche o cano até a borda e) atinge exatamente o meio do cano 04.: (PUC SP) Uma caixa d água em forma de prisma reto tem aresta lateral igual a 6 dm e por base um losango cujas diagonais medem 7 m e 10 m. O volume dessa caixa, em litros é: a) b) c) d) e) : (PUC PR) Se a razão entre os volumes de dois cubos é 3 1, a medida da aresta maior é igual à medida da menor multiplicada por: 1 3 b) 3 3 c) d) 3 e) 3 06.: (PUC SP) Sabe-se que as arestas de um paralelepípedo estão em Progressão geométrica, seu volume é 64 cm 3 e a soma de suas dimensões é igual 1 cm. Então, a área total do paralelepípedo é igual a : a) 56 cm b) 5 cm c) 64 cm d) 86 cm e) 168 cm

2 07.: Calcule o volume de um paralelepípedo retângulo de diagonal igual a 116 m, sendo as dimensões proporcionais aos números, 3 e 4: a) 91 m 3 b) 96 m 3 c) 19 m 3 d) 384 m 3 e) nda 08.: (ITA - SP) Considere P um prisma reto de base quadrada, cuja altura mede 3 m e que tem área total de 80 m. O lado dessa base quadrada mede: 1 m b) 8 m c) 4 m d) 6 m e) 16 m 09.: ( CESGRANRIO - RJ ) A diagonal de um paralelepípedo de dimensões, 3 e 4 mede: a) 5 b) 5 c) 4 3 d) 9 e) 6 10.: (MACK - SP) Dispondo-se de uma folha de cartolina medindo 50 cm de comprimento por 30 cm de largura, pode-se construir uma caixa aberta, cortando-se um quadrado de 8 cm de lado em cada canto da folha. O volume dessa caixa, em cm 3, será: a) 1 44 b) 1 88 c) 34 d) e) : (UFOP - MG) Uma caixa d'água, em forma de paralelepípedo retângulo, tem dimensões de 1,8 m, 15 dm e 80 cm. Sua capacidade é:,16 L b) 1,6 L c) 16 L d) L e) 160 L 1.: (FGV - SP) Um cubo tem 96 m de área total. De quanto deve ser aumentada a sua aresta para que seu volume se torne igual a 16 m 3? a) 1 m b) 0,5 m c) 9m d) m e) 3 m

3 13.: (PUCCAMP - SP) Usando uma folha de latão, deseja-se construir um cubo com volume de 8 dm 3. A área da folha utilizada para isso será, no mínimo: a) 0 cm b) 40 cm c) 40 cm d) 000 cm e) 400 cm 14.: O volume do paralelepípedo retângulo cuja diagonal mede 7 cm e duas de suas dimensões medem, respectivamente, cm e 3 cm é: a) 36 cm 3 b) 6 cm 3 c) 49 cm 3 d) 13 cm 3 e) 7 cm 3 15.: (FUVEST - SP) Um tanque em forma de paralelepípedo tem por base um retângulo horizontal de lados 0,8 m e 1, m. Um indivíduo, ao mergulhar completamente no tanque, faz o nível da água subir 0,075 m. Então, o volume do indivíduo, em m 3, é: a) b) 0,07 c) 0,096 d) 0,600 e) 1, : (UNIFOR - CE) A soma dos comprimentos de todas as arestas de um cubo é igual a 60 m. A diagonal, em m, mede: a) 3 b) 3 3 c) 5 3 d) 7 3 e) : (PUC - SP) Um cubo tem área total igual a 7 m, sua diagonal vale: 6 m b) 6 m c) 1 m d) 4 m e) 6 m 18.: (UFSM-RS) Quantos cubinhos de madeira de 1 cm de aresta podem ser colocados numa caixa cúbica com tampa. na qual foram gastos 94 cm de material para confeccioná-la? a) 76 b) 147 c) 94 d) 343 e) : (Unesp - SP) Se um tijolo ( paralelepípedo retângulo ), dos usados em construção, pesa 4 Kg., então um tijolinho de brinquedo feito do mesmo material, e cujas dimensões sejam 4 vezes menores, pesará: a) 6,5 g b) 50 g c) 400 g d) 500 g

4 e) g 0.: (UFAL) As dimensões de um paralelepípedo retângulo são diretamente proporcionais aos números, 3 e 5. Se o volume desse paralelepípedo é 190 cm 3, sua área total, em cm é: a) 99 b) 496 c) 30 d) 16 e) : (PUC PR) O volume de um prisma hexagonal de altura 4 3 m é 7 m 3. Calcule a a rea total do prisma em m : a) 36 b) 36 3 c) 48 3 d) 60 3 e) 7.: (UFMG) Em um prisma hexagonal regular, a altura mede 5 cm e a área lateral, 60 cm. Calcule em cm 3, o volume desse prisma: a) 30 3 b) 18 3 c) 36 3 d) 5 3 e) : (UFRJ) O volume do prisma hexagonal regular, de altura 3 cm e cujo apótema da base mede 3 cm é: a) 18 cm 3 b) 6 3 cm 3 c) 3 cm 3 d) 3 cm 3 e) n.d.a 4.: (ITA SP) Dado um prisma hexagonal regular, sabe-se que sua altura mede 3 cm e que sua a rea lateral é o dobro da área de sua base. O volume desse prisma, em cm 3, é: a) 7 3 b) 13 c) 1 d) 54 3 e) (UEPG - PR) Um caleidoscópio tem a forma de um prisma triangular e regular. Sabendo-se que o apótema de sua base mede 3 cm e sua altura mede 18 cm, a área lateral mede: a) 16 3 cm b) 97 cm c) cm d) 34 cm e) 16 cm

5 6. ( FATEC - SP ) Sendo um prisma triangular regular cuja aresta da base mede 3 e a altura é de 8, seu volume é de quanto? a) 6 3 b) 1 3 c) 4 d) 18 3 e) 7 7. ( UFRS ) Um cubo de lado a é inscrito em um cilindro de mesma altura. A área lateral do cilindro é: a) b) a a 4 a c) d) a e) a 8. ( UFPA ) O reservatório "tubinho de tinta" de uma caneta esferográfica tem 4 mm de diâmetro e 10 cm de comprimento. Se você gasta 5 mm 3 de tinta por dia, a tinta de sua esferográfica durará: a)0 dias b) 40 dias c) 50 dias d) 80 dias e) 100 dias 9. (Mackenzie SP) A área total de um cilindro vale 48 m e a soma das medidas do raio da base e da altura é igual a 8 m. Então, em m 3, o volume do sólido é: a) 75 b) 50 c) 45 d) 5 e) (UFRN) Se um cilindro equilátero mede 1 m de altura, então o seu volume em m 3 vale: 144 b) 00 c) 43 d) 480 e) (UFPA) Num prisma regular de base hexagonal, a área lateral é 376 m e a altura é 3 m. A aresta da base é: a) m b) 8 m c) 4 m d) 10 m e) 6 m

6 3. (PUC SP) O volume de um paralelepípedo reto retângulo é 16 m 3 e sua dimensões são proporcionais a 1, e 3, a diagonal desse paralelepípedo mede: a) 19 m b) 3 14 m c) 31 m d) 5 31 m e) 37 m 33. (UCB DF) Um cilindro eqüilátero tem volume V = 54 cm 3. Sua altura é: a) 3 cm b) 6 cm c) 3 54 cm d) 3 6 cm e) 7 cm 34. (PUCCamp SP) Uma piscina circular tem 5 m de diâmetro. Um produto químico deve ser misturado à água na razão de 5 g por 500 litros de água. Se a piscina tem 1,6 m de profundidade e está totalmente cheia, quanto do produto deve ser misturado à água? (Use = 3,1). a) 1,45 Kg b) 1,55 Kg c) 1,65 Kg d) 1,5 Kg e) 1,85 Kg 35. ( UFPA ) Num prisma retangular de base hexagonal, a área lateral mede 36 m e a altura é 3 m. A aresta da base é: m b) 4 m c) 6 m d) 8 m e) 10 m 36.: (Fuvest-SP) Dois blocos de alumínio, em forma de cubo, com arestas medindo 10 cm e 6 cm, são levados juntos à fusão e em seguida o alumínio líquido é moldado como um paralelepípedo reto de arestas 8 cm, 8 cm e x cm. O valor de x é: a) 16 m b) 17 m c) 18 m d) 19 m e) 0 m 37.: (Mackenzie-SP 000) Se a soma dos ângulos internos de todas as faces de um prisma é 6 480, então o número de lados da base do prisma é a) 8 b) 9 c) 10 d) 1 e) 1

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 A figura ilustra a planificação da superfície lateral de um cilindro reto de 10 metros de altura. Considere π = 3,14. Qual o valor da área total desse cilindro, em metros quadrados?

Leia mais

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ CP/URJ ª SÉRI DO NSINO MÉDIO PROF. ILYDIO SÁ 1 LUNO () : Nº GOMTRI SPCIL PRISMS XRCÍCIOS 01) Qual o volume de um cubo de área 54 cm? 0) diagonal de uma face de um cubo tem medida 5 cm. Qual a área do cubo?

Leia mais

Lista de Exercícios de Recuperação de MATEMÁTICA 2

Lista de Exercícios de Recuperação de MATEMÁTICA 2 Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM 1) Dê as equações das elipses desenhadas a seguir: a.) 6 b.) -8 8-6 ) Determinar

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

Volumes Exemplo1: Exemplo2:

Volumes Exemplo1: Exemplo2: Volumes Exemplo1: Esta garrafa está cheia. Ela contém 90 mililitros (90 ml) de refrigerante: Volume 90 ml Isso significa que 90 ml é a quantidade de líquido que a garrafa pode armazenar: Capacidade 90

Leia mais

GEOMETRIA ESPACIAL Clístenes Cunha. a) 0,9 mm³ b) 36 mm³ c) 36 mm³ d) 810 mm³ e) 3600 mm³

GEOMETRIA ESPACIAL Clístenes Cunha. a) 0,9 mm³ b) 36 mm³ c) 36 mm³ d) 810 mm³ e) 3600 mm³ GEOMETRIA ESPACIAL Clístenes Cunha 1-(UFG GO-05) Preparou-se gelatina que foi colocada, ainda em estado líquido, em recipientes, como mostram as figuras abaixo. Sabendo que toda a quantidade de gelatina

Leia mais

MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma:

MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1º Bimestre/01 Aluno(a): Número: Turma: 1) Dado um paralelepípedo

Leia mais

PRISMAS Prisma é um poliedro com duas bases paralelas formadas por polígonos iguais e faces laterais que são paralelogramos.

PRISMAS Prisma é um poliedro com duas bases paralelas formadas por polígonos iguais e faces laterais que são paralelogramos. GEOMETRIA ESPACIAL Geometria Espacial é o estudo da geometria no espaço tridimensional (as 3 dimensões são: largura, comprimento e profundidade). Essas figuras recebem o nome de sólidos geométricos ou

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II 1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma

Leia mais

Exercícios de Matemática Prismas

Exercícios de Matemática Prismas Exercícios de Matemática Prismas 5. (Unesp) Sendo ABCDA'B'C'D' um cubo, calcular o seno do ângulo. 1. (Mackenzie) O lado, a diagonal de uma face e o volume de um cubo são dados, nessa ordem, por três números

Leia mais

MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA

MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA 1 MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA ===================================================== 1) As dimensões de um paralelepípedo retângulo são dadas por números inteiros em P.A. de razão

Leia mais

Volumes parte 02. Isabelle Araujo

Volumes parte 02. Isabelle Araujo olumes parte 02 Isabelle Araujo olume da pirâmide O princípio de Cavalieri afirma que: Pirâmides com áreas das bases iguais e com mesma altura têm volumes iguais. A fórmula para determinar o volume de

Leia mais

Geometria Espacial - Troncos

Geometria Espacial - Troncos Geometria Espacial - Troncos ) (SpeedSoft) ) (Fuvest) A altura de um cone circular reto é H. Seja α um plano que é paralelo à base e que divide o cone em dois sólidos de mesmo volume. Calcule a distância

Leia mais

Exercícios extras Matemática Aplicada Prismas

Exercícios extras Matemática Aplicada Prismas SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: 2ª TURMA(S):

Leia mais

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13 Cilindro 1. (Ueg 01) Uma coluna de sustentação de determinada ponte é um cilindro circular reto. Sabendo-se que na maquete que representa essa ponte, construída na escala 1:100, a base da coluna possui

Leia mais

Matemática Régis Cortes GEOMETRIA ESPACIAL

Matemática Régis Cortes GEOMETRIA ESPACIAL GEOMETRIA ESPACIAL 1 GEOMETRIA ESPACIAL PIRÂMIDE g g = apótema da pirâmide ; a p = apótema da base h g 2 = h 2 + a p 2 a p Al = p. g At = Al + Ab V = Ab. h 3 triangular quadrangular pentagonal hexagonal

Leia mais

Treino Matemática Planificação de Sólidos e Trigonometria Básica

Treino Matemática Planificação de Sólidos e Trigonometria Básica 1.Observe o prisma hexagonal regular ilustrado a seguir: Dentre as alternativas a seguir, a que representa uma planificação para esse sólido é.ao fazer um molde de um copo, em cartolina, na forma de cilindro

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual

Leia mais

GEOMETRIA ESPACIAL - PRISMAS

GEOMETRIA ESPACIAL - PRISMAS GEOMETRIA ESPACIAL - PRISMAS Questão 01 - (FM Petrópolis RJ) A Figura a seguir ilustra um recipiente aberto com a forma de um prisma hexagonal regular reto. Em seu interior, há líquido até a altura de

Leia mais

Geometria Espacial e Plana

Geometria Espacial e Plana 117 Geometria Espacial e Plana a² = b² + c² 118 1) Poliedros convexos Geometria Espacial Observe os sólidos abaixo cujas faces são polígonos convexos. Podemos observar que: a) Cada aresta é comum a duas

Leia mais

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma Unidade 9 - Prisma Introdução Definição de um prisma Denominação de um prisma Prisma regular Área de um prisma Volume de um prisma Introdução Após a abordagem genérica de poliedros, destacaremos alguns

Leia mais

GEOMETRIA ESPACIAL. Escola SESC de Ensino Médio PRISMAS/CILINDROS MÓDULO VIII. Prismas e cilindros. 01. O volume de uma caixa cúbica é 216 litros.

GEOMETRIA ESPACIAL. Escola SESC de Ensino Médio PRISMAS/CILINDROS MÓDULO VIII. Prismas e cilindros. 01. O volume de uma caixa cúbica é 216 litros. GEOMETRIA ESPACIAL PRISMAS/CILINDROS PROFESSORES: CONES/TRONCOS EDU/VICENTE ESFERAS TURMA: A MELHOR 2302 MÓDULO VIII Prismas e cilindros 01. O volume de uma caixa cúbica é 216 litros. A medida de sua diagonal,

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 5/05/ PROFESSOR: MALTEZ QUESTÃO 0 O piso de uma cozinha retangular de m de largura e m de comprimento deverá ser revestido por cerâmicas

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

Problemas de volumes

Problemas de volumes Problemas de volumes A UUL AL A Nesta aula, vamos resolver problemas de volumes. Com isso, teremos oportunidade de recordar os principais sólidos: o prisma, o cilindro, a pirâmide, o cone e a esfera. Introdução

Leia mais

Bolsistas: Karla Kamila Maia dos Santos, Edwin Castro Fernandes dos Santos e Lucas Vinicius de Lucena. Supervisor: Jonimar Pereira de Araújo

Bolsistas: Karla Kamila Maia dos Santos, Edwin Castro Fernandes dos Santos e Lucas Vinicius de Lucena. Supervisor: Jonimar Pereira de Araújo UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA (PIBID) ESCOLA ESTADUAL PROFESSOR ANTÔNIO ALADIM DE ARAÚJO EEAA Bolsistas: Karla Kamila Maia dos Santos,

Leia mais

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra

1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra GEOMETRIA PLANA: SEMELHANÇA DE TRIÂNGULOS 2 1. (Unesp 2003) Cinco cidades, A, B, C, D e E, são interligadas por rodovias, conforme mostra a figura. A rodovia AC tem 40km, a rodovia AB tem 50km, os ângulos

Leia mais

LISTA DE FÍSICA A. Corumbá, 12 de março de 20 15 Aluno (a): Série: 2º Turma: Professor (a): KLEBER G. CAVALCANTE. Nota/Visto:

LISTA DE FÍSICA A. Corumbá, 12 de março de 20 15 Aluno (a): Série: 2º Turma: Professor (a): KLEBER G. CAVALCANTE. Nota/Visto: Corumbá, 2 de março de 20 5 Aluno (a): Série: 2º Turma: Professor (a): KLEBER G. CAVALCANTE LISTA DE FÍSICA A Nota/Visto: 0 - (UFG GO/204) Uma longa ponte foi construída e instalada com blocos de concreto

Leia mais

Revisão: Geometria Espacial MATEMÁTICA

Revisão: Geometria Espacial MATEMÁTICA Professor: Revisão: Geometria Espacial ARGENTINO o ano DATA: 6 / 10 / 015 MATEMÁTICA 1. (Unisc 015) Um reservatório cúbico de 60 cm de 1 de água e precisa ser totalmente esvaziado. O volume de água a ser

Leia mais

Diagonal. Área Total. .. Aresta Lateral

Diagonal. Área Total. .. Aresta Lateral # Cubo # Paralelepípedo a Diagonal d a Diagonal Área Total Volume d a d a b c A 6 a Área Total A (a b a c b c) a a V Volume V a b c a d b c # Volume Capacidade: 1dm 1litro 1m 1.000l 1cm 1ml # Prisma /

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 51 PRISMA

MATEMÁTICA - 3 o ANO MÓDULO 51 PRISMA MATEMÁTICA - 3 o ANO MÓDULO 51 PRISMA F G J H I A E D B C C C C B B B A B A 10 cm Base 10 10 10 20 cm planificação Base a a d = 6 cm a a D = 8 cm c a b c b b. c a. c b. c a. c c a b b a b a b c d D a a

Leia mais

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m. MATEMÁTICA - ª ETAPA/015 Ensino Fundamental Ano: 8º Professora: Thaís Sadala Turma: Atividade: Estude Mais 10 Data: Aluno: Nº 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.,4

Leia mais

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m.

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m. ÁREAS DE FIGURAS PLANAS RETÂNGULO PARALELOGRAMO Exemplo: Calcule a área de um paralelogramo que tem,4 cmdebasee1,3cmdealtura. Resposta: A= B h A=,4x1,3 A=3,1 cm² 01. Calcule a área do paralelogramo, sabendo-se

Leia mais

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof.

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof. COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II Notas de aula de Matemática 3º ano/ensino Médio Prof. Andrezinho NOÇÕES DE GEOMETRIA ESPACIAL Notas de aula de Matemática Prof. André

Leia mais

Unidades de volume. Com esta aula iniciamos uma nova unidade. Nossa aula. Volume ou capacidade

Unidades de volume. Com esta aula iniciamos uma nova unidade. Nossa aula. Volume ou capacidade A UA UL LA Unidades de volume Introdução Com esta aula iniciamos uma nova unidade do Telecurso 2000: a Geometria Espacial. Nesta unidade você estudará as propriedades de figuras espaciais, tais como: o

Leia mais

Progressão Geométrica- 1º ano

Progressão Geométrica- 1º ano Progressão Geométrica- 1º ano 1. Uma seqüência de números reais a, a 2, a 3,... satisfaz à lei de formação A n+1 = 6a n, se n é ímpar A n+1 = (1/3) a n, se n é par. Sabendo-se que a = 2, a) escreva os

Leia mais

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1 ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1.Área da região retangular temos: É o paralelogramo que possui os quatro ângulos internos retos, num retângulo, A = B. P = B + d = B + Exemplo: Num retângulo, uma

Leia mais

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces Prismas A reunião dos infinitos segmentos, paralelos a s, que têm um de seus extremos no polígono ABCDEF contido em e outro extremo pertencente ao plano, constitui um sólido geométrico chamado prisma.

Leia mais

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera

Esfera e Sólidos Redondos Área da Esfera. Volume da Esfera Aula n ọ 04 Esfera e Sólidos Redondos Área da Esfera A área de uma esfera é a medida de sua superfície. Podemos dizer que sua área é igual a quatro vezes a área de um círculo máximo, ou seja: eixo R O

Leia mais

Prismas e Cilindros. Módulo 3. Para início de conversa... Matemática e suas Tecnologias Matemática 87

Prismas e Cilindros. Módulo 3. Para início de conversa... Matemática e suas Tecnologias Matemática 87 Módulo 3 Prismas e Cilindros Para início de conversa... Figura 1 De cima para baixo e da esquerda para a direita: caixa de presente, comida japonesa, rolo de feno, dados, prédio triangular em Berlim, Alemanha

Leia mais

m dela vale R$ 500,00,

m dela vale R$ 500,00, CLICK PROFESSOR Professor: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Calcule: Se um carro mede cerca de 4 m, quantos carros, aproximadamente, há em uma rodovia com 3 pistas e que tem 6 km

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 03 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA 7. Uma padaria faz uma torta salgada de formato retangular de 63cm de largura

Leia mais

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento.

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. MEDIDAS Comprimento O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. Existem várias unidades que podem ser utilizadas

Leia mais

01- Assunto: Matrizes. Dadas as matrizes A = e B =, calcule AB + A t.

01- Assunto: Matrizes. Dadas as matrizes A = e B =, calcule AB + A t. EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================== - Assunto: Matrizes 5 Dadas as matrizes A

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

b) 2. c) 4. d) 8. e) 3 π. 5. (Ita 2014) Uma pirâmide de altura h= 1cm e

b) 2. c) 4. d) 8. e) 3 π. 5. (Ita 2014) Uma pirâmide de altura h= 1cm e Geometria Espacial 1. (Uerj 015) Um funil, com a forma de cone circular reto, é utilizado na passagem de óleo para um recipiente com a forma de cilindro circular reto. O funil e o recipiente possuem a

Leia mais

Poliedros, Prismas e Cilindros

Poliedros, Prismas e Cilindros 1. (G1 - ifsp 2013) A figura mostra uma peça feita em 1587 por Stefano Buonsignori, e está exposta no Museu Galileo, em Florença, na Itália. Esse instrumento tem a forma de um dodecaedro regular e, em

Leia mais

6º ANO LISTA 1 medidas de área AV 2 3º Bim. Escola adventista de Planaltina. Professor: Celmo Xavier. Aluno: Medidas de Área

6º ANO LISTA 1 medidas de área AV 2 3º Bim. Escola adventista de Planaltina. Professor: Celmo Xavier. Aluno: Medidas de Área 6º ANO LISTA 1 medidas de área AV 2 3º Bim. Escola adventista de Planaltina Professor: Celmo Xavier. Aluno: Medidas de Área Transformando 1m² (metro quadrado) em cm² (centímetro quadrado) 1º passo: transformar

Leia mais

MATEMÁTICA. 1. A figura 1 representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura 2.

MATEMÁTICA. 1. A figura 1 representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura 2. MATEMÁTICA Prof. Favalessa. A figura representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura. a) Sendo que AB = BC = DE = EF e HI = KL = JL = JG = AG

Leia mais

1. Sendo (x+2, 2y-4) = (8x, 3y-10), determine o valor de x e de y. 2. Dado A x B = { (1,0); (1,1); (1,2) } determine os conjuntos A e B. 3. (Fuvest) Sejam A=(1, 2) e B=(3, 2) dois pontos do plano cartesiano.

Leia mais

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 2/5: Prof. Víctor O. Gamarra Rosado

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 2/5: Prof. Víctor O. Gamarra Rosado UNESP UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD Parte 2/5: 6. Figuras geométricas 7. Sólidos geométricos Prof.

Leia mais

Questões Complementares de Geometria

Questões Complementares de Geometria Questões Complementares de Geometria Professores Eustácio e José Ocimar Resolução comentada Outubro de 009 Questão 1_Enem 000 Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de

Leia mais

Exercícios de Matemática Cilindros

Exercícios de Matemática Cilindros Exercícios de Matemática Cilindros ` TEXTO PARA A PRÓXIMA QUESTÃO (Cesgranrio) Os extintores de incêndio vendidos para automóveis têm a forma de uma cápsula cilíndrica com extremidades hemisféricas, conforme

Leia mais

Matéria: Matemática Assunto: Comprimento ou Perímetro Prof. Dudan

Matéria: Matemática Assunto: Comprimento ou Perímetro Prof. Dudan Matéria: Matemática Assunto: Comprimento ou Perímetro Prof. Dudan Matemática Comprimento ou Perímetro Um exemplo claro do uso do conhecimento matemático nessas simples situações é quando precisamos saber

Leia mais

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A AULA - ÁREAS Área de um Triângulo - A área de um triângulo pode ser calculada a partir de dois lados consecutivos e o ângulo entre eles. h sen a h a sen b h a b sen A - A área de um triângulo eqüilátero

Leia mais

EXERCÍCIOS 3º ANO ENS. MÉDIO NÚMEROS BINOMIAIS e POLINÔMIOS.

EXERCÍCIOS 3º ANO ENS. MÉDIO NÚMEROS BINOMIAIS e POLINÔMIOS. EXERCÍCIOS º ANO ENS. MÉDIO NÚMEROS BINOMIAIS e POLINÔMIOS. 0 1. Dado o número binomial, temos: 18 a)190 b)180 c)80 d)0 e)n.d.a. 1. Dado o binômio x, determine o polinômio que representa sua solução:.

Leia mais

FRENTE 1 ÁLGEBRA MÓDULO 28 DISPOSITIVO DE BRIOT-RUFFINI TEOREMA DO RESTO MATEMÁTICA E

FRENTE 1 ÁLGEBRA MÓDULO 28 DISPOSITIVO DE BRIOT-RUFFINI TEOREMA DO RESTO MATEMÁTICA E FRENTE ÁLGEBRA MATEMÁTICA E Nas questões de a, calcular o quociente e o resto das divisões dos polinômios, utilizando o Dispositivo de Briot-Ruffini.. x x + 6x + por x MÓDULO 8 DISPOSITIVO DE BRIOT-RUFFINI

Leia mais

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota:

Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Escola: ( ) Atividade ( ) Avaliação Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Num triângulo retângulo, definimos o cosseno de seus ângulos agudos O triângulo retângulo da figura

Leia mais

SIMULADO DO ENEM PROVA DE MATEMÁTICA E SUAS TECNOLOGIAS UNIDADE II-2013 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ

SIMULADO DO ENEM PROVA DE MATEMÁTICA E SUAS TECNOLOGIAS UNIDADE II-2013 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ SIMULADO DO ENEM PROVA DE MATEMÁTICA E SUAS TECNOLOGIAS UNIDADE II-0 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA, MARIA ANTÔNIA C. GOUVEIA Questão 0. (UFTM) Os valores das

Leia mais

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF Pirâmide 1. (Unifesp 01) Na figura, ABCDEFGH é um paralelepípedo reto-retângulo, e PQRE é um tetraedro regular de lado 6cm, conforme indica a figura. Sabe-se ainda que: P e R pertencem, respectivamente,

Leia mais

VOLUMES DE SÓLIDOS GEOMÉTRICOS

VOLUMES DE SÓLIDOS GEOMÉTRICOS 1 Nomenclatura: VOLUMES DE SÓLIDOS GEOMÉTRICOS P Perímetro da ase a Apótema da ase A FL Área de uma face lateral At Área total l Aresta ou lado da ase 1. Prisma quadrangular regular É o sólido em que:

Leia mais

1. (Ufscar 2003) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk

1. (Ufscar 2003) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk GEOMETRIA ESPACIAL: TRONCO 1. (Ufscar 2003) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk shake com as dimensões mostradas no desenho. a) Sabendo-se que a taça estava totalmente

Leia mais

Resolução comentada Lista sobre lei dos senos e lei dos cossenos

Resolução comentada Lista sobre lei dos senos e lei dos cossenos Resolução comentada Lista sobre lei dos senos e lei dos cossenos 1 1. A figura mostra o trecho de um rio onde se deseja construir uma ponte AB. De um ponto P, a 100m de B, mediu-se o ângulo APB = 45º e

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 06.05.2011 10.º no de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano atemática FUNDAENTAL Atividades complementares Este material é um complemento da obra atemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

FRENTE 1 ÁLGEBRA MÓDULO 24 NÚMEROS COMPLEXOS MATEMÁTICA E. 7 + 4i 3. O número complexo z = em que i 2 = 1 é igual a 1 + 2i

FRENTE 1 ÁLGEBRA MÓDULO 24 NÚMEROS COMPLEXOS MATEMÁTICA E. 7 + 4i 3. O número complexo z = em que i 2 = 1 é igual a 1 + 2i FRENTE ÁLGEBRA MATEMÁTICA E MÓDULO 4 NÚMEROS COMPLEXOS. Sendo z = + i, w = + 4i, z e w, os conjugados de z e w, respectivamente, efetue: a) z + z b) z. w c) w. w d) z w e) z a) z + z = ( + i) + ( i) =

Leia mais

Geometria Espacial - Prismas

Geometria Espacial - Prismas Geometria Espacial - Prismas 1) (NOVO ENEM) Em Florença, Itália, na Igreja de Santa Croce, é possível encontrar um portão em que aparecem os anéis de Borromeo. Alguns historiadores acreditavam que os círculos

Leia mais

Exercícios de Matemática Troncos

Exercícios de Matemática Troncos Exercícios de Matemática Troncos 1. (Ufscar) Em uma lanchonete, um casal de namorados resolve dividir uma taça de milk shake com as dimensões mostradas no desenho. 4. (Ufpe) Um cone circular reto, com

Leia mais

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem.

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. TRIDIMENSIONALIDADE O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. As formas tridimensionais são aquelas que têm

Leia mais

, então. a) 0. c) log 3. c) 1 d) log 4. a) 2 b) c) d) 6. 9-(UECE) Se 6 igual a: a) 36 b) 45 c) 54 d) 81. , então. a) log 20 log 2. a) 3 b) 2 c) 1 d) 0

, então. a) 0. c) log 3. c) 1 d) log 4. a) 2 b) c) d) 6. 9-(UECE) Se 6 igual a: a) 36 b) 45 c) 54 d) 81. , então. a) log 20 log 2. a) 3 b) 2 c) 1 d) 0 LOGARITMOS Professor Clístenes Cunha -(CESGRANRIO-RJ) Se 5 0 a solução vale: a) 5 c) 7/ 0 -(PUC-MG) A soma das raízes da equação 5 a) c) -(CESGRANRIO-RJ) O valor de a) / / c) / / -(UEL-PR) Se 5 7 é igual

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Insper 01) De cada vértice de um prisma hexagonal regular foi retirado um tetraedro, como exemplificado para um dos vértices do prisma desenhado a seguir. O plano que definiu cada corte feito para

Leia mais

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y

A abordagem do assunto será feita inicialmente explorando uma curva bastante conhecida: a circunferência. Escolheremos como y 5 Taxa de Variação Neste capítulo faremos uso da derivada para resolver certos tipos de problemas relacionados com algumas aplicações físicas e geométricas. Nessas aplicações nem sempre as funções envolvidas

Leia mais

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio Escola da Imaculada Estudo da Pirâmide Aluno (a): Professora: Jucélia 2º ano ensino médio Estudo da Pirâmide 1- Definição As pirâmides são poliedros cuja base é uma região poligonal e as faces laterais

Leia mais

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA

---------------------------------------------------------- 1 UCS Vestibular de Inverno 2004 Prova 2 A MATEMÁTICA MATEMÁTICA 49 A distância que um automóvel percorre após ser freado é proporcional ao quadrado de sua velocidade naquele instante Um automóvel, a 3 km/, é freado e pára depois de percorrer mais 8 metros

Leia mais

Geometria Métrica Espacial. Geometria Métrica Espacial

Geometria Métrica Espacial. Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica

Leia mais

Geometria Área de Quadriláteros

Geometria Área de Quadriláteros ENEM Geometria Área de Quadriláteros Wallace Alves da Silva DICAS MATEMÁTICAS [Escolha a data] Áreas de quadriláteros Olá Galera, 1 QUADRILÁTEROS Quadrilátero é um polígono com quatro lados. A soma dos

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

AULÃO ENEM 2014 MATEMÁTICA OSWALDO

AULÃO ENEM 2014 MATEMÁTICA OSWALDO AULÃO ENEM 2014 MATEMÁTICA OSWALDO 1) Se o litro da gasolina aumentou 10% e um proprietário de carro o abastecia com 55 litros de gasolina, após o aumento, com a mesma quantia de dinheiro, ele abastecerá

Leia mais

ESCOLA SECUNDÁRIA/3 DE FELGUEIRAS Matemática para a Vida EFA Nível B3. Tema de vida: Armando Jorge Cunha Página 1

ESCOLA SECUNDÁRIA/3 DE FELGUEIRAS Matemática para a Vida EFA Nível B3. Tema de vida: Armando Jorge Cunha Página 1 Tema de vida: Nome do Formando: Data: / / Armando Jorge Cunha Página 1 EXERCÍCIOS: 1. Calcule a área dos quadrados e rectângulos representados na figura: 2. As figuras seguintes representam terrenos agrícolas.

Leia mais

Quarta lista de exercícios.

Quarta lista de exercícios. MA092 Geometria plana e analítica Segundo semestre de 2015 Quarta lista de exercícios. Circunferência e círculo. Teorema de Tales. Semelhança de triângulos. 1. (Dolce/Pompeo) Um ponto P dista 7 cm do centro

Leia mais

Professores: Luiz Davi Mazzei e Marcus Vinicius de Azevedo Basso. Acadêmicos: Andressa dos Santos, Diego Lima e Jean Rodrigo Teixeira.

Professores: Luiz Davi Mazzei e Marcus Vinicius de Azevedo Basso. Acadêmicos: Andressa dos Santos, Diego Lima e Jean Rodrigo Teixeira. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA OFICINAS DE ENSINO-APRENDIZAGEM DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Professores: Luiz Davi

Leia mais

Questões de Matemática Aula 4

Questões de Matemática Aula 4 Tópicos abordados: Trigonometria Geometria plana Geometria espacial Emerson Marcos Furtado 1 1. (Esaf) Um dos lados de um retângulo é 7cm maior do que o outro lado. Se a diagonal desse retângulo mede 13cm,

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

Prof. Jorge. Estudo de Polígonos

Prof. Jorge. Estudo de Polígonos Estudo de Polígonos Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem

Leia mais

Se as arestas laterais são perpendiculares aos planos das bases, o prisma é reto. Exemplo: GEOMETRIA ESPACIAL PRISMAS

Se as arestas laterais são perpendiculares aos planos das bases, o prisma é reto. Exemplo: GEOMETRIA ESPACIAL PRISMAS GEOMETRIA ESPACIAL PRISMAS Se as arestas laterais são perpendiculares aos planos das bases, o prisma é reto. Exemplo: Dados um polígono ABC MN situado num plano α e outro polígono A B C..M N congruente

Leia mais

Física José Ranulfo (joranulfo@hotmail.com)

Física José Ranulfo (joranulfo@hotmail.com) 05. (UFPE 97/Fís. 3) Considere um raio de luz contido em um plano perpendicular aos dois espelhos planos, conforme a figura abaixo. O raio refletido formará o ângulo γ com o feixe incidente, cujo valor

Leia mais

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é ÁRES 01 (UFMG) Um terreno tem a forma da figura abaixo. Se,, = 10 m, = 70 m, = 40 m e = 80 m, então a área do terreno é a) 1 500 m b) 1 600 m c) 1 700 m d) 1 800 m 0 (FMMG) - Observe a figura. Nessa figura,

Leia mais

Troncos de Cone e de Pirâmide

Troncos de Cone e de Pirâmide Troncos de Cone e de Pirâmide 1. (Uerj 015) Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede 4 cm, e o raio de sua base

Leia mais

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL 1 - Medida de comprimento SISTEMA MÉTRICO DECIMAL No sistema métrico decimal, a unidade fundamental para medir comprimentos é o metro, cuja abreviação é m. Existem os múltiplos e os submúltiplos do metro,

Leia mais

Abril Educação Grandezas e unidades de medidas Aluno(a): Número: Ano: Professor(a): Data: Nota:

Abril Educação Grandezas e unidades de medidas Aluno(a): Número: Ano: Professor(a): Data: Nota: Abril Educação Grandezas e unidades de medidas Aluno(a): Número: Ano: Professor(a): Data: Nota: Questão 1 (OBMEP RJ) Um atleta corre 5 000 m por semana em uma quadra de esportes, que tem uma pista curta

Leia mais

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras Colégio Universitas06 Data: 7 Mai 2013 Professor(a): Adriana Santos Aluno(a): Nota: nº: Exercícios extras 1 Escreva se cada objeto desenhado dá ideia de sólido geométrico, região plana ou contorno. Em

Leia mais

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo

Leia mais