Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano

Tamanho: px
Começar a partir da página:

Download "Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano"

Transcrição

1 Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano

2 A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo de objetos espaciais assim como a relação entre esses elementos. Os objetos primitivos do ponto de vista espacial, são: pontos, retas, segmentos de retas, planos, curvas, ângulos e superfícies.

3 Os principais tipos de cálculos que podemos realizar são: comprimentos de curvas, áreas de superfícies e volumes de regiões sólidas. Tomaremos ponto e reta como conceitos primitivos, os quais serão aceitos sem definição.

4 O Plano Um plano é um subconjunto do espaço R3 de tal modo que quaisquer dois pontos desse conjunto pode ser ligado por um segmento de reta inteiramente contido no conjunto. Um plano no espaço R3 pode ser determinado por qualquer uma das situações:

5 Três pontos não colineares (não pertencentes à mesma reta); Um ponto e uma reta que não contem o ponto; Um ponto e um segmento de reta que não contem o ponto; Duas retas paralelas que não se sobrepõe; Dois segmentos de reta paralelos que não se sobrepõe; Duas retas concorrentes; Dois segmentos de reta concorrentes.

6 Poliedros São sólidos do espaço de 3 dimensões cuja fronteira é a reunião de partes de planos. Tetraedro Pentaedro Hexaedro Heptaedro 4 faces 5 faces 6 faces 7 faces

7 Poliedros de Platão O filósofo Platão nasceu em Atenas (Grécia), em 428 / 427 a.c. A primeira paixão de Platão foi a política. Mais tarde, a filosofia se tornou a finalidade de sua vida. Há cerca de 2400 anos, os poliedros regulares foram estudados na escola de Platão, por isso recebem o nome de Poliedros de Platão.

8 Esse filósofo professou que o mundo foi criado a partir de 4 elementos básicos: a terra, o ar e a água. Platão associou cada um dos elementos a um dos poliedros regulares. O último poliedro que Platão estudou foi o dodecaedro. Platão associou este sólido ao cosmos (Universo) Tetraedro: fogo Cubo ou Hexaedro: terra Octaedro: ar Dodecaedro: cosmos Icosaedro: água

9 OS CINCO SÓLIDOS PLATÔNICOS

10 Faces Arestas Vértices Tetraedo Hexaedro Octaedro Dodecaedro Icosaedro

11 Relação de Euler V A + F = 2 Em qualquer poliedro convexo é válida a relação: Onde: V = nº de vértices; A = nº de arestas; F = nº de faces. S = (V-2).360 Soma dos ângulos das faces :

12 Cubo ou Hexaedro Regular Características Vértices: 8 Arestas: 12 Faces: 6 Um Cubo é uma figura formada por 6 quadrados iguais, como mostra a figura ao lado.

13 Área da Base: A B = (lado) 2 Área Lateral: A L = 4(lado) 2 Área total: A T = 6(lado) 2 Volume: V = (lado).(lado).(lado)

14 CUBO d a d = a 2 d = a 3 A t = 6a 2 d a a V = a 3

15 Paralelepípedo Reto-Retângulo Estrutura de um paralelepípedo: Características Vértices: 8 Arestas: 12 Faces: 6 É o sólido construído com seis retângulos, congruentes dois a dois, conforme ilustra a figura ao lado. A B = ab A L = 2(ac + bc)

16 PARALELEPÍPEDO d c a d 2 = a 2 +b 2 +c 2 b V = abc S t = 2(ab+ac+bc)

17 Prismas Estrutura dos primas: Prisma é um sólido geométrico delimitado por faces planas, no qual as bases se situam em planos paralelos. Quanto à inclinação das arestas laterais, os prismas podem ser retos ou oblíquos.

18 Prisma reto As arestas laterais têm o mesmo comprimento. As arestas laterais são perpendiculares ao plano da base. As faces laterais são retangulares.

19 Prisma oblíquo As arestas laterais têm o mesmo comprimento. As arestas laterais são oblíquas ao plano da base. As faces laterais não são retangulares.

20 Os prismas podem ser quadrangulares, triangulares, hexagonais, pentagonais, etc... dependendo da forma de suas bases. Seção transversal de um prisma É a região poligonal obtida pela interseção do prisma com um plano paralelo às bases, sendo que esta região poligonal é congruente a cada uma das bases. Prisma regular É um prisma reto cujas bases são regiões poligonais regulares.

21 PRISMAS V = A B.h A T = SOMA DAS ÁREAS DAS A T = FACES LATERAIS A L + 2 A B Prisma reto de Prisma Regular = bases regulares

22 Área da Base: A B = (área da fig da base) Área Lateral: A L = n (face lateral) Área total: A T = 2A B + A L Volume: V = A B. h

23 Cilindro É o sólido como o representado na figura a seguir: Área da Base:A B = πr 2 Área Lateral: A L = 2πRh Área total: A T = 2(πR 2 ) + 2πRh Volume: V = πr 2 h

24

25 CILINDRO A B = πr 2 R V = A B.h h g = h A L = A T = 2πRg A L + 2 A B R Cilindro equilátero: g = 2R

26 Cone Circular Reto É o sólido como o representado na figura abaixo: Área da Base: A B = πr 2 Área Lateral: A L = πrg Área total: A T = πr 2 + πrg Volume: V = 1 π R 3 2 h

27

28 CONE h g R g 2 = h 2 + R 2 A B = πr 2 A V = B.h 3 A L = πrg A T = A L + A B Cone equilátero: g = 2R

29 Pirâmide São sólidos como o representado na figura acima. Se a base for um polígono regular, e a projeção ortogonal do vértice sobre a base coincidir com o seu centro, a pirâmide é denominada pirâmide regular. onde : (h) altura da pirâmide. (h) 2 = (ap) 2 + (a b ) 2 (a b ) apótema da base (raio da circunferência inscrita). (ap) apótema da pirâmide, ou apótema lateral.

30 Área da Base: A B = (área da fig da base) Área Lateral: A L = n (face lateral) Área total: A T = A B + A L Volume: A L = 1 3 A B h

31 Esfera Devido às características especiais da esfera, ela não pode ser planificada. Uma esfera é obtida fazendo-se a rotação completa de um semicírculo sobre seu diâmetro. Com esse movimento, cada ponto do semicírculo descreve uma circunferência que tem como centro um ponto qualquer do diâmetro e cujo raio se torna maior à medida que aumenta a sua distância ao eixo. Todos os pontos da superfície esférica estão à mesma distância de um ponto chamado centro.

32 Área do círculo máximo: A= πr 2 Área da esfera: AT = 4πR 2 Volume da esfera: V = 4 π R 3 3

33 SEÇÃO NA ESFERA. r. d O. R R 2 = d 2 + r 2

34 Cunha Área do fuso: A F 4π R 2 = α 360 Volume da cunha : 0 A α F = π R 3

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces Prismas A reunião dos infinitos segmentos, paralelos a s, que têm um de seus extremos no polígono ABCDEF contido em e outro extremo pertencente ao plano, constitui um sólido geométrico chamado prisma.

Leia mais

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem.

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. TRIDIMENSIONALIDADE O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. As formas tridimensionais são aquelas que têm

Leia mais

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir Sólidos Geométricos As figuras geométricas espaciais também recebem o nome de sólidos geométricos, que são divididos em: poliedros e corpos redondos. Vamos abordar as definições e propriedades dos poliedros.

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br Breve Introdução Histórica aos Sólidos Platônicos

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br Breve Introdução Histórica aos Sólidos Platônicos Breve Introdução Histórica aos Sólidos Platônicos Cerca de 600 A.C. nas colônias gregas da Jônia, na costa oeste da Turquia, surgem dois dos principais matemáticos gregos: Tales de Mileto e Pitágoras de

Leia mais

Geometria Métrica Espacial. Geometria Métrica Espacial

Geometria Métrica Espacial. Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II 1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma

Leia mais

GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011

GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011 GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2 Dirce Uesu Pesco Geometria Espacial 08/11/2011 Definição : Considere dois planos paralelos α e β e um segmento de reta PQ, cuja reta suporte r intercepta o plano

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio Escola da Imaculada Estudo da Pirâmide Aluno (a): Professora: Jucélia 2º ano ensino médio Estudo da Pirâmide 1- Definição As pirâmides são poliedros cuja base é uma região poligonal e as faces laterais

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual

Leia mais

POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS

POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS http://apostilas.netsaber.com.br/ver_apostila.php?c=622 ANGELO ROBERTO BONFIETI JUNIOR - MATRÍCULA 97003133 - BM3 01-011 POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS ANGELO ROBERTO BONFIETI JUNIOR - MATRÍCULA

Leia mais

SÓLIDOS GEOMÉTRICOS. da - 2. Sólidos de. geométricos. Rodrigo. Roberto. Tetraedro (4) Hexaedro (6) Octaedro (8) Dudecaedro (12) Icosaedro (20)

SÓLIDOS GEOMÉTRICOS. da - 2. Sólidos de. geométricos. Rodrigo. Roberto. Tetraedro (4) Hexaedro (6) Octaedro (8) Dudecaedro (12) Icosaedro (20) Sólidos Geométricos Poliedros Sólidos de Revolução SÓLIOS GEOMÉTRICOS Regulares Irregulares Cone Cilindro Tetraedro (4) Hexaedro (6) Octaedro (8) udecaedro (12) Icosaedro (20) Prisma Pirâmide Reto Oblíquo

Leia mais

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma Unidade 9 - Prisma Introdução Definição de um prisma Denominação de um prisma Prisma regular Área de um prisma Volume de um prisma Introdução Após a abordagem genérica de poliedros, destacaremos alguns

Leia mais

APOSTILA 2015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO 2º ANO - ENSINO MÉDIO - 2015 1

APOSTILA 2015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO 2º ANO - ENSINO MÉDIO - 2015 1 APOSTILA 015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO º ANO - ENSINO MÉDIO - 015 1 Sumário 1.Geometria Espacial...4 1.1 Definições básicas da Geometria Espacial...4 1. Posições de

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof.

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof. COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II Notas de aula de Matemática 3º ano/ensino Médio Prof. Andrezinho NOÇÕES DE GEOMETRIA ESPACIAL Notas de aula de Matemática Prof. André

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

Trabalho 4: Os Sólidos Geométricos

Trabalho 4: Os Sólidos Geométricos Departamento de Matemática Mestrado em Ensino de Matemática no 3º Ciclo do Ensino Básico e no Ensino Secundário Trabalho 4: Os Sólidos Geométricos Meios Computacionais no Ensino Professor: Jaime Carvalho

Leia mais

Geometria Espacial: Sólidos Geométricos

Geometria Espacial: Sólidos Geométricos Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

PRISMAS Prisma é um poliedro com duas bases paralelas formadas por polígonos iguais e faces laterais que são paralelogramos.

PRISMAS Prisma é um poliedro com duas bases paralelas formadas por polígonos iguais e faces laterais que são paralelogramos. GEOMETRIA ESPACIAL Geometria Espacial é o estudo da geometria no espaço tridimensional (as 3 dimensões são: largura, comprimento e profundidade). Essas figuras recebem o nome de sólidos geométricos ou

Leia mais

Caderno de Respostas

Caderno de Respostas Caderno de Respostas DESENHO TÉCNICO BÁSICO Prof. Dr.Roberto Alcarria do Nascimento Ms. Luís Renato do Nascimento CAPÍTULO 1: ELEMENTOS BÁSICOS DO DESENHO TÉCNICO 1. A figura ilustra um cubo ao lado de

Leia mais

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO

Leia mais

Sólidos geométricos (Revisões)

Sólidos geométricos (Revisões) Curso de Educação e Formação Assistente Administrativo DISCIPLINA: Matemática Aplicada FICHA DE TRABALHO Nº 15 MÓDULO: 8 TURMA: A1/A2 DATA: 2006/2007 Sólidos geométricos (Revisões) Já conhecemos os nomes

Leia mais

Planificação de Matemática -6ºAno

Planificação de Matemática -6ºAno DGEstE - Direção-Geral de Estabelecimentos Escolares Direção de Serviços Região Alentejo Agrupamento de Escolas de Moura código n.º 135471 Escola Básica nº 1 de Moura (EB23) código n.º 342294 Planificação

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

Ensino Fundamental, 7º Ano Formas geométricas espaciais: prisma e pirâmide - conceitos iniciais

Ensino Fundamental, 7º Ano Formas geométricas espaciais: prisma e pirâmide - conceitos iniciais Ensino Fundamental, 7º Ano Formas geométricas espaciais: prisma e pirâmide - conceitos iniciais Você já deve ter observado embalagens e objetos que têm relação com figuras chamadas sólidos geométricos.

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

Estudando Poliedros com Auxílio do Software Poly

Estudando Poliedros com Auxílio do Software Poly DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO/GERÊNCIA DE PESQUISA PROJETO: TECNOLOGIAS DE INFORMAÇÃO E COMUNICAÇÃO NO PROCESSO DE ENSINO E APRENDIZAGEM DE MATEMÁTICA Estudando Poliedros com Auxílio do Software

Leia mais

Geometria Espacial e Plana

Geometria Espacial e Plana 117 Geometria Espacial e Plana a² = b² + c² 118 1) Poliedros convexos Geometria Espacial Observe os sólidos abaixo cujas faces são polígonos convexos. Podemos observar que: a) Cada aresta é comum a duas

Leia mais

Matemática Régis Cortes GEOMETRIA ESPACIAL

Matemática Régis Cortes GEOMETRIA ESPACIAL GEOMETRIA ESPACIAL 1 GEOMETRIA ESPACIAL PIRÂMIDE g g = apótema da pirâmide ; a p = apótema da base h g 2 = h 2 + a p 2 a p Al = p. g At = Al + Ab V = Ab. h 3 triangular quadrangular pentagonal hexagonal

Leia mais

CONTEÚDOS METAS / DESCRITORES RECURSOS

CONTEÚDOS METAS / DESCRITORES RECURSOS AGRUPAMENTO DE ESCOLAS DR. VIEIRA DE CARVALHO Escola Básica e Secundária Dr. Vieira de Carvalho Departamento de Matemática e Ciências Experimentais Planificação Anual de Matemática 6º Ano Ano Letivo 2015/2016

Leia mais

GEOMETRIA ESPACIAL. Rio de Janeiro / 2007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO

GEOMETRIA ESPACIAL. Rio de Janeiro / 2007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA GEOMETRIA ESPACIAL Rio de Janeiro / 2007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO UNIVERSIDADE

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de

Leia mais

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! 1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,

Leia mais

PROEJA Matemática V Geometria dos Sólidos

PROEJA Matemática V Geometria dos Sólidos Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande PROEJA Matemática V Geometria dos Sólidos 011/ Profª Debora Bastos Maat teemáát ticcaa V Emeennt taa Geometria dos

Leia mais

ESCOLA BÁSICA E SECUNDÁRIA CLARA DE RESENDE

ESCOLA BÁSICA E SECUNDÁRIA CLARA DE RESENDE 1. NÚMEROS NATURAIS ESCOLA BÁSICA E SECUNDÁRIA CLARA DE RESENDE CRITÉRIOS DE AVALIAÇÃO ESPECÍFICOS (Aprovados em Conselho Pedagógico a 21 de Outubro de 2014) No caso específico da disciplina de Matemática,

Leia mais

POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados.

POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados. POLIEDROS: POLI = Muitos E EDROS = Lados Muitos lados. Toda figura geométrica espacial de três dimensões (comprimento, largura e altura), formada por POLÍGONOS (figura plana composta de n lados) é chamada

Leia mais

Se as arestas laterais são perpendiculares aos planos das bases, o prisma é reto. Exemplo: GEOMETRIA ESPACIAL PRISMAS

Se as arestas laterais são perpendiculares aos planos das bases, o prisma é reto. Exemplo: GEOMETRIA ESPACIAL PRISMAS GEOMETRIA ESPACIAL PRISMAS Se as arestas laterais são perpendiculares aos planos das bases, o prisma é reto. Exemplo: Dados um polígono ABC MN situado num plano α e outro polígono A B C..M N congruente

Leia mais

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

VOLUMES DE SÓLIDOS GEOMÉTRICOS

VOLUMES DE SÓLIDOS GEOMÉTRICOS 1 Nomenclatura: VOLUMES DE SÓLIDOS GEOMÉTRICOS P Perímetro da ase a Apótema da ase A FL Área de uma face lateral At Área total l Aresta ou lado da ase 1. Prisma quadrangular regular É o sólido em que:

Leia mais

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Nossa aula. Figuras geométricas elementares

Figuras geométricas. Se olhar ao seu redor, você verá que os objetos. Nossa aula. Figuras geométricas elementares A UU L AL A Figuras geométricas Se olhar ao seu redor, você verá que os objetos têm forma, tamanho e outras características próprias. As figuras geométricas foram criadas a partir da observação das formas

Leia mais

Abordagem de geometria no ensino médio partindo de poliedros

Abordagem de geometria no ensino médio partindo de poliedros Abordagem de geometria no ensino médio partindo de poliedros José Luiz Magalhães de Freitas INMA/UFMS e-mail: joseluizufms2@gmail.com Marilena Bittar INMA/UFMS e-mail: marilenabittar@gmail.com O objetivo

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras Colégio Universitas06 Data: 7 Mai 2013 Professor(a): Adriana Santos Aluno(a): Nota: nº: Exercícios extras 1 Escreva se cada objeto desenhado dá ideia de sólido geométrico, região plana ou contorno. Em

Leia mais

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA),

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA), 0 - (UERN) A AVALIAÇÃO UNIDADE I -05 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Em uma sorveteria, há x sabores de sorvete e y sabores de cobertura.

Leia mais

A perspectiva é um tipo especial de projeção, na qual são possíveis de se medir três eixos dimensionais em um espaço bi-dimensional.

A perspectiva é um tipo especial de projeção, na qual são possíveis de se medir três eixos dimensionais em um espaço bi-dimensional. Desenho Desenho Artístico Desenho Técnico Desenho Não-Projetivo: gráficos e diagramas fluogramas organogramas Desenho Projetivo: perspectivas vistas ortográficas plantas-baiase cortes 1 Projeções A perspectiva

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

GEOMETRIA ESPACIAL. Escola SESC de Ensino Médio PRISMAS/CILINDROS MÓDULO VIII. Prismas e cilindros. 01. O volume de uma caixa cúbica é 216 litros.

GEOMETRIA ESPACIAL. Escola SESC de Ensino Médio PRISMAS/CILINDROS MÓDULO VIII. Prismas e cilindros. 01. O volume de uma caixa cúbica é 216 litros. GEOMETRIA ESPACIAL PRISMAS/CILINDROS PROFESSORES: CONES/TRONCOS EDU/VICENTE ESFERAS TURMA: A MELHOR 2302 MÓDULO VIII Prismas e cilindros 01. O volume de uma caixa cúbica é 216 litros. A medida de sua diagonal,

Leia mais

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada,

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, QUADRILÁTEROS Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, A B C Lados: AB BC CD AD Vértices: A B C D Diagonais: AC BD D Algumas

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESFERAS E SUAS PARTES PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESFERAS E SUAS PARTES PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA ESFERAS E SUAS PARTES PROF. CARLINHOS NOME: N O : 1 ESFERAS Consideramos um ponto O e um segmento de medida r. Chama-se esfera de centro O e raio r o conjunto

Leia mais

CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA

CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA APÊNDICE A - CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS MESTRADO EM ENSINO DE CIÊNCIAS E MATEMÁTICA CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA AUTORES:

Leia mais

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 2/5: Prof. Víctor O. Gamarra Rosado

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 2/5: Prof. Víctor O. Gamarra Rosado UNESP UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD Parte 2/5: 6. Figuras geométricas 7. Sólidos geométricos Prof.

Leia mais

Treino Matemática Planificação de Sólidos e Trigonometria Básica

Treino Matemática Planificação de Sólidos e Trigonometria Básica 1.Observe o prisma hexagonal regular ilustrado a seguir: Dentre as alternativas a seguir, a que representa uma planificação para esse sólido é.ao fazer um molde de um copo, em cartolina, na forma de cilindro

Leia mais

5 LG 1 - CIRCUNFERÊNCIA

5 LG 1 - CIRCUNFERÊNCIA 40 5 LG 1 - CIRCUNFERÊNCIA Propriedade: O lugar geométrico dos pontos do plano situados a uma distância constante r de um ponto fixo O é a circunferência de centro O e raio r. Notação: Circunf(O,r). Sempre

Leia mais

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) - Acomodação dos alunos, apresentação dos bolsistas e realização da chamada.

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) - Acomodação dos alunos, apresentação dos bolsistas e realização da chamada. PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: André da Silva Alves 1.2 Série/Ano/Turma: 6º e 7º ano 1.3 Turno: manhã 1.4 Data: 10/07 Lauro Dornelles e 15/07 Oswaldo Aranha 1.5 Tempo

Leia mais

Volumes parte 02. Isabelle Araujo

Volumes parte 02. Isabelle Araujo olumes parte 02 Isabelle Araujo olume da pirâmide O princípio de Cavalieri afirma que: Pirâmides com áreas das bases iguais e com mesma altura têm volumes iguais. A fórmula para determinar o volume de

Leia mais

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF Pirâmide 1. (Unifesp 01) Na figura, ABCDEFGH é um paralelepípedo reto-retângulo, e PQRE é um tetraedro regular de lado 6cm, conforme indica a figura. Sabe-se ainda que: P e R pertencem, respectivamente,

Leia mais

1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3.

1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3. Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL II 1 POLIEDROS Na Geometria Espacial, como o nome diz, o nosso assunto são as figuras espaciais (no espaço). Vamos estudar sólidos e corpos geométricos que possuem

Leia mais

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT

Cilindro. MA13 - Unidade 23. Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro MA13 - Unidade 23 Resumo elaborado por Eduardo Wagner baseado no texto: A. Caminha M. Neto. Geometria. Coleção PROFMAT Cilindro Em um plano H considere uma curva simples fechada C e seja r uma

Leia mais

b) 2. c) 4. d) 8. e) 3 π. 5. (Ita 2014) Uma pirâmide de altura h= 1cm e

b) 2. c) 4. d) 8. e) 3 π. 5. (Ita 2014) Uma pirâmide de altura h= 1cm e Geometria Espacial 1. (Uerj 015) Um funil, com a forma de cone circular reto, é utilizado na passagem de óleo para um recipiente com a forma de cilindro circular reto. O funil e o recipiente possuem a

Leia mais

02 Determine o módulo, a direção e o sentido dos seguintes vetores: a) A = 5 Λ i + 3 Λ j, b) B = 10 Λ i -7 Λ j, c) C = 2 Λ i - 3 Λ j + 4 Λ k.

02 Determine o módulo, a direção e o sentido dos seguintes vetores: a) A = 5 Λ i + 3 Λ j, b) B = 10 Λ i -7 Λ j, c) C = 2 Λ i - 3 Λ j + 4 Λ k. Exercícios de apoio à disciplina Geometria Analítica e Cálculo Vetorial 1 01 Três vetores A, B e C possuem as seguintes componentes nas direções x e y: A x = 6, A y = -3; B x = -3, B y =4; C x =2, C y

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 5/05/ PROFESSOR: MALTEZ QUESTÃO 0 O piso de uma cozinha retangular de m de largura e m de comprimento deverá ser revestido por cerâmicas

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

Desenho geométrico. Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta:

Desenho geométrico. Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta: Desenho geométrico Ponto: Elemento geométrico considerado sem dimensão, apenas com posição. Reta: Linha que estabelece a menor distância entre 2 pontos. Por 1 ponto podem passar infinitas retas. Por 2

Leia mais

Unidade didáctica: circunferência e polígonos. Matemática 9º ano

Unidade didáctica: circunferência e polígonos. Matemática 9º ano Unidade didáctica: circunferência e polígonos Matemática 9º ano POLÍGONOS. Ângulos de um polígono DEFINIÇÃO: Um polígono é uma superfície plana limitada por uma linha poligonal fechada. Em qualquer polígono

Leia mais

Lista 4. 2 de junho de 2014

Lista 4. 2 de junho de 2014 Lista 4 2 de junho de 24 Seção 5.. (a) Estime a área do gráfico de f(x) = cos x de x = até x = π/2 usando quatro retângulos aproximantes e extremidades direitas. Esboce os gráficos e os retângulos. Sua

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

Professores: Aliomar Santos, Alisson Coutinho, Clayton Staudinger, Diogo Lobo, Elma Mota, Fabiano Nader, Luiz Fernando Gomes e Walfrido Siqueira.

Professores: Aliomar Santos, Alisson Coutinho, Clayton Staudinger, Diogo Lobo, Elma Mota, Fabiano Nader, Luiz Fernando Gomes e Walfrido Siqueira. A. P. 1 Matemática Grupo B 23.02.11 Professores: Aliomar Santos, Alisson Coutinho, Clayton Staudinger, Diogo Lobo, Elma Mota, Fabiano Nader, Luiz Fernando Gomes e Walfrido Siqueira. Aluno(a): Turma: Nota:

Leia mais

EXERCÍCIOS 3º ANO ENS. MÉDIO NÚMEROS BINOMIAIS e POLINÔMIOS.

EXERCÍCIOS 3º ANO ENS. MÉDIO NÚMEROS BINOMIAIS e POLINÔMIOS. EXERCÍCIOS º ANO ENS. MÉDIO NÚMEROS BINOMIAIS e POLINÔMIOS. 0 1. Dado o número binomial, temos: 18 a)190 b)180 c)80 d)0 e)n.d.a. 1. Dado o binômio x, determine o polinômio que representa sua solução:.

Leia mais

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES

CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES B3 CIRCUNFERÊNCIA E POLÍGONOS. ROTAÇÕES Circunferência Circunferência é um conjunto de pontos do plano situados à mesma distância de um ponto fixo (centro). Corda é um segmento de recta cujos extremos

Leia mais

Geometria Elementar gênese e desenvolvimento. Roberto Ribeiro Paterlini

Geometria Elementar gênese e desenvolvimento. Roberto Ribeiro Paterlini Geometria Elementar gênese e desenvolvimento Roberto Ribeiro Paterlini Copyright março de 2010 by Roberto Ribeiro Paterlini Departamento de Matemática, UFSCar A presente versão está disponível na página

Leia mais

MATEMÁTICA. 1. A figura 1 representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura 2.

MATEMÁTICA. 1. A figura 1 representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura 2. MATEMÁTICA Prof. Favalessa. A figura representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura. a) Sendo que AB = BC = DE = EF e HI = KL = JL = JG = AG

Leia mais

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ CP/URJ ª SÉRI DO NSINO MÉDIO PROF. ILYDIO SÁ 1 LUNO () : Nº GOMTRI SPCIL PRISMS XRCÍCIOS 01) Qual o volume de um cubo de área 54 cm? 0) diagonal de uma face de um cubo tem medida 5 cm. Qual a área do cubo?

Leia mais

Geometria Euclidiana II

Geometria Euclidiana II Geometria Euclidiana II Professor Fabrício Oliveira Universidade Federal Rural do Semiárido 17 de outubro de 2010 O nosso curso Tópicos abordados Poliedros Convexos O nosso curso Tópicos abordados Poliedros

Leia mais

3ª Ficha de Trabalho

3ª Ficha de Trabalho SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado

Leia mais

Construções Fundamentais. r P r

Construções Fundamentais. r P r 1 Construções Fundamentais 1. De um ponto traçar a reta paralela à reta dada. + r 2. De um ponto traçar a perpendicular à reta r, sabendo que o ponto é exterior a essa reta; e de um ponto P traçar a perpendicular

Leia mais

Exercícios de Matemática Retas e Planos

Exercícios de Matemática Retas e Planos Exercícios de Matemática Retas e Planos 3. (Unesp) Considere o cubo da figura adiante. Das alternativas a seguir, aquela correspondente a pares de vértices que determinam três retas, duas a duas reversas,

Leia mais

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR

ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR ITA - 2005 3º DIA MATEMÁTICA BERNOULLI COLÉGIO E PRÉ-VESTIBULAR Matemática Questão 01 Considere os conjuntos S = {0,2,4,6}, T = {1,3,5} e U = {0,1} e as afirmações: I. {0} S e S U. II. {2} S\U e S T U={0,1}.

Leia mais

Desenho Técnico. Desenho Projetivo e Perspectiva Isométrica

Desenho Técnico. Desenho Projetivo e Perspectiva Isométrica Desenho Técnico Assunto: Aula 3 - Desenho Projetivo e Perspectiva Isométrica Professor: Emerson Gonçalves Coelho Aluno(A): Data: / / Turma: Desenho Projetivo e Perspectiva Isométrica Quando olhamos para

Leia mais

DESENHO BÁSICO AULA 03. Prática de traçado e desenho geométrico 14/08/2008

DESENHO BÁSICO AULA 03. Prática de traçado e desenho geométrico 14/08/2008 DESENHO BÁSICO AULA 03 Prática de traçado e desenho geométrico 14/08/2008 Polígonos inscritos e circunscritos polígono inscrito polígono circunscrito Divisão da Circunferência em n partes iguais n=2 n=4

Leia mais

KLEBER SEBASTIÃO JULIANI

KLEBER SEBASTIÃO JULIANI KLEBER SEBASTIÃO JULIANI GEOMETRIA ESPACIAL UMA VISÃO DO ESPAÇO PARA A VIDA LONDRINA 008 KLEBER SEBASTIÃO JULIANI GEOMETRIA ESPACIAL UMA VISÃO DO ESPAÇO PARA A VIDA Proposta de produção didática pedagógica

Leia mais

Apostila de Geometria Descritiva. Anderson Mayrink da Cunha GGM - IME - UFF

Apostila de Geometria Descritiva. Anderson Mayrink da Cunha GGM - IME - UFF Apostila de Geometria Descritiva Anderson Mayrink da Cunha GGM - IME - UFF Novembro de 2013 Sumário Sumário i 1 Poliedros e sua Representação 1 1.1 Tipos de Poliedros.............................. 1 1.1.1

Leia mais

Geometria Espacial 3. Analise Combinatória 18. Probabilidade 24. Matemática Financeira 32. Trigonometria no Circulo 51

Geometria Espacial 3. Analise Combinatória 18. Probabilidade 24. Matemática Financeira 32. Trigonometria no Circulo 51 1 3º Unidade Capítulo XI Geometria Espacial 3 Capítulo XII Analise Combinatória 18 Capítulo XIII Probabilidade 24 Capítulo XIV Matemática Financeira 32 Capítulo XV Trigonometria no Circulo 51 Questões

Leia mais

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro Poliedros 1 Os poliedros são sólidos cujo volume é definido pela interseção de quatro ou mais planos (poli + edro). A superfície poliédrica divide o espaço em duas regiões: uma região finita, que é a parte

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Insper 01) De cada vértice de um prisma hexagonal regular foi retirado um tetraedro, como exemplificado para um dos vértices do prisma desenhado a seguir. O plano que definiu cada corte feito para

Leia mais

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA

CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA CONTEÚDOS DA DISCIPLINA DE MATEMÁTICA 6ºANO CONTEÚDOS-1º TRIMESTRE Números naturais; Diferença entre número e algarismos; Posição relativa do algarismo dentro do número; Leitura do número; Sucessor e antecessor;

Leia mais

GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA TIPO B

GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA TIPO B 1 GEOMETRIA GRÁFICA TIPO A GEOMETRIA GRÁFICA 1. Considere um quadrilátero RSTU, satisfazendo RS = ST = TU = UR, como o exemplo ilustrado abaixo. Considerando esses dados, podemos afirmar que: 0-0) SU é

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO

Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 Ano Letivo 2012/2013 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 151865 - AGRUPAMENTO DE ESCOLAS DE CINFÃES Escola E.B. 2,3 General Serpa Pinto Cinfães Matemática 5 FICHA FORMATIVA: SÓLIDOS GEOMÉTRICOS E FIGURAS NO PLANO 1. A figura ao lado representa o polígono da

Leia mais

Prof. Márcio Nascimento. 1 de abril de 2015

Prof. Márcio Nascimento. 1 de abril de 2015 Geometria dos Sólidos Prof. Márcio Nascimento marcio@matematicauva.org Universidade Estadual Vale do Acaraú Centro de Ciências Exatas e Tecnologia Curso de Licenciatura em Matemática Disciplina: Geometria

Leia mais

Aulas Particulares on-line

Aulas Particulares on-line sse material é parte integrante do ulas Particulares on-line do IS RSIL S/, MTMÁTI PRÉ-VSTIULR LIVRO O PROFSSOR 006-009 IS rasil S.. É proibida a reprodução, mesmo parcial, por qualquer processo, sem autorização

Leia mais

MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA

MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA 1 MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA ===================================================== 1) As dimensões de um paralelepípedo retângulo são dadas por números inteiros em P.A. de razão

Leia mais

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_2007_ 2A FASE. RESOLUÇÃO PELA PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÀO DA PROVA DE MATEMÁTICA VESTIBULAR DA FUVEST_007_ A FASE RESOLUÇÃO PELA PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Se Amélia der R$3,00 a Lúcia, então ambas ficarão com a mesma quantia Se Maria

Leia mais