RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ

Tamanho: px
Começar a partir da página:

Download "RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ"

Transcrição

1 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 5/05/ PROFESSOR: MALTEZ QUESTÃO 0 O piso de uma cozinha retangular de m de largura e m de comprimento deverá ser revestido por cerâmicas quadradas de 0 cm de lado. O número de peças de cerâmicas necessárias para cobrir todo o piso é: A cozinha tem área: m x m = 6 m = cm A cerâmica tem área: 0 cm x 0 cm = 00 cm : 00 = 50 peças QUESTÃO 0 Em uma metalúrgica, uma talhadeira industrial recorta discos de uma chapa metálica, como mostra a figura ao lado. A sobra vai para a reciclagem para a produção de novas chapas metálicas. O número de sobras necessárias para produzir uma nova chapa com as mesmas dimensões é: 0,80 m A área da chapa metálica é:,0 m x 0,80 m = 0,96 m O raio de cada círculo é: r =,0 : 6 = 0, m R = 0, m A área de um círculo é: A = π. (0,) =,. 0,0 = 0,0 Como são chapas a área ocupada pelos círculos é 0,0 x = 0,756 A sobra é então: 0,96 0,956 = 0,06 Verificando o número de sobras: 0,96 : 0,06 5 sobras (ou seja, 5 sobras para produzir uma chapa nova).,0 m

2 QUESTÃO 0 Nas diagonais do teto de um salão retangular, com m de largura e 5 m de comprimento foram colocados dois fios com bandeirinhas, para uma festa junina. Cada uma delas tinha 0 cm de largura e não havia espaço entre elas. O número de bandeirinhas usadas nessa decoração é: 0 cm A diagonal do teto do salão é: d = + 5 (Pitágoras) d = + 5 d = 69 d = 7 m = 700 cm Como cada bandeirinha ocupa 0 cm, então 700 : 0 = 85 Como são duas diagonais, 85 x = 70 bandeirinhas. QUESTÃO 0 Em um desenho de um campo de futebol, cada 5 cm representa 0 m, na realidade. A escala usada é: Se cada 5 cm representa 0 m 5 cm : 0 m = 5 cm : 000 cm = : 00 QUESTÃO 05 Um artesão montou um mosaico de,0 m de altura, composto por três placas quadradas idênticas. Sabendo que ele cobra R$ 500,00 o metro quadrado de mão de obra, o valor que ele recebeu por esse trabalho foi:,0 m (0,0) Cada diagonal do quadrado é:,0 : = 0,0 m logo. (área dos quadrados) =. 0,6 m =. 0,08 = 0, m Como cada metro quadrado custa 500, , = 0 Ele recebeu R$ 0,00.

3 QUESTÃO 06 Supondo que a área média ocupada por uma pessoa em um comício seja de 500 cm, quantas pessoas poderão se reunir em uma praça retangular que mede 50 metros de comprimento por 50 m de largura? A área da praça é 50 m x 50 m = 7500 m Cada pessoa ocupa 500 cm = 0,5 m 7500 : 0,5 = 0000 pessoas QUESTÃO 07 Veja ao lado as medidas de um terreno pentagonal. Se o metro quadrado do terreno custa R$ 0,00, o preço do terreno é: A hipotenusa do triângulo retângulo é: x = x = Então a área pedida é: A = A triângulo + A trapézio x = 500 x = 50 m 0. 0 (0 + 50). 0 A = + = = 950 m Como cada metro custa 0,00 então 950 x 0 = Resp.: o preço do terreno é R$ 58500,00 0 m 0 m 0 m 0 m QUESTÃO 08 Considere o poliedro ao lado. A planificação do sólido tem como representação: A peça planificada corresponde a: triângulos e 5 quadrados.

4 QUESTÃO 09 Numa publicação científica de 985, foi divulgada a descoberta de uma molécula tridimensional de carbono, na qual os átomos ocupam os vértices de um poliedro convexo cujas faces são pentágonos e 0 hexágonos regulares. Em homenagem ao arquiteto norte-americano Buckminster Fuller, a molécula foi denominada FULERENO. O número de átomos de carbono dessa molécula é: Os átomos ocupam o lugar dos vértices F = 0 + = A = = = 90 Como o poliedro é convexo F + V = A + + V = 90 + V = 60 QUESTÃO 0 Um geólogo encontrou, numa de suas explorações, um cristal de rocha no formato de um poliedro, que satisfaz a relação de EULER, com 60 faces triangulares. O número de vértices desse cristal é: F = 60 Como todas são triangulares: 60. A = = 90 F + V = A V = 90 + V = QUESTÃO F G Considere o cubo ao lado. Verifique qual das afirmações é verdadeira, relativa a posição das retas: A única correta é a que diz: AD e CG são reversas, pois AD está no plano AEFD e CG está no plano BHCG e portanto não tem ponto comum. E A D H B C

5 QUESTÃO Uma formiga resolveu andar de um vértice a outro do prisma reto de bases triangulares ABC e DEG, seguindo um trajeto especial. Ela partiu do vértice G, percorreu toda a a- resta perpendicular à base ABC, para em seguida caminhar toda a diagonal da face ADGC, e finalmente, completou seu passeio percorrendo a aresta reversa a CG. D G E A formiga chegou ao vértice: C CG é perpendicular a ABC, CD é diagonal da face ACDG, DE é reversa com CG então ela chegou ao vértice E. D G E A B C A B QUESTÃO Uma indústria de embalagens produz caixas de papelão (sem abas) em forma de paralelepípedo retângulo de dimensões 0 cm, 0 cm e 5 cm. Calcule quantos metros quadrados de papelão são necessários para fazer a planificação de uma dessas caixas. A planificação corresponde a área total do paralelepípedo S T = ( ) S T = ( ) S T =. 650 = 00 cm = = 0, m QUESTÃO Uma amostra de metal é mergulhada em um tanque de água, retangular, cuja base mede 5 cm por 0 cm. O nível da água se eleva 0,5 cm. Então o volume da peça de metal é: O volume da peça de metal corresponde ao volume do paralelepípedo de dimensões 5 cm x 0 cm x 0,5 cm. V = 5 x 0 x 0,5 = 05 cm

6 QUESTÃO 5 Enche-se com água um recipiente cúbico de metal cuja aresta mede 0 cm. Para isso, usa-se um balde de 600 cm. Então o número de baldes necessários para encher o recipiente é: O volume do recipiente cúbico é: V = 0 = = cm Cada balde tem o volume de 600 cm Logo o número de baldes será o quociente : 600 = 80 baldes QUESTÃO 6 Deseja-se cimentar um quintal quadrado, com lados medindo 8 m, com cm de espessura de massa de cimento. Então o volume necessário para revestir essa área é: A camada de cimento terá a forma de um paralelepípedo retângulo de base quadrada de lado 8 m e altura cm (= 0,0 m) V = 8 x 8 x 0,0 = 6 x 0,0 =,56 m QUESTÃO 7 Uma editora pretende despachar um lote de livros, agrupados em 00 pacotes de 0 cm x 0 cm x 0 cm. A transportadora acondicionará esses pacotes em caixas com formato de bloco retangular de 0 cm x 0 cm x 60 cm. A quantidade mínima necessária de caixas para esse envio é: Cada pacote terá de volume: V = 0 x 0 x 0 V = 000 cm Cada caixa terá capacidade de: V CAIXA = 0 X 0 X 60 = cm Cada caixa terá capacidade para 8 pacotes. (96000 : 000) Como são 00 pacotes: pacotes de 8 + caixas Logo caixas.

7 QUESTÃO 8 A base do cesto reto da figura é um quadrado de lado 5 cm. Se a parte lateral externa e o fundo externo do cesto devem ser forradas com um tecido que é vendido com 50 cm de largura, o menor comprimento de tecido necessário para a forração, é: 50 cm Área do quadrado: 5 = 65 cm Área lateral: = 50 x = 5000 cm Área a ser forrada: = 565 cm Logo 565 : 50 =,5 m 50 cm cm QUESTÃO 9 Determine a capacidade, em litros, de um reservatório cúbico, sabendo que a maior vara de pesca que nele cabe inteiramente, sem envergar, tem metros de comprimento. A maior vara de pesca que cabe dentro é a do tamanho da diagonal, que vale a a = a = V = a = 8 = = 8 9 Como a resposta deve ser em litros, logo dm, m 8000 V = 9 l QUESTÃO 0 Em certa região árida prevê-se construir um açude, cuja superfície tem aproximadamente a forma de um losango, conforme a vista superior ao lado. A capacidade do açude, em litros, pode ser estimada multiplicando-se a área de sua superfície pela profundidade, lembrando que l = dm. Se a profundidade média do açude é m e ele estiver completamente cheio, aproximadamente quantas famílias, com consumo mensal de. 0 litros de água cada uma, poderiam ser atendidas em um mês? A resposta correta é: Área do açude: 800 x 00 = m Capacidade: x = 0000 m 0000 m = dm. 0 = = : 0000 = 6000 famílias 00 m 800 m

8 QUESTÃO O prefeito de uma cidade pretende colocar em frente à prefeitura um mastro com uma bandeira, que será apoiado sobre uma pirâmide quadrada, como mostra a figura ao lado. Sabendo-se que a aresta da base da pirâmide terá m, e a altura da pirâmide será de m, o volume de concreto (em m ) necessário para a construção da pirâmide será: V = V = S. B V = m. h. m m QUESTÃO Um garimpeiro encontrou um diamante bruto com a forma de um cristal octaédrico perfeito, que pesou,0 quilate, com volume 0,009 cm. A aresta desse cristal mediu: V OCTAEDRO =. V PIRÂMIDE =. l. h = 9. 0 (I) Vemos que: l = l. SB + h h. h l = l l h l = l Substituindo em (I) h = l.. l l. l = 7. 0 = 9. 0 l = 0,07 l = 0, cm.

9 QUESTÃO m. Deseja-se fazer um molde dessa pirâmide usan- Um tetraedro regular tem área da base igual a do papelão. A área desse molde é: A tetraedro regular é moldado por triângulos equiláteros. Logo se a área da base é m a área total é m (pois são faces iguais) QUESTÃO Uma folha de papel colorido, com a forma de um quadrado de 0 cm de lado, será usado para cobrir todas as faces e a base de uma pirâmide quadrangular regular com altura de cm e apótema da base medindo 5 cm. Após ter concluído essa tarefa, o que sobrará do papel, em cm, é: 0 m Calculando o apótema da pirâmide com os dados fornecidos A = + 5 A área do papel é 0 = 00 cm Logo = 0 5 A Sobra 0 cm 0 A = + 5 A = cm 0. S L =. =. 65 = 60cm S B = 0 = 00 cm S T = S L + S B = = 60 cm

10 QUESTÃO 5 A razão entre a área da base de uma pirâmide regular de base quadrada e a área de uma das faces é. Sabendo que o volume da pirâmide é de m, temos que a altura da pirâmide, em metros, é: h A = a a A a a S S B = F a = a. A a = a. A a = A a a = + h h h = a = a a a h = a = h Logo: V = S = = B. a. h h.. 9 = h h = 7 h = m. h. h

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II 1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces Prismas A reunião dos infinitos segmentos, paralelos a s, que têm um de seus extremos no polígono ABCDEF contido em e outro extremo pertencente ao plano, constitui um sólido geométrico chamado prisma.

Leia mais

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 A figura ilustra a planificação da superfície lateral de um cilindro reto de 10 metros de altura. Considere π = 3,14. Qual o valor da área total desse cilindro, em metros quadrados?

Leia mais

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ CP/URJ ª SÉRI DO NSINO MÉDIO PROF. ILYDIO SÁ 1 LUNO () : Nº GOMTRI SPCIL PRISMS XRCÍCIOS 01) Qual o volume de um cubo de área 54 cm? 0) diagonal de uma face de um cubo tem medida 5 cm. Qual a área do cubo?

Leia mais

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma Unidade 9 - Prisma Introdução Definição de um prisma Denominação de um prisma Prisma regular Área de um prisma Volume de um prisma Introdução Após a abordagem genérica de poliedros, destacaremos alguns

Leia mais

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio Escola da Imaculada Estudo da Pirâmide Aluno (a): Professora: Jucélia 2º ano ensino médio Estudo da Pirâmide 1- Definição As pirâmides são poliedros cuja base é uma região poligonal e as faces laterais

Leia mais

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem.

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. TRIDIMENSIONALIDADE O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. As formas tridimensionais são aquelas que têm

Leia mais

Volumes parte 02. Isabelle Araujo

Volumes parte 02. Isabelle Araujo olumes parte 02 Isabelle Araujo olume da pirâmide O princípio de Cavalieri afirma que: Pirâmides com áreas das bases iguais e com mesma altura têm volumes iguais. A fórmula para determinar o volume de

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual

Leia mais

Treino Matemática Planificação de Sólidos e Trigonometria Básica

Treino Matemática Planificação de Sólidos e Trigonometria Básica 1.Observe o prisma hexagonal regular ilustrado a seguir: Dentre as alternativas a seguir, a que representa uma planificação para esse sólido é.ao fazer um molde de um copo, em cartolina, na forma de cilindro

Leia mais

APOSTILA 2015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO 2º ANO - ENSINO MÉDIO - 2015 1

APOSTILA 2015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO 2º ANO - ENSINO MÉDIO - 2015 1 APOSTILA 015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO º ANO - ENSINO MÉDIO - 015 1 Sumário 1.Geometria Espacial...4 1.1 Definições básicas da Geometria Espacial...4 1. Posições de

Leia mais

PRISMAS Prisma é um poliedro com duas bases paralelas formadas por polígonos iguais e faces laterais que são paralelogramos.

PRISMAS Prisma é um poliedro com duas bases paralelas formadas por polígonos iguais e faces laterais que são paralelogramos. GEOMETRIA ESPACIAL Geometria Espacial é o estudo da geometria no espaço tridimensional (as 3 dimensões são: largura, comprimento e profundidade). Essas figuras recebem o nome de sólidos geométricos ou

Leia mais

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo

Leia mais

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir Sólidos Geométricos As figuras geométricas espaciais também recebem o nome de sólidos geométricos, que são divididos em: poliedros e corpos redondos. Vamos abordar as definições e propriedades dos poliedros.

Leia mais

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m.

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m. ÁREAS DE FIGURAS PLANAS RETÂNGULO PARALELOGRAMO Exemplo: Calcule a área de um paralelogramo que tem,4 cmdebasee1,3cmdealtura. Resposta: A= B h A=,4x1,3 A=3,1 cm² 01. Calcule a área do paralelogramo, sabendo-se

Leia mais

Lista de Exercícios de Recuperação de MATEMÁTICA 2

Lista de Exercícios de Recuperação de MATEMÁTICA 2 Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM 1) Dê as equações das elipses desenhadas a seguir: a.) 6 b.) -8 8-6 ) Determinar

Leia mais

MATEMÁTICA. 1. A figura 1 representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura 2.

MATEMÁTICA. 1. A figura 1 representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura 2. MATEMÁTICA Prof. Favalessa. A figura representa um prisma obtido após a secção do paralelepípedo reto-retângulo ADFCGJLI representado na figura. a) Sendo que AB = BC = DE = EF e HI = KL = JL = JG = AG

Leia mais

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof.

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof. COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II Notas de aula de Matemática 3º ano/ensino Médio Prof. Andrezinho NOÇÕES DE GEOMETRIA ESPACIAL Notas de aula de Matemática Prof. André

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.

MATEMÁTICA - 3ª ETAPA/2015. Aluno: Nº. 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m. MATEMÁTICA - ª ETAPA/015 Ensino Fundamental Ano: 8º Professora: Thaís Sadala Turma: Atividade: Estude Mais 10 Data: Aluno: Nº 1) Calcule o valor de x, sabendo que o perímetro do quadrilátero é de 8,6 m.,4

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

6º ANO LISTA 1 medidas de área AV 2 3º Bim. Escola adventista de Planaltina. Professor: Celmo Xavier. Aluno: Medidas de Área

6º ANO LISTA 1 medidas de área AV 2 3º Bim. Escola adventista de Planaltina. Professor: Celmo Xavier. Aluno: Medidas de Área 6º ANO LISTA 1 medidas de área AV 2 3º Bim. Escola adventista de Planaltina Professor: Celmo Xavier. Aluno: Medidas de Área Transformando 1m² (metro quadrado) em cm² (centímetro quadrado) 1º passo: transformar

Leia mais

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI 01.: (Acafe SC) Num paralelepípedo reto, as arestas da base medem 8 dm e 6dm, e a altura mede 4dm. Calcule a área da figura determinada pela diagonal do paralelepípedo com a diagonal da base e a aresta

Leia mais

GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011

GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011 GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2 Dirce Uesu Pesco Geometria Espacial 08/11/2011 Definição : Considere dois planos paralelos α e β e um segmento de reta PQ, cuja reta suporte r intercepta o plano

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

Sólidos geométricos (Revisões)

Sólidos geométricos (Revisões) Curso de Educação e Formação Assistente Administrativo DISCIPLINA: Matemática Aplicada FICHA DE TRABALHO Nº 15 MÓDULO: 8 TURMA: A1/A2 DATA: 2006/2007 Sólidos geométricos (Revisões) Já conhecemos os nomes

Leia mais

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13

Cilindro. www.nsaulasparticulares.com.br Página 1 de 13 Cilindro 1. (Ueg 01) Uma coluna de sustentação de determinada ponte é um cilindro circular reto. Sabendo-se que na maquete que representa essa ponte, construída na escala 1:100, a base da coluna possui

Leia mais

Bolsistas: Karla Kamila Maia dos Santos, Edwin Castro Fernandes dos Santos e Lucas Vinicius de Lucena. Supervisor: Jonimar Pereira de Araújo

Bolsistas: Karla Kamila Maia dos Santos, Edwin Castro Fernandes dos Santos e Lucas Vinicius de Lucena. Supervisor: Jonimar Pereira de Araújo UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE PROGRAMA INSTITUCIONAL DE BOLSA DE INICIAÇÃO À DOCÊNCIA (PIBID) ESCOLA ESTADUAL PROFESSOR ANTÔNIO ALADIM DE ARAÚJO EEAA Bolsistas: Karla Kamila Maia dos Santos,

Leia mais

Atividade extra. Exercício 1. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 O Tangram é um quebra cabeças com 7 peças de diferentes tamanhos, e com elas podemos montar mais de 1400 figuras, como exemplos, temos as figuras abaixo. Fonte: fundacaobunge.org.br

Leia mais

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E.

(M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M120397A8) Observe a reta numérica abaixo. O número 0,20 está representado pelo ponto A) A. B) B. C) C. D) D. E) E. (M050280A8) A professora Clotilde pediu que seus alunos escrevessem um número que representasse

Leia mais

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1 ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1.Área da região retangular temos: É o paralelogramo que possui os quatro ângulos internos retos, num retângulo, A = B. P = B + d = B + Exemplo: Num retângulo, uma

Leia mais

Geometria Área de Quadriláteros

Geometria Área de Quadriláteros ENEM Geometria Área de Quadriláteros Wallace Alves da Silva DICAS MATEMÁTICAS [Escolha a data] Áreas de quadriláteros Olá Galera, 1 QUADRILÁTEROS Quadrilátero é um polígono com quatro lados. A soma dos

Leia mais

Volumes Exemplo1: Exemplo2:

Volumes Exemplo1: Exemplo2: Volumes Exemplo1: Esta garrafa está cheia. Ela contém 90 mililitros (90 ml) de refrigerante: Volume 90 ml Isso significa que 90 ml é a quantidade de líquido que a garrafa pode armazenar: Capacidade 90

Leia mais

Complemento para. Cód.: 0735-3ª Edição. Apostila do Metrô/SP

Complemento para. Cód.: 0735-3ª Edição. Apostila do Metrô/SP Complemento - 1 Complemento para Apostila do Metrô/SP Cód.: 0735-3ª Edição Matemática 1. Equações e Sistemas de Duas Equações com Duas Incógnitas do Primeiro Grau...03 2. Unidades de Medidas...10 3. Perímetros

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 51 PRISMA

MATEMÁTICA - 3 o ANO MÓDULO 51 PRISMA MATEMÁTICA - 3 o ANO MÓDULO 51 PRISMA F G J H I A E D B C C C C B B B A B A 10 cm Base 10 10 10 20 cm planificação Base a a d = 6 cm a a D = 8 cm c a b c b b. c a. c b. c a. c c a b b a b a b c d D a a

Leia mais

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1. A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade. O quadrilátero

Leia mais

Problemas de volumes

Problemas de volumes Problemas de volumes A UUL AL A Nesta aula, vamos resolver problemas de volumes. Com isso, teremos oportunidade de recordar os principais sólidos: o prisma, o cilindro, a pirâmide, o cone e a esfera. Introdução

Leia mais

b) 2. c) 4. d) 8. e) 3 π. 5. (Ita 2014) Uma pirâmide de altura h= 1cm e

b) 2. c) 4. d) 8. e) 3 π. 5. (Ita 2014) Uma pirâmide de altura h= 1cm e Geometria Espacial 1. (Uerj 015) Um funil, com a forma de cone circular reto, é utilizado na passagem de óleo para um recipiente com a forma de cilindro circular reto. O funil e o recipiente possuem a

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

Poliedros, Prismas e Cilindros

Poliedros, Prismas e Cilindros 1. (G1 - ifsp 2013) A figura mostra uma peça feita em 1587 por Stefano Buonsignori, e está exposta no Museu Galileo, em Florença, na Itália. Esse instrumento tem a forma de um dodecaedro regular e, em

Leia mais

PROEJA Matemática V Geometria dos Sólidos

PROEJA Matemática V Geometria dos Sólidos Instituto Federal de Educação, Ciência e Tecnologia Rio Grande do Sul Campus Rio Grande PROEJA Matemática V Geometria dos Sólidos 011/ Profª Debora Bastos Maat teemáát ticcaa V Emeennt taa Geometria dos

Leia mais

Exercícios extras Matemática Aplicada Prismas

Exercícios extras Matemática Aplicada Prismas SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: 2ª TURMA(S):

Leia mais

Ensino Fundamental, 7º Ano Formas geométricas espaciais: prisma e pirâmide - conceitos iniciais

Ensino Fundamental, 7º Ano Formas geométricas espaciais: prisma e pirâmide - conceitos iniciais Ensino Fundamental, 7º Ano Formas geométricas espaciais: prisma e pirâmide - conceitos iniciais Você já deve ter observado embalagens e objetos que têm relação com figuras chamadas sólidos geométricos.

Leia mais

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras Colégio Universitas06 Data: 7 Mai 2013 Professor(a): Adriana Santos Aluno(a): Nota: nº: Exercícios extras 1 Escreva se cada objeto desenhado dá ideia de sólido geométrico, região plana ou contorno. Em

Leia mais

MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA

MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA 1 MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA ===================================================== 1) As dimensões de um paralelepípedo retângulo são dadas por números inteiros em P.A. de razão

Leia mais

GEOMETRIA ESPACIAL - PRISMAS

GEOMETRIA ESPACIAL - PRISMAS GEOMETRIA ESPACIAL - PRISMAS Questão 01 - (FM Petrópolis RJ) A Figura a seguir ilustra um recipiente aberto com a forma de um prisma hexagonal regular reto. Em seu interior, há líquido até a altura de

Leia mais

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO

Leia mais

Lista de exercícios 05. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 05. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 05 Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 29/08/2015. A lista deverá apresentar

Leia mais

Geometria Métrica Espacial. Geometria Métrica Espacial

Geometria Métrica Espacial. Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica

Leia mais

Professores: Luiz Davi Mazzei e Marcus Vinicius de Azevedo Basso. Acadêmicos: Andressa dos Santos, Diego Lima e Jean Rodrigo Teixeira.

Professores: Luiz Davi Mazzei e Marcus Vinicius de Azevedo Basso. Acadêmicos: Andressa dos Santos, Diego Lima e Jean Rodrigo Teixeira. UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL COLÉGIO DE APLICAÇÃO - INSTITUTO DE MATEMÁTICA OFICINAS DE ENSINO-APRENDIZAGEM DE MATEMÁTICA LABORATÓRIO DE PRÁTICA DE ENSINO EM MATEMÁTICA Professores: Luiz Davi

Leia mais

Matemática - 3C12/14/15/16/26 Lista 2

Matemática - 3C12/14/15/16/26 Lista 2 Matemática - 3C12/14/15/16/26 Lista 2 Poliedros Convexos 1) Determine qual é o poliedro convexo e fechado que tem 6 vértices e 12 arestas. 2) Determine o nº de vértices de dodecaedro convexo que tem 20

Leia mais

Questão 23. Questão 21. Questão 22. Questão 24. alternativa D. alternativa A. alternativa C

Questão 23. Questão 21. Questão 22. Questão 24. alternativa D. alternativa A. alternativa C Questão 1 Um reservatório, com 40 litros de capacidade, já contém 0 litros de uma mistura gasolina/álcool com 18% de álcool. Deseja-se completar o tanque com uma nova mistura gasolina/álcool de modo que

Leia mais

Prof. Jorge. Estudo de Polígonos

Prof. Jorge. Estudo de Polígonos Estudo de Polígonos Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ RESOLUÇÃO VLIÇÃO E MTEMÁTI o NO O ENSINO MÉIO T: 05/0/1 PROFESSOR: MLTEZ QUESTÃO 01 São dados os triângulos retângulos E e TE conforme a figura ao lado; T se = E = E = 60 cm, então: E Os triângulos e TE

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

ESCOLA SECUNDÁRIA/3 DE FELGUEIRAS Matemática para a Vida EFA Nível B3. Tema de vida: Armando Jorge Cunha Página 1

ESCOLA SECUNDÁRIA/3 DE FELGUEIRAS Matemática para a Vida EFA Nível B3. Tema de vida: Armando Jorge Cunha Página 1 Tema de vida: Nome do Formando: Data: / / Armando Jorge Cunha Página 1 EXERCÍCIOS: 1. Calcule a área dos quadrados e rectângulos representados na figura: 2. As figuras seguintes representam terrenos agrícolas.

Leia mais

Caderno de Respostas

Caderno de Respostas Caderno de Respostas DESENHO TÉCNICO BÁSICO Prof. Dr.Roberto Alcarria do Nascimento Ms. Luís Renato do Nascimento CAPÍTULO 1: ELEMENTOS BÁSICOS DO DESENHO TÉCNICO 1. A figura ilustra um cubo ao lado de

Leia mais

01- Assunto: Matrizes. Dadas as matrizes A = e B =, calcule AB + A t.

01- Assunto: Matrizes. Dadas as matrizes A = e B =, calcule AB + A t. EXERCÍCIOS COMPLEMENTARES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================== - Assunto: Matrizes 5 Dadas as matrizes A

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

Questões Complementares de Geometria

Questões Complementares de Geometria Questões Complementares de Geometria Professores Eustácio e José Ocimar Resolução comentada Outubro de 009 Questão 1_Enem 000 Um marceneiro deseja construir uma escada trapezoidal com 5 degraus, de forma

Leia mais

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana

Matemática. Resolução das atividades complementares. M1 Geometria Métrica Plana Resolução das atividades complementares Matemática M Geometria Métrica Plana p. 0 Na figura a seguir tem-se r // s // t e y. diferença y é igual a: a) c) 6 e) b) d) 0 8 ( I) y 6 y (II) plicando a propriedade

Leia mais

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é

ÁREAS. 01 (UFMG) Um terreno tem a forma da figura abaixo. Se AB AD, BC CD, AB = 10 m, BC = 70 m, CD = 40 m e AD = 80 m, então a área do terreno é ÁRES 01 (UFMG) Um terreno tem a forma da figura abaixo. Se,, = 10 m, = 70 m, = 40 m e = 80 m, então a área do terreno é a) 1 500 m b) 1 600 m c) 1 700 m d) 1 800 m 0 (FMMG) - Observe a figura. Nessa figura,

Leia mais

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Questão 6 Vestibular 011 Observe a representação do trecho de um circuito elétrico entre

Leia mais

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF

Pirâmide. P e R pertencem, respectivamente, às faces ABCD e EFGH; Q pertence à aresta EH; T é baricentro do triângulo ERQ e pertence à diagonal EG RF Pirâmide 1. (Unifesp 01) Na figura, ABCDEFGH é um paralelepípedo reto-retângulo, e PQRE é um tetraedro regular de lado 6cm, conforme indica a figura. Sabe-se ainda que: P e R pertencem, respectivamente,

Leia mais

MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma:

MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO. Aluno(a): Número: Turma: Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1º Bimestre/01 Aluno(a): Número: Turma: 1) Dado um paralelepípedo

Leia mais

Geometria Espacial e Plana

Geometria Espacial e Plana 117 Geometria Espacial e Plana a² = b² + c² 118 1) Poliedros convexos Geometria Espacial Observe os sólidos abaixo cujas faces são polígonos convexos. Podemos observar que: a) Cada aresta é comum a duas

Leia mais

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA

PROCESSO DE SELEÇÃO DE CURSOS TÉCNICOS APRENDIZAGEM RESOLUÇÃO DA PROVA DE MATEMÁTICA RESOLUÇÃO DA PROVA DE MATEMÁTICA 0) O tanque de combustível do carro de João tem capacidade de 40 litros. Sabemos que o consumo do carro é de litro para cada 0 quilômetros rodados, se João dirigir a uma

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano atemática FUNDAENTAL Atividades complementares Este material é um complemento da obra atemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

Troncos de Cone e de Pirâmide

Troncos de Cone e de Pirâmide Troncos de Cone e de Pirâmide 1. (Uerj 015) Um recipiente com a forma de um cone circular reto de eixo vertical recebe água na razão constante de 1 cm s. A altura do cone mede 4 cm, e o raio de sua base

Leia mais

Áreas e Aplicações em Geometria

Áreas e Aplicações em Geometria 1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das

Leia mais

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO

ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ESCOLA ESTADUAL DR JOSÉ MARQUES DE OLIVEIRA PLANO DE ESTUDOS INDEPENDENTES DE RECUPERAÇÃO 3º ANO ANO 2015 PROFESSOR (a) DISCIPLINA Bruno Rezende Pereira Matemática ALUNO (a) SÉRIE 3º Ano do Ensino Médio

Leia mais

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida.

Matemática. Atividades. complementares. 9-º ano. Este material é um complemento da obra Matemática 9. uso escolar. Venda proibida. 9 ENSINO 9-º ano Matemática FUNDAMENTAL Atividades complementares Este material é um complemento da obra Matemática 9 Para Viver Juntos. Reprodução permitida somente para uso escolar. Venda proibida. Samuel

Leia mais

Matemática Geometria Espacial. Professor Bacon

Matemática Geometria Espacial. Professor Bacon Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA

CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA APÊNDICE A - CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA PONTIFÍCIA UNIVERSIDADE CATÓLICA DE MINAS GERAIS MESTRADO EM ENSINO DE CIÊNCIAS E MATEMÁTICA CADERNO DE OFICINA COM ATIVIDADES DE GEOMETRIA AUTORES:

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

Algoritmos com Estrutura Sequencial

Algoritmos com Estrutura Sequencial Algoritmos com Estrutura Sequencial 1. A partir da diagonal de um quadrado, deseja-se elaborar um algoritmo que informe o comprimento do lado do quadrado. Construa um algoritmo que leia o valor da diagonal

Leia mais

Abordagem de geometria no ensino médio partindo de poliedros

Abordagem de geometria no ensino médio partindo de poliedros Abordagem de geometria no ensino médio partindo de poliedros José Luiz Magalhães de Freitas INMA/UFMS e-mail: joseluizufms2@gmail.com Marilena Bittar INMA/UFMS e-mail: marilenabittar@gmail.com O objetivo

Leia mais

m dela vale R$ 500,00,

m dela vale R$ 500,00, CLICK PROFESSOR Professor: Júnior ALUNO(A): Nº TURMA: TURNO: DATA: / / COLÉGIO: 1. Calcule: Se um carro mede cerca de 4 m, quantos carros, aproximadamente, há em uma rodovia com 3 pistas e que tem 6 km

Leia mais

Prismas e Cilindros. Módulo 3. Para início de conversa... Matemática e suas Tecnologias Matemática 87

Prismas e Cilindros. Módulo 3. Para início de conversa... Matemática e suas Tecnologias Matemática 87 Módulo 3 Prismas e Cilindros Para início de conversa... Figura 1 De cima para baixo e da esquerda para a direita: caixa de presente, comida japonesa, rolo de feno, dados, prédio triangular em Berlim, Alemanha

Leia mais

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento.

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. MEDIDAS Comprimento O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. Existem várias unidades que podem ser utilizadas

Leia mais

Exercícios de Matemática Prismas

Exercícios de Matemática Prismas Exercícios de Matemática Prismas 5. (Unesp) Sendo ABCDA'B'C'D' um cubo, calcular o seno do ângulo. 1. (Mackenzie) O lado, a diagonal de uma face e o volume de um cubo são dados, nessa ordem, por três números

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br Breve Introdução Histórica aos Sólidos Platônicos

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br Breve Introdução Histórica aos Sólidos Platônicos Breve Introdução Histórica aos Sólidos Platônicos Cerca de 600 A.C. nas colônias gregas da Jônia, na costa oeste da Turquia, surgem dois dos principais matemáticos gregos: Tales de Mileto e Pitágoras de

Leia mais

QUESTÕES ÁREAS DE POLÍGONOS

QUESTÕES ÁREAS DE POLÍGONOS QUESTÕES ÁREAS DE POLÍGONOS 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a),0 m. b),0

Leia mais

Geometria Espacial: Sólidos Geométricos

Geometria Espacial: Sólidos Geométricos Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.

Leia mais

GEOMETRIA ESPACIAL. Escola SESC de Ensino Médio PRISMAS/CILINDROS MÓDULO VIII. Prismas e cilindros. 01. O volume de uma caixa cúbica é 216 litros.

GEOMETRIA ESPACIAL. Escola SESC de Ensino Médio PRISMAS/CILINDROS MÓDULO VIII. Prismas e cilindros. 01. O volume de uma caixa cúbica é 216 litros. GEOMETRIA ESPACIAL PRISMAS/CILINDROS PROFESSORES: CONES/TRONCOS EDU/VICENTE ESFERAS TURMA: A MELHOR 2302 MÓDULO VIII Prismas e cilindros 01. O volume de uma caixa cúbica é 216 litros. A medida de sua diagonal,

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 50 POLIEDROS

MATEMÁTICA - 3 o ANO MÓDULO 50 POLIEDROS MATEMÁTICA - 3 o ANO MÓDULO 50 POLIEDROS Tetraedro regular Hexaedro regular Octaedro regular Dodecaedro regular Icosaedro regular B C A F D G E H Como pode cair no enem O poliedro da figura (uma invenção

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido

Leia mais

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 2013 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO DAS QUESTÕES DE MATEMÁTICA DO PROCESSO SELETIVO 03 EDUCAÇÃO A DISTÂNCIA DA UFSCAR POR PROFA. MARIA ANTÔNIA C. GOUVEIA 7. Uma padaria faz uma torta salgada de formato retangular de 63cm de largura

Leia mais

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes.

. Para que essa soma seja 100, devemos ter 56 + 2x donde 2x = 44 e então x = 22, como antes. OBMEP 008 Nível 3 1 QUESTÃO 1 Carlos começou a trabalhar com 41-15=6 anos. Se y representa o número total de anos que ele trabalhará até se aposentar, então sua idade ao se aposentar será 6+y, e portanto

Leia mais

(Unifor CE/1999/Julho) Considere caixas iguais com a forma de um prisma retangular como a representada na figura.

(Unifor CE/1999/Julho) Considere caixas iguais com a forma de um prisma retangular como a representada na figura. (UEPB PB/005) Para se fabricar uma caixa de sabão em pó com 5 cm de altura, 16 cm de largura e 5 cm comprimento serão necessários quantos cm de papelão? a) 1 10 b) 1 100 c) 605 d) 550 e) 1 500 (Unifor

Leia mais

casa. Será uma casa simples, situada em terreno plano, com sala, dois quartos, cozinha, banheiro e área de serviço.

casa. Será uma casa simples, situada em terreno plano, com sala, dois quartos, cozinha, banheiro e área de serviço. A UUL AL A A casa Nesta aula vamos examinar a planta de uma casa. Será uma casa simples, situada em terreno plano, com, dois quartos, cozinha, banheiro e área de serviço. Introdução terreno 20 m rua 30

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Insper 01) De cada vértice de um prisma hexagonal regular foi retirado um tetraedro, como exemplificado para um dos vértices do prisma desenhado a seguir. O plano que definiu cada corte feito para

Leia mais

Prismas e cilindros. Módulo 3 Unidade 23. Para início de conversa... Matemática e suas Tecnologias Matemática

Prismas e cilindros. Módulo 3 Unidade 23. Para início de conversa... Matemática e suas Tecnologias Matemática Módulo 3 Unidade 23 Prismas e cilindros Para início de conversa... Figura 1: De cima para baixo e da esquerda para a direita: caixa de presente, comida japonesa, rolo de feno, dados, prédio triangular

Leia mais