GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011

Save this PDF as:
Tamanho: px
Começar a partir da página:

Download "GEOMETRIA BÁSICA 2011-2 GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 08/11/2011"

Transcrição

1 GEOMETRIA BÁSICA GGM00161-TURMA M2 Dirce Uesu Pesco Geometria Espacial 08/11/2011

2 Definição : Considere dois planos paralelos α e β e um segmento de reta PQ, cuja reta suporte r intercepta o plano α.

3 Definição : Considere dois planos paralelos α e β e um segmento de reta PQ, cuja reta suporte r intercepta o plano α.

4 Definição : PRISMA Considere dois planos paralelos α e β e um segmento de reta PQ, cuja reta suporte r intercepta o plano α. Seja P = ABCD...MN o polígono convexo (região poligonal convexa) contido em α.

5 Definição : PRISMA Considere dois planos paralelos α e β e um segmento de reta PQ, cuja reta suporte r intercepta o plano α. Seja P = ABCD...MN o polígono convexo (região poligonal convexa) contido em α.

6 Definição : PRISMA Considere dois planos paralelos α e β e um segmento de reta PQ, cuja reta suporte r intercepta o plano α. Seja P = ABCD...MN o polígono convexo (região poligonal convexa) contido em α. Chama-se prisma à reunião de todos os segmentos congruentes e paralelos a, com uma extremidade nos pontos do polígono PQ

7 Definição : PRISMA Considere dois planos paralelos α e β e um segmento de reta PQ, cuja reta suporte r intercepta o plano α. Seja P = ABCD...MN o polígono convexo (região poligonal convexa) contido em α. Chama-se prisma à reunião de todos os segmentos congruentes e paralelos a PQ, com uma extremidade nos pontos do polígono e situados num mesmo sub-espaço dos determinados por α.

8 Ou ainda, prisma convexo limitado ou prisma convexo definido ou prisma convexo é a reunião da parte do prisma convexo ilimitado, compreendida entre os planos de duas secções paralelas e distintas.

9 Elementos do prisma : - 2 bases congruentes, -

10 Elementos do prisma : - 2 bases congruentes, - n faces laterais (paralelogramo) -

11 Elementos do prisma : - 2 bases congruentes, - n faces laterais (paralelogramo) - (n+2) faces,

12 Elementos do prisma : - 2 bases congruentes, - n faces laterais (paralelogramo) - (n+2) faces, - n arestas laterais,

13 Elementos do prisma : - 2 bases congruentes, - n faces laterais (paralelogramo) - (n+2) faces, - n arestas laterais, - 3n arestas,

14 Elementos do prisma : - 2 bases congruentes, - n faces laterais (paralelogramo) - (n+2) faces, - n arestas laterais, - 3n arestas, - 2n vértices.

15 Elementos do prisma : - 2 bases congruentes, - n faces laterais (paralelogramo) - (n+2) faces, - n arestas laterais, - 3n arestas, - 2n vértices. No exemplo da figura ao lado:

16 Elementos do prisma : - 2 bases congruentes, - n faces laterais (paralelogramo) - (n+2) faces, - n arestas laterais, - 3n arestas, - 2n vértices. No exemplo da figura ao lado: Bases congruentes são os hexágonos, 6 faces laterais, 8 faces, 6 arestas laterais, 18 arestas e 12vértices.

17 Altura de um prisma : PRISMA é a distância h entre os planos das bases.

18 Superfícies: PRISMA - Superfície lateral é a reunião das faces laterais. - Superfície total é a reunião da superfície lateral com as bases. Área lateral Área total A l A t

19 Classificação: - Prisma reto arestas laterais são perpendiculares aos planos das bases. Suas faces laterais são retângulos - Prisma obliquo arestas laterais são obliquas aos planos das bases. - Prisma regular é um prisma reto cujas bases são polígonos regulares.

20 Natureza de um prisma: PRISMA Um prisma será triangular, quadrangular, pentagonal, etc,... conforma a base for um triângulo, um quadrilátero, um pentágono, etc. Exemplo: Qual é a natureza dos seguintes prismas:

21 Natureza de um prisma: PRISMA Um prisma será triangular, quadrangular, pentagonal, etc,... conforma a base for um triângulo, um quadrilátero, um pentágono, etc. Exemplo: Qual é a natureza dos seguintes prismas: hexagonal hexagonal pentagonal

22 Exercício: Ache a natureza de um prisma, sabendo que ele possui: (faça um desenho para cada item) a) 7 faces; b) 8 faces; c) 15 arestas; d) 24 arestas;

23 Exercício: Ache a natureza de um prisma, sabendo que ele possui: (faça um desenho para cada item) a) 7 faces; n+2 = 7, b) 8 faces; c) 15 arestas; d) 24 arestas;

24 Exercício: Ache a natureza de um prisma, sabendo que ele possui: (faça um desenho para cada item) a) 7 faces; n+2 = 7, então a base possui 5 arestas e portanto é prisma pentagonal b) 8 faces; c) 15 arestas; d) 24 arestas;

25 Exercício: Ache a natureza de um prisma, sabendo que ele possui: (faça um desenho para cada item) a) 7 faces; n+2 = 7, então a base possui 5 arestas e portanto é prisma pentagonal b) 8 faces; n+2 = 8, c) 15 arestas; d) 24 arestas;

26 Exercício: Ache a natureza de um prisma, sabendo que ele possui: (faça um desenho para cada item) a) 7 faces; n+2 = 7, então a base possui 5 arestas e portanto é prisma pentagonal b) 8 faces; n+2 = 8, então a base possui 6 arestas e portanto é prisma hexagonal c) 15 arestas; d) 24 arestas;

27 Exercício: Ache a natureza de um prisma, sabendo que ele possui: (faça um desenho para cada item) a) 7 faces; n+2 = 7, então a base possui 5 arestas e portanto é prisma pentagonal b) 8 faces; n+2 = 8, então a base possui 6 arestas e portanto é prisma hexagonal c) 15 arestas; 3n = 15 d) 24 arestas;

28 Exercício: Ache a natureza de um prisma, sabendo que ele possui: (faça um desenho para cada item) a) 7 faces; n+2 = 7, então a base possui 5 arestas e portanto é prisma pentagonal b) 8 faces; n+2 = 8, então a base possui 6 arestas e portanto é prisma hexagonal c) 15 arestas; 3n = 15 pentagonal d) 24 arestas; n = 5, então a base possui 5 arestas e portanto é prisma

29 Exercício: Ache a natureza de um prisma, sabendo que ele possui: (faça um desenho para cada item) a) 7 faces; n+2 = 7, então a base possui 5 arestas e portanto é prisma pentagonal b) 8 faces; n+2 = 8, então a base possui 6 arestas e portanto é prisma hexagonal c) 15 arestas; 3n = 15 pentagonal d) 24 arestas; 3n = 24 n = 5, então a base possui 5 arestas e portanto é prisma

30 Exercício: Ache a natureza de um prisma, sabendo que ele possui: (faça um desenho para cada item) a) 7 faces; n+2 = 7, então a base possui 5 arestas e portanto é prisma pentagonal b) 8 faces; n+2 = 8, então a base possui 6 arestas e portanto é prisma hexagonal c) 15 arestas; 3n = 15 pentagonal d) 24 arestas; 3n = 24 n = 5, então a base possui 5 arestas e portanto é prisma n = 8, então a base possui 8 arestas

31 Exercício: Ache a natureza de um prisma, sabendo que ele possui: (faça um desenho para cada item) a) 7 faces; n+2 = 7, então a base possui 5 arestas e portanto é prisma pentagonal b) 8 faces; n+2 = 8, então a base possui 6 arestas e portanto é prisma hexagonal c) 15 arestas; 3n = 15 pentagonal d) 24 arestas; 3n = 24 octogonal. n = 5, então a base possui 5 arestas e portanto é prisma n = 8, então a base possui 8 arestas e portanto é prisma

32 Paralelepípedos e Romboedros

33 Paralelepípedos e Romboedros Paralelepípedo prisma cujas bases são paralelogramos.

34 Paralelepípedos e Romboedros Paralelepípedo prisma cujas bases são paralelogramos. OBLIQUO RETO RETO-RETÂNGULO

35 Paralelepípedos e Romboedros Paralelepípedo prisma cujas bases são paralelogramos. Paralelepípedo reto OBLIQUO RETO RETO-RETÂNGULO

36 Paralelepípedos e Romboedros Paralelepípedo prisma cujas bases são paralelogramos. Paralelepípedo reto prisma reto cujas bases são paralelogramos; OBLIQUO RETO RETO-RETÂNGULO

37 Paralelepípedos e Romboedros Paralelepípedo prisma cujas bases são paralelogramos. Paralelepípedo reto prisma reto cujas bases são paralelogramos; OBLIQUO RETO RETO-RETÂNGULO

38 Paralelepípedos e Romboedros Paralelepípedo prisma cujas bases são paralelogramos. Paralelepípedo reto prisma reto cujas bases são paralelogramos; Paralelepípedo reto retângulo ou paralelepípedo retângulo ou ortoedro OBLIQUO RETO RETO-RETÂNGULO

39 Paralelepípedos e Romboedros Paralelepípedo prisma cujas bases são paralelogramos. Paralelepípedo reto prisma reto cujas bases são paralelogramos; Paralelepípedo reto retângulo ou paralelepípedo retângulo ou ortoedro prisma reto cujas bases são retângulos; OBLIQUO RETO RETO-RETÂNGULO

40 Paralelepípedos e Romboedros Paralelepípedo prisma cujas bases são paralelogramos. Paralelepípedo reto prisma reto cujas bases são paralelogramos; Paralelepípedo reto retângulo ou paralelepípedo retângulo ou ortoedro prisma reto cujas bases são retângulos; OBLIQUO RETO RETO-RETÂNGULO

41 Paralelepípedos e Romboedros Paralelepípedo prisma cujas bases são paralelogramos. Sua superfície total é a reunião de seis paralelogramos. Paralelepípedo reto prisma reto cujas bases são paralelogramos; Paralelepípedo reto retângulo ou paralelepípedo retângulo ou ortoedro prisma reto cujas bases são retângulos; OBLIQUO RETO RETO-RETÂNGULO

42 Paralelepípedos e Romboedros Paralelepípedo prisma cujas bases são paralelogramos. Sua superfície total é a reunião de seis paralelogramos. Paralelepípedo reto prisma reto cujas bases são paralelogramos; Sua superfície total é a reunião de quatro retângulos com dois paralelogramos. Paralelepípedo reto retângulo ou paralelepípedo retângulo ou ortoedro prisma reto cujas bases são retângulos; OBLIQUO RETO RETO-RETÂNGULO

43 Paralelepípedos e Romboedros Paralelepípedo prisma cujas bases são paralelogramos. Sua superfície total é a reunião de seis paralelogramos. Paralelepípedo reto prisma reto cujas bases são paralelogramos; Sua superfície total é a reunião de quatro retângulos com dois paralelogramos. Paralelepípedo reto retângulo ou paralelepípedo retângulo ou ortoedro prisma reto cujas bases são retângulos; Sua superfície total é a reunião de seis retângulos. OBLIQUO RETO RETO-RETÂNGULO

44 Paralelepípedos e Romboedros Cubo - paralelepípedo retângulo cujas arestas são congruentes.

45 Paralelepípedos e Romboedros Cubo - paralelepípedo retângulo cujas arestas são congruentes. Romboedro paralelepípedo que possui as doze arestas congruentes entre si. Sua superfície total é a reunião de seis losangos. Romboedro reto paralelepípedo reto que possui as doze arestas congruentes entre si. Sua superfície total é a reunião de quatro quadrados com dois losangos(bases). Romboedro reto retângulo ou cubo romboedro reto cujas bases são quadrados. Sua superfície total é a reunião de seis quadrados. (6 losangos) (2 losangos e 4 quadrados) (6 quadrados) Romboedro Obliquo Romboedro Reto Romboedro reto-retângulo

46 Paralelepípedos e Romboedros Cubo - paralelepípedo retângulo cujas arestas são congruentes. Romboedro paralelepípedo que possui as doze arestas congruentes entre si. Sua superfície total é a reunião de seis losangos. Romboedro reto paralelepípedo reto que possui as doze arestas congruentes entre si. Sua superfície total é a reunião de quatro quadrados com dois losangos(bases). Romboedro reto retângulo ou cubo romboedro reto cujas bases são quadrados. Sua superfície total é a reunião de seis quadrados. (6 losangos) (2 losangos e 4 quadrados) (6 quadrados) Romboedro Obliquo Romboedro Reto Romboedro reto-retângulo

47 Paralelepípedos e Romboedros Cubo - paralelepípedo retângulo cujas arestas são congruentes. Romboedro paralelepípedo que possui as doze arestas congruentes entre si. Sua superfície total é a reunião de seis losangos. Romboedro reto paralelepípedo reto que possui as doze arestas congruentes entre si. Sua superfície total é a reunião de quatro quadrados com dois losangos(bases). Romboedro reto retângulo ou cubo romboedro reto cujas bases são quadrados. Sua superfície total é a reunião de seis quadrados. (6 losangos) (2 losangos e 4 quadrados) (6 quadrados) Romboedro Obliquo Romboedro Reto Romboedro reto-retângulo

48 Paralelepípedos e Romboedros Cubo - paralelepípedo retângulo cujas arestas são congruentes. Romboedro paralelepípedo que possui as doze arestas congruentes entre si. Sua superfície total é a reunião de seis losangos. Romboedro reto paralelepípedo reto que possui as doze arestas congruentes entre si. Sua superfície total é a reunião de quatro quadrados com dois losangos(bases). Romboedro reto retângulo ou cubo romboedro reto cujas bases são quadrados. Sua superfície total é a reunião de seis quadrados. (6 losangos) (2 losangos e 4 quadrados) (6 quadrados) Romboedro Obliquo Romboedro Reto Romboedro reto-retângulo

49 Paralelepípedos e Romboedros Cubo - paralelepípedo retângulo cujas arestas são congruentes. Romboedro paralelepípedo que possui as doze arestas congruentes entre si. Sua superfície total é a reunião de seis losangos. Romboedro reto paralelepípedo reto que possui as doze arestas congruentes entre si. Sua superfície total é a reunião de quatro quadrados com dois losangos(bases). Romboedro reto retângulo ou cubo romboedro reto cujas bases são quadrados. Sua superfície total é a reunião de seis quadrados. (6 losangos) (2 losangos e 4 quadrados) (6 quadrados) Romboedro Obliquo Romboedro Reto Romboedro Reto-Retângulo

50 Paralelepípedos e Romboedros Cubo - paralelepípedo retângulo cujas arestas são congruentes. Romboedro paralelepípedo que possui as doze arestas congruentes entre si. Sua superfície total é a reunião de seis losangos. Romboedro reto paralelepípedo reto que possui as doze arestas congruentes entre si. Sua superfície total é a reunião de quatro quadrados com dois losangos(bases). Romboedro reto retângulo ou cubo romboedro reto cujas bases são quadrados. Sua superfície total é a reunião de seis quadrados. (6 losangos) (2 losangos e 4 quadrados) (6 quadrados) Romboedro Obliquo Romboedro Reto Romboedro reto-retângulo

51 Diagonal e Área do Cubo Exercício: Dado um cubo de arestas a, calcule a diagonal d, e sua área total S.

52 Diagonal e Área do Cubo Exercício: Dado um cubo de arestas a, calcule a diagonal d, e sua área total S. Solução: Considere a face ABCD, quadrado de lado a, C B Por pitágoras, temos que a D a A CA d a A área do cubo de arestas a é S = a 3 2 6a 2

53 Diagonal e Área do paralelepipedo Exercício: Dado um paralelepípedo retângulo de dimensões a, b e c, calcule a diagonal, d, do paralelepípedo e sua área total S.

54 Diagonal e Área do paralelepípedo Exercício: Dado um paralelepípedo retângulo de dimensões a, b e c, calcule a diagonal, d, do paralelepípedo e sua área total S. d a 2 b 2 c 2 e S 2( ab ac bc) Razão entre Paralelepípedos Retângulos Proposição: A razão entre dois paralelepípedos retângulos de bases congruentes é igual à razão entre as alturas. Exercício: Veja demonstração no livro. Pagina 151.

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces Prismas A reunião dos infinitos segmentos, paralelos a s, que têm um de seus extremos no polígono ABCDEF contido em e outro extremo pertencente ao plano, constitui um sólido geométrico chamado prisma.

Leia mais

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma

Unidade 9 - Prisma. Introdução Definição de um prisma. Denominação de um prisma. Prisma regular Área de um prisma. Volume de um prisma Unidade 9 - Prisma Introdução Definição de um prisma Denominação de um prisma Prisma regular Área de um prisma Volume de um prisma Introdução Após a abordagem genérica de poliedros, destacaremos alguns

Leia mais

POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS

POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS http://apostilas.netsaber.com.br/ver_apostila.php?c=622 ANGELO ROBERTO BONFIETI JUNIOR - MATRÍCULA 97003133 - BM3 01-011 POLÍGONOS E FIGURAS GEOMÉTRICAS ESPACIAIS ANGELO ROBERTO BONFIETI JUNIOR - MATRÍCULA

Leia mais

MATEMÁTICA PARA CONCURSOS II

MATEMÁTICA PARA CONCURSOS II 1 MATEMÁTICA PARA CONCURSOS II Fonte: http://www.migmeg.com.br/ MÓDULO II Estudaremos neste módulo geometria espacial e volume dos principais sólidos geométricos. Mas antes de começar a aula, segue uma

Leia mais

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem.

O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. TRIDIMENSIONALIDADE O mundo à nossa volta é povoado de formas as mais variadas tanto nos elementos da natureza como nos de objetos construídos pelo homem. As formas tridimensionais são aquelas que têm

Leia mais

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir

Os Sólidos de Platão. Colégio Santa Maria Matemática III Geometria Espacial Sólidos Geométricos Prof.º Wladimir Sólidos Geométricos As figuras geométricas espaciais também recebem o nome de sólidos geométricos, que são divididos em: poliedros e corpos redondos. Vamos abordar as definições e propriedades dos poliedros.

Leia mais

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada,

QUADRILÁTEROS. Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, QUADRILÁTEROS Um quadrilátero é um polígono de quatro lados. Pode ser dito que é porção do plano limitada por uma poligonal fechada, A B C Lados: AB BC CD AD Vértices: A B C D Diagonais: AC BD D Algumas

Leia mais

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio Escola da Imaculada Estudo da Pirâmide Aluno (a): Professora: Jucélia 2º ano ensino médio Estudo da Pirâmide 1- Definição As pirâmides são poliedros cuja base é uma região poligonal e as faces laterais

Leia mais

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano

Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano Geometria Espacial Elementos de Geometria Espacial Prof. Fabiano A Geometria espacial (euclidiana) funciona como uma ampliação da Geometria plana (euclidiana) e trata dos métodos apropriados para o estudo

Leia mais

Matemática Régis Cortes GEOMETRIA ESPACIAL

Matemática Régis Cortes GEOMETRIA ESPACIAL GEOMETRIA ESPACIAL 1 GEOMETRIA ESPACIAL PIRÂMIDE g g = apótema da pirâmide ; a p = apótema da base h g 2 = h 2 + a p 2 a p Al = p. g At = Al + Ab V = Ab. h 3 triangular quadrangular pentagonal hexagonal

Leia mais

Geometria Métrica Espacial. Geometria Métrica Espacial

Geometria Métrica Espacial. Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA 1. Prismas Geometria Métrica

Leia mais

Geometria Espacial Profº Driko

Geometria Espacial Profº Driko Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos

Leia mais

Sólidos geométricos (Revisões)

Sólidos geométricos (Revisões) Curso de Educação e Formação Assistente Administrativo DISCIPLINA: Matemática Aplicada FICHA DE TRABALHO Nº 15 MÓDULO: 8 TURMA: A1/A2 DATA: 2006/2007 Sólidos geométricos (Revisões) Já conhecemos os nomes

Leia mais

Prof. Jorge. Estudo de Polígonos

Prof. Jorge. Estudo de Polígonos Estudo de Polígonos Enchendo a piscina A piscina de um clube de minha cidade, vista de cima, tem formato retangular. O comprimento dela é de 18 m. o fundo é uma rampa reta. Vista lateralmente, ela tem

Leia mais

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO

TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO TRABALHO DE DEPENDÊNCIA TURMA: 2ª SÉRIE CONTEÚDOS RELATIVOS AO 1º E 2º BIMESTRE MATEMÁTICA 2 PROFESSOR ROGERIO OBSERVAÇÕES: 1) AS QUESTÕES OBRIGATORIAMENTE DEVEM SER ENTREGUES EM UMA FOLHA A PARTE COM

Leia mais

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750

Colégio Anglo de Sete Lagoas Professor: Luiz Daniel (31) 2106-1750 Lista de exercícios de Geometria Espacial PRISMAS 1) Calcular a medida da diagonal de um paralelepípedo retângulo de dimensões 10 cm, 8 cm e 6 cm 10 2 cm 2) Determine a capacidade em dm 3 de um paralelepípedo

Leia mais

APOSTILA 2015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO 2º ANO - ENSINO MÉDIO - 2015 1

APOSTILA 2015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO 2º ANO - ENSINO MÉDIO - 2015 1 APOSTILA 015 DESENHO GEOMÉTRICO PROFESSOR: DENYS YOSHIDA DESENHO GEOMÉTRICO º ANO - ENSINO MÉDIO - 015 1 Sumário 1.Geometria Espacial...4 1.1 Definições básicas da Geometria Espacial...4 1. Posições de

Leia mais

Ensino Fundamental, 7º Ano Formas geométricas espaciais: prisma e pirâmide - conceitos iniciais

Ensino Fundamental, 7º Ano Formas geométricas espaciais: prisma e pirâmide - conceitos iniciais Ensino Fundamental, 7º Ano Formas geométricas espaciais: prisma e pirâmide - conceitos iniciais Você já deve ter observado embalagens e objetos que têm relação com figuras chamadas sólidos geométricos.

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 16/06/12 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 6/06/ PROFESSOR: MALTEZ Uma pirâmide quadrangular regular possui área da base igual a 6 e altura igual a. A área total da pirâmide é igual

Leia mais

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras

Colégio Universitas06 Data: 7 Mai 2013. Professor(a): Adriana Santos. Exercícios extras Colégio Universitas06 Data: 7 Mai 2013 Professor(a): Adriana Santos Aluno(a): Nota: nº: Exercícios extras 1 Escreva se cada objeto desenhado dá ideia de sólido geométrico, região plana ou contorno. Em

Leia mais

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura.

REVISÃO Lista 07 Áreas, Polígonos e Circunferência. h, onde b representa a base e h representa a altura. NOME: ANO: º Nº: POFESSO(A): Ana Luiza Ozores DATA: Algumas definições Áreas: Quadrado: EVISÃO Lista 07 Áreas, Polígonos e Circunferência A, onde representa o lado etângulo: A b h, onde b representa a

Leia mais

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ

CAP/UERJ 2ª SÉRIE DO ENSINO MÉDIO PROF. ILYDIO SÁ CP/URJ ª SÉRI DO NSINO MÉDIO PROF. ILYDIO SÁ 1 LUNO () : Nº GOMTRI SPCIL PRISMS XRCÍCIOS 01) Qual o volume de um cubo de área 54 cm? 0) diagonal de uma face de um cubo tem medida 5 cm. Qual a área do cubo?

Leia mais

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS

POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS 7º ANO POLÍGONOS TRIÂNGULOS E QUADRILÁTEROS Áreas de alguns quadriláteros Nuno Marreiros Recorda Área do retângulo Para todo e qualquer retângulo de base (b) e altura (h), pode-se escrever: Área do Retângulo

Leia mais

Abordagem de geometria no ensino médio partindo de poliedros

Abordagem de geometria no ensino médio partindo de poliedros Abordagem de geometria no ensino médio partindo de poliedros José Luiz Magalhães de Freitas INMA/UFMS e-mail: joseluizufms2@gmail.com Marilena Bittar INMA/UFMS e-mail: marilenabittar@gmail.com O objetivo

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

PRISMAS E PIRÂMIDES 1. DEFINIÇÕES (PRISMAS) MATEMÁTICA. Prisma oblíquo: as arestas laterais são oblíquas aos planos das bases.

PRISMAS E PIRÂMIDES 1. DEFINIÇÕES (PRISMAS) MATEMÁTICA. Prisma oblíquo: as arestas laterais são oblíquas aos planos das bases. PRISMAS E PIRÂMIDES. DEFINIÇÕES (PRISMAS) Chama-se prisma todo poliedro convexo composto por duas faces (bases) que são polígonos congruentes contidos em planos paralelos e as demais faces (faces laterais)

Leia mais

Geometria Espacial: Sólidos Geométricos

Geometria Espacial: Sólidos Geométricos Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.

Leia mais

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%)

94 (8,97%) 69 (6,58%) 104 (9,92%) 101 (9,64%) 22 (2,10%) 36 (3,44%) 115 (10,97%) 77 (7,35%) 39 (3,72%) 78 (7,44%) 103 (9,83%) Probabilidade 10 (0,95%) Distribuição das.08 Questões do I T A 9 (8,97%) 0 (9,9%) 69 (6,58%) Equações Irracionais 09 (0,86%) Equações Exponenciais (, 0 (9,6%) Geo. Analítica Conjuntos (,96%) Geo. Espacial Funções Binômio de Newton

Leia mais

Definição de Polígono

Definição de Polígono Definição de Polígono Figura plana limitada por segmentos de recta, chamados lados dos polígonos onde cada segmento de recta, intersecta exactamente dois outros extremos; se os lados forem todos iguais

Leia mais

Geometria Área de Quadriláteros

Geometria Área de Quadriláteros ENEM Geometria Área de Quadriláteros Wallace Alves da Silva DICAS MATEMÁTICAS [Escolha a data] Áreas de quadriláteros Olá Galera, 1 QUADRILÁTEROS Quadrilátero é um polígono com quatro lados. A soma dos

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br Breve Introdução Histórica aos Sólidos Platônicos

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! www.vestibular1.com.br Breve Introdução Histórica aos Sólidos Platônicos Breve Introdução Histórica aos Sólidos Platônicos Cerca de 600 A.C. nas colônias gregas da Jônia, na costa oeste da Turquia, surgem dois dos principais matemáticos gregos: Tales de Mileto e Pitágoras de

Leia mais

Lista de Exercícios de Recuperação de MATEMÁTICA 2

Lista de Exercícios de Recuperação de MATEMÁTICA 2 Lista de Exercícios de Recuperação de MATEMÁTICA NOME Nº SÉRIE: DATA BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática EM 1) Dê as equações das elipses desenhadas a seguir: a.) 6 b.) -8 8-6 ) Determinar

Leia mais

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof.

COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II. Notas de aula de Matemática. 3º ano/ensino Médio. Prof. COLÉGIO PEDRO II DEPARTAMENTO DE MATEMÁTICA UNIDADE ESCOLAR HUMAITÁ II Notas de aula de Matemática 3º ano/ensino Médio Prof. Andrezinho NOÇÕES DE GEOMETRIA ESPACIAL Notas de aula de Matemática Prof. André

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A

AULA 2 - ÁREAS. h sen a h a sen b h a b sen A. L L sen60 A AULA - ÁREAS Área de um Triângulo - A área de um triângulo pode ser calculada a partir de dois lados consecutivos e o ângulo entre eles. h sen a h a sen b h a b sen A - A área de um triângulo eqüilátero

Leia mais

PRISMAS Prisma é um poliedro com duas bases paralelas formadas por polígonos iguais e faces laterais que são paralelogramos.

PRISMAS Prisma é um poliedro com duas bases paralelas formadas por polígonos iguais e faces laterais que são paralelogramos. GEOMETRIA ESPACIAL Geometria Espacial é o estudo da geometria no espaço tridimensional (as 3 dimensões são: largura, comprimento e profundidade). Essas figuras recebem o nome de sólidos geométricos ou

Leia mais

Aula 5 Quadriláteros Notáveis

Aula 5 Quadriláteros Notáveis Aula 5 Quadriláteros Notáveis Paralelogramo Definição: É o quadrilátero convexo que possui os lados opostos paralelos. A figura mostra um paralelogramo ABCD. Teorema 1: Se ABCD é um paralelogramo, então:

Leia mais

SÓLIDOS GEOMÉTRICOS. da - 2. Sólidos de. geométricos. Rodrigo. Roberto. Tetraedro (4) Hexaedro (6) Octaedro (8) Dudecaedro (12) Icosaedro (20)

SÓLIDOS GEOMÉTRICOS. da - 2. Sólidos de. geométricos. Rodrigo. Roberto. Tetraedro (4) Hexaedro (6) Octaedro (8) Dudecaedro (12) Icosaedro (20) Sólidos Geométricos Poliedros Sólidos de Revolução SÓLIOS GEOMÉTRICOS Regulares Irregulares Cone Cilindro Tetraedro (4) Hexaedro (6) Octaedro (8) udecaedro (12) Icosaedro (20) Prisma Pirâmide Reto Oblíquo

Leia mais

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos

Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Matemática Essencial: Alegria Financeira Fundamental Médio Geometria Trigonometria Superior Cálculos Geometria Plana: Áreas de regiões poligonais Triângulo e região triangular O conceito de região poligonal

Leia mais

Aula 12 Áreas de Superfícies Planas

Aula 12 Áreas de Superfícies Planas MODULO 1 - AULA 1 Aula 1 Áreas de Superfícies Planas Superfície de um polígono é a reunião do polígono com o seu interior. A figura mostra uma superfície retangular. Área de uma superfície é um número

Leia mais

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge.

Matemática 2. 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um. 02. Abaixo temos uma ilustração da Victoria Falls Bridge. Matemática 2 01. A estrutura abaixo é de uma casa de brinquedo e consiste de um paralelepípedo retângulo acoplado a um prisma triangular. 1,6m 1m 1,4m Calcule o volume da estrutura, em dm 3, e indique

Leia mais

VOLUMES DE SÓLIDOS GEOMÉTRICOS

VOLUMES DE SÓLIDOS GEOMÉTRICOS 1 Nomenclatura: VOLUMES DE SÓLIDOS GEOMÉTRICOS P Perímetro da ase a Apótema da ase A FL Área de uma face lateral At Área total l Aresta ou lado da ase 1. Prisma quadrangular regular É o sólido em que:

Leia mais

CURSO DE GEOMETRIA LISTA

CURSO DE GEOMETRIA LISTA GEOMETRI Ângulos Obs.: Dois ângulos são congruentes quando têm a mesma abertura. Exemplos: Ângulos complementares Soma (medida) 90º Ângulos suplementares Soma (medida) 180º issetriz bissetriz de um ângulo

Leia mais

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano

Preparação para a Prova Final de Matemática 2.º Ciclo do Ensino Básico Olá, Matemática! 6.º Ano Geometria Sólidos geométricos e volumes Prisma, pirâmide, cilindro, cone e esfera Planificação e construção de modelos de sólidos geométricos Volume do cubo, do paralelepípedo e do cilindro Unidades de

Leia mais

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 2/5: Prof. Víctor O. Gamarra Rosado

UNESP DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD. Parte 2/5: Prof. Víctor O. Gamarra Rosado UNESP UNIVERSIDADE ESTADUAL PAULISTA FACULDADE DE ENGENHARIA CAMPUS DE GUARATINGUETÁ DESENHO TÉCNICO: Fundamentos Teóricos e Introdução ao CAD Parte 2/5: 6. Figuras geométricas 7. Sólidos geométricos Prof.

Leia mais

MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA

MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA 1 MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA ===================================================== 1) As dimensões de um paralelepípedo retângulo são dadas por números inteiros em P.A. de razão

Leia mais

Estudando Poliedros com Auxílio do Software Poly

Estudando Poliedros com Auxílio do Software Poly DIRETORIA DE PESQUISA E PÓS-GRADUAÇÃO/GERÊNCIA DE PESQUISA PROJETO: TECNOLOGIAS DE INFORMAÇÃO E COMUNICAÇÃO NO PROCESSO DE ENSINO E APRENDIZAGEM DE MATEMÁTICA Estudando Poliedros com Auxílio do Software

Leia mais

Áreas e Aplicações em Geometria

Áreas e Aplicações em Geometria 1. Introdução Áreas e Aplicações em Geometria Davi Lopes Olimpíada Brasileira de Matemática 18ª Semana Olímpica São José do Rio Preto, SP Nesse breve material, veremos uma rápida revisão sobre áreas das

Leia mais

OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos.

OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos. META: Definir e calcular área de figuras geométricas. AULA 8 OBJETIVOS: Definir área de figuras geométricas. Calcular a área de figuras geométricas básicas, triângulos e paralelogramos. PRÉ-REQUISITOS

Leia mais

Resumo. Maria Bernardete Barison apresenta Prisma em Geometria Descritiva. Geométrica vol.2 n PRISMA

Resumo. Maria Bernardete Barison apresenta Prisma em Geometria Descritiva. Geométrica vol.2 n PRISMA 1 PRISMA: DEFINIÇÃO PRISMA O prisma é um poliedro irregular compreendido entre dois polígonos iguais e paralelos, e cujas faces laterais são paralelogramos. Os dois polígonos iguais e paralelos são as

Leia mais

OS PRISMAS. 1) Conceito :

OS PRISMAS. 1) Conceito : 1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :

Leia mais

MATEMÁTICA. Geometria Espacial

MATEMÁTICA. Geometria Espacial MATEMÁTICA Geometria Espacial Professor : Dêner Rocha Monster Concursos 1 Geometria Espacial Conceitos primitivos São conceitos primitivos (e, portanto, aceitos sem definição) na Geometria espacial os

Leia mais

ESCOLA BÁSICA VASCO DA GAMA - SINES

ESCOLA BÁSICA VASCO DA GAMA - SINES ESCOLA BÁSICA VASCO DA GAMA - SINES ANO LECTIVO 2009/2010 FICHA DE TRABALHO MATEMÁTICA - 6º ANO Nome: N.º Turma: Data: 1. Observa o ângulo que se segue. Assinala a resposta correcta em cada caso. 2. Assinala

Leia mais

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO

Leia mais

1 COMO ESTUDAR GEOMETRIA

1 COMO ESTUDAR GEOMETRIA Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL I 1 COMO ESTUDAR GEOMETRIA Só relembrando a primeira aula de Geometria Plana, aqui vão algumas dicas bem úteis para abordagem geral de uma questão de geometria:

Leia mais

Unidade 4 Formas geométricas planas

Unidade 4 Formas geométricas planas Sugestões de atividades Unidade 4 Formas geométricas planas 6 MTMÁTI 1 Matemática 1. O relógio, representado abaixo, indica exatamente 8 horas. TracieGrant/Shutterstock c) um ângulo de 120 ; d) um ângulo

Leia mais

Construções Fundamentais. r P r

Construções Fundamentais. r P r 1 Construções Fundamentais 1. De um ponto traçar a reta paralela à reta dada. + r 2. De um ponto traçar a perpendicular à reta r, sabendo que o ponto é exterior a essa reta; e de um ponto P traçar a perpendicular

Leia mais

Caderno de Respostas

Caderno de Respostas Caderno de Respostas DESENHO TÉCNICO BÁSICO Prof. Dr.Roberto Alcarria do Nascimento Ms. Luís Renato do Nascimento CAPÍTULO 1: ELEMENTOS BÁSICOS DO DESENHO TÉCNICO 1. A figura ilustra um cubo ao lado de

Leia mais

GEOMETRIA ESPACIAL. Rio de Janeiro / 2007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO

GEOMETRIA ESPACIAL. Rio de Janeiro / 2007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO VICE-REITORIA DE ENSINO DE GRADUAÇÃO E CORPO DISCENTE COORDENAÇÃO DE EDUCAÇÃO A DISTÂNCIA GEOMETRIA ESPACIAL Rio de Janeiro / 2007 TODOS OS DIREITOS RESERVADOS À UNIVERSIDADE CASTELO BRANCO UNIVERSIDADE

Leia mais

>> EXERCÍCIOS SEMANA 11 (26/11 a 30/11)

>> EXERCÍCIOS SEMANA 11 (26/11 a 30/11) >> EXERCÍCIOS SEMANA 11 (26/11 a 30/11) Problema 1: Considere o problema 1 da semana 9. Determine o reflexo da pirâmide produzido pelo plano frontal passante pelos pontos A e B. Resolução: Ver figura do

Leia mais

GEOMETRIA ESPACIAL - PRISMAS

GEOMETRIA ESPACIAL - PRISMAS GEOMETRIA ESPACIAL - PRISMAS Questão 01 - (FM Petrópolis RJ) A Figura a seguir ilustra um recipiente aberto com a forma de um prisma hexagonal regular reto. Em seu interior, há líquido até a altura de

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 25/05/13 PROFESSOR: MALTEZ RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 5/05/ PROFESSOR: MALTEZ QUESTÃO 0 O piso de uma cozinha retangular de m de largura e m de comprimento deverá ser revestido por cerâmicas

Leia mais

Geometria Euclidiana Plana Parte I

Geometria Euclidiana Plana Parte I CURSO INTRODUTÓRIO DE MATEMÁTICA PARA ENGENHARIA 2015.1 Geometria Euclidiana Plana Parte I Joyce Danielle de Araújo - Engenharia de Produção Lucas Araújo dos Santos - Engenharia de Produção O que veremos

Leia mais

GEOMETRIA ESPACIAL - PIRÂMIDES

GEOMETRIA ESPACIAL - PIRÂMIDES GEOMETRIA ESPACIAL - PIRÂMIDES Questão 0 - (FAMERP SP) O gráfico indica uma reta r, que intersecta o eixo y no ponto de coordenadas (0, n). De acordo com os dados disponíveis nesse gráfico, n é igual a

Leia mais

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Matemática da Universidade do Estado do Rio de Janeiro UERJ 1º Exame de Qualificação 011 Questão 6 Vestibular 011 Observe a representação do trecho de um circuito elétrico entre

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

GEOMETRIA NO PLANO. Linha Conjunto infinito de pontos que pode ser desenhado por um único movimento contínuo (objecto geométrico a uma dimensão).

GEOMETRIA NO PLANO. Linha Conjunto infinito de pontos que pode ser desenhado por um único movimento contínuo (objecto geométrico a uma dimensão). GEOMETRIA NO PLANO 1 Noções Elementares Ponto O objecto geométrico mais elementar (sem dimensão). Linha Conjunto infinito de pontos que pode ser desenhado por um único movimento contínuo (objecto geométrico

Leia mais

>> EXERCÍCIOS SEMANA 8 (5/11 a 9/11)

>> EXERCÍCIOS SEMANA 8 (5/11 a 9/11) Considere a figura seguinte composta por quadrados rodados a 45º uns relativamente aos outros. Note os pontos de referência A e B. 1 A figura anterior será considerada como projecção de cubos ou de prismas

Leia mais

Geometria Elementar gênese e desenvolvimento. Roberto Ribeiro Paterlini

Geometria Elementar gênese e desenvolvimento. Roberto Ribeiro Paterlini Geometria Elementar gênese e desenvolvimento Roberto Ribeiro Paterlini Copyright março de 2010 by Roberto Ribeiro Paterlini Departamento de Matemática, UFSCar A presente versão está disponível na página

Leia mais

TOPOGRAFIA. Áreas e Volumes

TOPOGRAFIA. Áreas e Volumes TOPOGRAFIA Áreas e Volumes A estimativa da área de um terreno pode ser determinada através de medições realizadas diretamente no terreno ou através de medições gráficas sobre uma planta topográfica. As

Leia mais

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO

ROTEIRO DE ESTUDO - 2013 VP4 MATEMÁTICA 3 a ETAPA 6 o ao 9º Ano INTEGRAL ENSINO FUNDAMENTAL 1º E 2º ANOS INTEGRAIS ENSINO MÉDIO 6 o ANO MATEMÁTICA I Adição e subtração de frações: Frações com denominadores iguais. Frações com denominadores diferentes. Multiplicação de um número natural por uma fração. Divisão entre um número natural

Leia mais

Escola Básica de Santa Catarina

Escola Básica de Santa Catarina Escola Básica de Santa Catarina Matemática Assunto Sólidos geométricos. Áreas e Volumes. 9º ano Nome: Nº. Turma: data / / GRUPO I 1. 2. 3. 4. 1 5. 6. 7. 8. 9. 10. GRUPO II 2 GRUPO II (Exame Nacional de

Leia mais

KLEBER SEBASTIÃO JULIANI

KLEBER SEBASTIÃO JULIANI KLEBER SEBASTIÃO JULIANI GEOMETRIA ESPACIAL UMA VISÃO DO ESPAÇO PARA A VIDA LONDRINA 008 KLEBER SEBASTIÃO JULIANI GEOMETRIA ESPACIAL UMA VISÃO DO ESPAÇO PARA A VIDA Proposta de produção didática pedagógica

Leia mais

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada

Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada Centro Federal de Educação Tecnológica Departamento Acadêmico da Construção Civil Curso Técnico de Geomensura Disciplina: Matemática Aplicada MATEMÁTICA APLICADA 1. SISTEMA ANGULAR INTERNACIONAL...2 2.

Leia mais

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m.

RETÂNGULO ÁREAS DE FIGURAS PLANAS PARALELOGRAMO. Exemplo: Calcule a área de um terreno retangular cuja basemede 3meaaltura 45m. ÁREAS DE FIGURAS PLANAS RETÂNGULO PARALELOGRAMO Exemplo: Calcule a área de um paralelogramo que tem,4 cmdebasee1,3cmdealtura. Resposta: A= B h A=,4x1,3 A=3,1 cm² 01. Calcule a área do paralelogramo, sabendo-se

Leia mais

Hewlett-Packard PRISMAS. Aulas 01 e 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard PRISMAS. Aulas 01 e 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard PRISMAS Aulas 01 e 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2016 Sumário PRISMAS... 1 CLASSIFICAÇÃO DE UM PRISMA... 1 ÁREAS EM UM PRISMA... 1 EXERCÍCIOS FUNDAMENTAIS...

Leia mais

Explorando Poliedros

Explorando Poliedros Reforço escolar M ate mática Explorando Poliedros Dinâmica 6 2ª Série 1º Bimestre Matemática Ensino Médio 2ª Geométrico Introdução à geometria espacial Aluno PRIMEIRA ETAPA COMPARTILHAR IDEIAS ATIVIDADE

Leia mais

ATIVIDADES COM GEOTIRAS

ATIVIDADES COM GEOTIRAS ATIVIDADES COM GEOTIRAS 1. Material: Geotiras i. Represente varias retas paralelas. ii. Represente duas retas concorrentes em um ponto. 2. Material: Geotiras Represente as seguintes poligonais: i. Poligonal

Leia mais

SOLUCÃO DAS ATIVIDADES COM GEOTIRAS

SOLUCÃO DAS ATIVIDADES COM GEOTIRAS SOLUCÃO DAS ATIVIDADES COM GEOTIRAS 1. Representação de retas nas seguintes posições: i. Retas paralelas ii. Retas concorrentes 2. Representação de poligonais: i. Aberta simples ii. Aberta não simples

Leia mais

FÁTIMA HELENA COSTA DIAS. institucional: MATEMÁTICA NA ESCOLA, 2ª SÉRIE, 2º BIMESTRE. Tutor: Daiana da Silva Leite

FÁTIMA HELENA COSTA DIAS.  institucional: MATEMÁTICA NA ESCOLA, 2ª SÉRIE, 2º BIMESTRE. Tutor: Daiana da Silva Leite FÁTIMA HELENA COSTA DIAS e-mail institucional: fhelena@educacao.rj.gov.br MATEMÁTICA NA ESCOLA, 2ª SÉRIE, 2º BIMESTRE Tutor: Daiana da Silva Leite Grupo: 05 Tarefa 4 Duração Prevista: 290 minutos, distribuídos

Leia mais

Nome: Calcule a probabilidade de que os dois alunos sorteados falem Inglês e. Análise Quantitativa e Lógica Discursiva - Prova B

Nome: Calcule a probabilidade de que os dois alunos sorteados falem Inglês e. Análise Quantitativa e Lógica Discursiva - Prova B 1. Uma escola irá sortear duas pessoas dentre os seus 20 melhores alunos para representá-la em um encontro de estudantes no Canadá, país que possui dois idiomas oficiais, Inglês e Francês. Sabe-se que,

Leia mais

Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides.

Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides. Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides. A seguir, algumas representações de pirâmides: Essa forma espacial é bastante

Leia mais

Geometria Espacial e Plana

Geometria Espacial e Plana 117 Geometria Espacial e Plana a² = b² + c² 118 1) Poliedros convexos Geometria Espacial Observe os sólidos abaixo cujas faces são polígonos convexos. Podemos observar que: a) Cada aresta é comum a duas

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM.

MAT 240- Lista de Exercícios. 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM. 1 MAT 240- Lista de Exercícios 1. Dado o ABC, seja G o baricentro deste triângulo e M o ponto médio do lado BC. Prove que AG = 2GM. 2. Seja G o baricentro e O o circuncentro do ABC. Na reta que contém

Leia mais

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA),

O quadrado ABCD, inscrito no círculo de raio r é formado por 4 triângulos retângulos (AOB, BOC, COD e DOA), 0 - (UERN) A AVALIAÇÃO UNIDADE I -05 COLÉGIO ANCHIETA-BA ELABORAÇÃO: PROF. ADRIANO CARIBÉ e WALTER PORTO. PROFA. MARIA ANTÔNIA C. GOUVEIA Em uma sorveteria, há x sabores de sorvete e y sabores de cobertura.

Leia mais

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS

ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1 ÁREA DAS FIGURAS GEOMÉTRICAS PLANAS 1.Área da região retangular temos: É o paralelogramo que possui os quatro ângulos internos retos, num retângulo, A = B. P = B + d = B + Exemplo: Num retângulo, uma

Leia mais

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100

115% x + 120% + (100 + p)% = 93 2 2. 120% y + 120% + (100 + p)% = 106 2 2 x + y + z = 100 MATEMÁTICA Carlos, Luís e Sílvio tinham, juntos, 00 mil reais para investir por um ano. Carlos escolheu uma aplicação que rendia 5% ao ano. Luís, uma que rendia 0% ao ano. Sílvio aplicou metade de seu

Leia mais

02 Determine o módulo, a direção e o sentido dos seguintes vetores: a) A = 5 Λ i + 3 Λ j, b) B = 10 Λ i -7 Λ j, c) C = 2 Λ i - 3 Λ j + 4 Λ k.

02 Determine o módulo, a direção e o sentido dos seguintes vetores: a) A = 5 Λ i + 3 Λ j, b) B = 10 Λ i -7 Λ j, c) C = 2 Λ i - 3 Λ j + 4 Λ k. Exercícios de apoio à disciplina Geometria Analítica e Cálculo Vetorial 1 01 Três vetores A, B e C possuem as seguintes componentes nas direções x e y: A x = 6, A y = -3; B x = -3, B y =4; C x =2, C y

Leia mais

Se as arestas laterais são perpendiculares aos planos das bases, o prisma é reto. Exemplo: GEOMETRIA ESPACIAL PRISMAS

Se as arestas laterais são perpendiculares aos planos das bases, o prisma é reto. Exemplo: GEOMETRIA ESPACIAL PRISMAS GEOMETRIA ESPACIAL PRISMAS Se as arestas laterais são perpendiculares aos planos das bases, o prisma é reto. Exemplo: Dados um polígono ABC MN situado num plano α e outro polígono A B C..M N congruente

Leia mais

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar

GAAL - 2013/1 - Simulado - 1 Vetores e Produto Escalar GAAL - 201/1 - Simulado - 1 Vetores e Produto Escalar SOLUÇÕES Exercício 1: Determinar os três vértices de um triângulo sabendo que os pontos médios de seus lados são M = (5, 0, 2), N = (, 1, ) e P = (4,

Leia mais

GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010

GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010 GEOMETRIA BÁSICA 200-2 GGM006-TURMA M2 Dirce Uesu Pesco Geometria Espacial 8//200 Defiição : PRISMA Cosidere dois plaos paralelos α e β e um segmeto de reta PQ, cuja reta suporte r itercepta o plao α.

Leia mais

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! 1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,

Leia mais

Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo x indicado.

Duração: 90 minutos (3 valores) Sabe-se que a b. Atendendo à gura, calcule a medida do ângulo x indicado. Faculdade de Ciências Departamento de Matemática e Informática Licenciatura em Informática, Pós-Laboral 1 0 Teste de Fundamentos de Geometria. Variante Duração: 90 minutos 18.03.2013 1. (3 valores) Sabe-se

Leia mais

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI

LISTÃO DE EXERCÍCIOS DE REVISÃO IFMA PROFESSOR: ARI 01.: A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício. comprimento dessa escada é de: a) 12 m. b) 30 m. c) 15 m. d) 17 m. e) 20 m.

Leia mais

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo

Geometria plana. Índice. Polígonos. Triângulos. Congruência de triângulos. Semelhança de triângulos. Relações métricas no triângulo retângulo Índice Geometria plana Polígonos Triângulos Congruência de triângulos Semelhança de triângulos Relações métricas no triângulo retângulo Quadriláteros Teorema de Tales Esquadros de madeira www.ser.com.br

Leia mais

GEOMETRIA LÚDICA: DESCOBRINDO A ÁREA DE FIGURAS PLANAS

GEOMETRIA LÚDICA: DESCOBRINDO A ÁREA DE FIGURAS PLANAS 1 GEOMETRIA LÚDICA: DESCOBRINDO A ÁREA DE FIGURAS PLANAS Agda Jéssica de Freitas Galletti UnB DF aj.mat@hotmail.com Francisca Priscila Ferreira da Silva UnB - DF priscilafs.df@hotmail.com Gabriela Aparecida

Leia mais

FORMAÇÃO SOBRE CONTEÚDOS DE MATEMATICA DOS 4º E 5º ANOS DO ENSINO FUNDAMENTAL FIGURAS PLANAS E ESPACIAIS

FORMAÇÃO SOBRE CONTEÚDOS DE MATEMATICA DOS 4º E 5º ANOS DO ENSINO FUNDAMENTAL FIGURAS PLANAS E ESPACIAIS FORMAÇÃO SOBRE CONTEÚDOS DE MATEMATICA DOS 4º E 5º ANOS DO ENSINO FUNDAMENTAL FIGURAS PLANAS E ESPACIAIS Professora: Vanessa Bayerl Cesana PLANA Figuras poligonais e não poligonais. Forma, número de lados,

Leia mais

b) 2. c) 4. d) 8. e) 3 π. 5. (Ita 2014) Uma pirâmide de altura h= 1cm e

b) 2. c) 4. d) 8. e) 3 π. 5. (Ita 2014) Uma pirâmide de altura h= 1cm e Geometria Espacial 1. (Uerj 015) Um funil, com a forma de cone circular reto, é utilizado na passagem de óleo para um recipiente com a forma de cilindro circular reto. O funil e o recipiente possuem a

Leia mais

Trabalho 4: Os Sólidos Geométricos

Trabalho 4: Os Sólidos Geométricos Departamento de Matemática Mestrado em Ensino de Matemática no 3º Ciclo do Ensino Básico e no Ensino Secundário Trabalho 4: Os Sólidos Geométricos Meios Computacionais no Ensino Professor: Jaime Carvalho

Leia mais