, então. a) 0. c) log 3. c) 1 d) log 4. a) 2 b) c) d) 6. 9-(UECE) Se 6 igual a: a) 36 b) 45 c) 54 d) 81. , então. a) log 20 log 2. a) 3 b) 2 c) 1 d) 0

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download ", então. a) 0. c) log 3. c) 1 d) log 4. a) 2 b) c) d) 6. 9-(UECE) Se 6 igual a: a) 36 b) 45 c) 54 d) 81. , então. a) log 20 log 2. a) 3 b) 2 c) 1 d) 0"

Transcrição

1 LOGARITMOS Professor Clístenes Cunha -(CESGRANRIO-RJ) Se 5 0 a solução vale: a) 5 c) 7/ 0 -(PUC-MG) A soma das raízes da equação 5 a) c) -(CESGRANRIO-RJ) O valor de a) / / c) / / -(UEL-PR) Se 5 7 é igual a: a) a b a/b c) a. b b/a 7 a e 5 b 5-(FUVEST-SP) O número > tal que a) c) 6-(PUCCAMP-SP) Se. 6 aritmo a seguir a) 5/6 c) / 5/6 8, o valor do 7-(FEI-SP) A solução da equação real 9 0 a) 0 c) 8-(PUC-MG) Na epressão E a b, a = e b =. O valor de E a) c) (UECE) Se 6 igual a: a) 6 5 c) 5 8 n n a b a b n é 0-(UFF) Pode-se afirmar que o valor de 8 é igual a: a) 0 6 c) 6 6 -(UFRS) Dada a epressão S 0,00 00, o valor de S a) c) 0 -(UEL-PR) Se 6,5, 8 6 então é igual a: a) 6 ¼ c) /6 /8

2 -(UNICAMP-SP) Para o sistema: y y 8 a) 8 8 c) 6 /y é igual a: -(FEI-SP) Se a e b em função de a e b obtemos: 7 a) a - b ab c) a/b 5a - b 5-(FEI-SP) Se A- B é igual a: a) c) - - A e, escrevendo b 6-(PUCCAMP-SP) Sabe-se que 6 9 y a) = y y = c).y = ½ y =. Nessas condições, é verdade que: 7-(FUVEST-SP) Sabendo-se que 5 n é igual a: concluir que 00 a) n + n c) + n n n e =, podemos 8-(FUVEST-SP) O número real que satisfaz a equação a) c) 5 9-(Vunesp-SP) Em que base o aritmo de número natural n, n >, coincide com o próprio número n? a) /n n c) n n /n 0-(Vunesp-SP) Acrescentando-se 6 unidades a um número positivo, seu aritmo na base aumenta unidades. Esse número a) 5 c) b, -(FUVEST-SP) Se e 00 então o aritmo de na base b vale: a) 0,5 0,9 c),,5 -(FUVEST-SP) o conjunto das raízes da equação 0 0 a),00 c) 0,00,0 -(CESGRANRIO) Se a a, então o valor de a a) c) , -(MACK-SP) O valor de [ ).( ] a) ½ c) -/ -

3 5-(UERJ RJ-05) Um pesquisador, interessado em estudar uma determinada espécie de cobras, verificou que, numa amostra de trezentas cobras, suas massas M, em gramas, eram proporcionais ao cubo de seus comprimentos L, em metros, ou seja que a é uma constante positiva. Observe os gráficos abaio. M a L, em 8-(UFSCar SP-0) A altura média do tronco de certa espécie de árvore, que se destina à produção de madeira, evolui, desde que é plantada, segundo o seguinte modelo matemático: h(t) =,5 + (t+), com h(t) em metros e t em anos. Se uma dessas árvores foi cortada quando seu tronco atingiu,5 m de altura, o tempo (em anos) transcorrido do momento da plantação até o do corte foi de: a) c) (Unicamp SP-0) As populações de duas cidades, A e B, são dadas em milhares de habitantes pelas funções A(t) = 8 ( + t) 6 e B(t) = (t + ), onde a variável t representa o tempo em anos. Aquele que melhor representa M em função de L é o indicado pelo número: a) I II c) III IV 6-(UFOP MG-98) O ph de uma solução é definido por: ph = (/H + ), onde ph é a concentração de hidrogênio em íons-grama por litro de solução. Dessa forma o ph de uma solução, tal que H + =,0 0 8 a) -8 /8 c) (Fatec SP-06) Na figura abaio está representada a função real f, dada por f (), para todo 0. De acordo com os dados da figura, é correto concluir que a área do trapézio ABCO, em unidades de superfície, é a),5 5 c) 5,5 6 a a) Qual é a população de cada uma das cidades nos instantes t = e t = 7? Após certo instante t, a população de uma dessas cidades é sempre maior que a da outra. Determine o valor mínimo desse instante t e especifique a cidade cuja população é maior a partir desse instante. Gab.: a) A() =.000 habitantes, A(7) = habitantes, B() =.000 habitantes e B(7) = habitantes. t = anos e A(t) B(t) para todo t anos. e 0-(FGV-06) Considerando 0, 0,8, o tempo necessário para que um capital aplicado à taa de juro composto de 0% ao ano dobre de valor, é, aproimadamente: a) ano meses c) anos anos e 9 meses -(UFG GO-98) Suponha que o total de sapatos produzidos por uma pequena indústria é dado, aproimadamente, pela função S(t) = 000 ( t ), onde t é o número de anos e S o número de sapatos produzidos, contados, a partir do início de atividade da indústria. Determine: Gab: 000 pares e 7 anos a) o número de sapatos produzidos no primeiro ano de atividades da indústria; o tempo necessário para que a produção total seja o triplo da produção do primeiro ano.

4 -(PUC MG-06) Na figura, os pontos A e B pertencem ao gráfico da função y. A medida da área do trapézio de vértices A, B, (, 0) e (8, 0) é cinco vezes a medida da área do triângulo de vértices A, (, 0) e (m, 0). Então o valor de m a) 0 c) -(Unifei MG-05) A intensidade dos terremotos é medida por sismógrafos que utilizam a Escala Richter. A magnitude M de um terremoto é dada pela equação M P P referência, onde P é a potência do terremoto e P referência é uma potência de referência (constante para todos os casos estudados). Recentemente, no Oceano Índico, ocorreram maremotos que geraram ondas gigantes, afetando vários países da região. O mais forte atingiu, aproimadamente, a magnitude de 9,0 graus na Escala Richter; um outro, posterior, atingiu 6,0 na mesma escala. Em função do eposto acima, pode-se afirmar que: a) A potência atingida pelo primeiro terremoto é 00 vezes menor que a potência do segundo A potência atingida pelo segundo terremoto é 0 vezes maior que a potência do primeiro c) A potência atingida pelo primeiro terremoto é 000 vezes maior que a potência do segundo A potência atingida pelo segundo terremoto é 000 vezes maior que a potência do primeiro -(Unifor CE-05) O preço de fábrica de uma motocicleta nova é igual a M reais. Seu preço de mercado tem uma desvalorização média anual de 0%, em relação ao preço do ano anterior. Após quantos anos, no mínimo, a contar da data de sua fabricação, seu preço de mercado será menor do que 0% do seu preço de fábrica? Dados: = 0,0 e = 0,7 5-(UEG GO-06) A intensidade I de um terremoto, medida na escala Richter, é um número que varia de I 0 até I 8,9 para o maior terremoto conhecido. I é dada pela fórmula: E I E0, em que E é a energia liberada no terremoto em quilowatts-hora e E kwh. Aumentando em uma unidade a intensidade do terremoto, a energia liberada fica multiplicada por um número: a) no intervalo de 0 a 0 maior que 0 c) no intervalo de 0 a 0 menor que 0 6-(UFPA PA-06) As populações A e B de duas cidades são determinadas em milhares de habitantes pelas 5 funções: A( t) ( t) e t, nas quais a variável t B( t) ( ) representa o tempo em anos. Essas cidades terão o mesmo número de habitantes no ano t, que é igual a: a) 8 0 c) 7-(UFPE PE-06) Um boato se espalha da seguinte maneira: no primeiro dia, apenas uma pessoa tem conhecimento dele; no segundo, ela conta a outras três pessoas, e, a cada dia que passa, todas as pessoas que sabem do boato contam-no para três novas pessoas. Assim, a seqüência formada pelo número de pessoas que sabem do boato, em termos dos dias que passam, é dada por,, 6, 6,. Em uma cidade com,5 milhão de habitantes, quantos dias serão necessários para que todas as pessoas sejam informadas do boato? (Aproime sua resposta para o menor inteiro maior ou igual ao valor obtido. Dados: use a aproimação 6 (,5.0 ) 0,5.) a) c) 5 a) 5 c) 6 7

5 8-(UFRR RR-06) Em pesquisa recente realizada por cientistas brasileiros de uma universidade federal comprovaram que a ARIRANHA e o MICO-LEÃO- DOURADO são espécies em etinção no Brasil. Com o objetivo de preservar essas espécies, foram reunidos numa reserva florestal 0 ariranhas e 80 micos-leõesdourados. Constatou-se, após alguns anos, que o crescimento da população de ariranhas foi 5% ao ano e que a população de micos cresceu à taa de 0% ao ano. Em quanto tempo, aproimadamente, após a reunião desses animais na reserva, o número de micos deve chegar ao dobro do número de ariranhas? (use = 0,77 e,07 = 0,09) a) 5 anos 0 anos c) 0 anos 5 anos 9-(Unesp SP-06) O nível sonoro N, medido em decibéis (db), e a intensidade I de um som, medida em watt por metro quadrado (W/m ), estão relacionados pela epressão: N 0 0 ( I) 0 Suponha que foram medidos em certo local os níveis sonoros, N e N, de dois ruídos com intensidades I e I, respectivamente. Sendo NN 0dB, a razão I I a) 0 0 c) (UFMT MT-06) A magnitude de um terremoto é medida na escala Richter. Considere que as magnitudes M e M de dois terremotos estão relacionadas pela fórmula M E M E, onde E e E são as medidas das quantidades de energia liberada pelos terremotos. Em 955, ocorreu um terremoto no norte de Mato Grosso e, em 00, um outro na ilha de Sumatra, na costa da Indonésia, que liberaram as quantidades de energia E e E, respectivamente. Admitindo-se que E foi equivalente à milésima parte de E e que o terremoto ocorrido na ilha de Sumatra teve magnitude M 9, qual a magnitude M do terremoto ocorrido no norte de Mato Grosso? a) 6 5 c) 7 -(UERJ RJ-06) Durante um período de oito horas, a quantidade de frutas na barraca de um feirante se reduz a cada hora, do seguinte modo: - nas t primeiras horas, diminui sempre 0% em relação ao número de frutas da hora anterior; - nas 8 t horas restantes, diminui 0% em relação ao número de frutas da hora anterior. Calcule: a) o percentual do número de frutas que resta ao final das duas primeiras horas de venda, supondo t ; o valor de t, admitindo que, ao final do período de oito horas, há, na barraca, % das frutas que havia, inicialmente. Considere 0, 0 e 0, 8. Gab: a) 6% t = horas -(UFRRJ RJ-06) Ao se estudar o crescimento das palmeiras na cidade de Palmeirópolis constatou-se que a função que descreve esse crescimento em metros, após t f( t) ( t ) anos, é. Quantos anos são necessários para que uma determinada palmeira atinja 7 metros de altura? Gab:,5 (quatro anos e meio) -(UCS RS-06) Quando um paciente ingere um medicamento, a droga entra na corrente sangüínea e, ao passar pelo fígado e pelos rins, é metabolizada e eliminada a uma taa que é proporcional à quantidade presente no corpo. Suponha uma dose única de um medicamento cujo princípio ativo é de 50 mg. A quantidade q desse princípio ativo que continua presente no organismo t horas após a ingestão é dada pela epressão qt ( ) 50 (0,6) t. Usando n,, n5,6 e n 0,7, obtém-se que o tempo necessário para que a quantidade dessa droga presente no corpo do paciente seja menor do que 50 mg: a) está entre, horas e,8 horas. está entre,8 horas e, horas. c) está entre, horas e 5,6 horas. é de 7 horas. -(UCS RS-06) O ph de uma solução é dado pela relação ph, na qual H + corresponde à 0 H concentração de hidrogênio, em íons-grama por litro de solução. A concentração de hidrogênio, em íons-grama por litro, para uma solução cujo ph vale 5 a) c)

Supondo que se mantém constante o ritmo de desenvolvimento da população de vírus, qual o número de vírus após uma hora?

Supondo que se mantém constante o ritmo de desenvolvimento da população de vírus, qual o número de vírus após uma hora? Lista prova parcial 4º bimestre. 1. (Upf 01) Num laboratório está sendo realizado um estudo sobre a evolução de uma população de vírus. A seguinte sequência de figuras representa os três primeiros minutos

Leia mais

Apostila 7: Logaritmo

Apostila 7: Logaritmo Colégio Nossa Senhora de Lourdes Matemática - Professor: Leonardo Maciel Matemática - Professor: Leonardo Maciel. Apostila 7: Logaritmo 1.. (Puc-rio) Os valores de x tais que o logaritmo de 2x + 1 na base

Leia mais

Undécima lista de exercícios. Função exponencial e função logarítmica.

Undécima lista de exercícios. Função exponencial e função logarítmica. MA091 Matemática básica Verão de 01 Undécima lista de exercícios Função exponencial e função logarítmica 1 Você pegou um empréstimo bancário de R$ 500,00, a uma taxa de 5% ao mês a) Escreva a função que

Leia mais

GABARITO. Resolução: 98!2! 50 98! 2. www.chiquinho.org

GABARITO. Resolução: 98!2! 50 98! 2. www.chiquinho.org )(UFF-0) Povos diferentes com escrita e símbolos diferentes podem descobrir um mesmo resultado matemático. Por exemplo, a figura ao lado ilustra o riângulo de Yang Yui, publicado na China em 303, que é

Leia mais

Questão 02 (UFJF MG/2012) Considere as afirmativas abaixo envolvendo as funções f (x) = sen(x), g(x) = x 2 3x + 2 e h(x) = e x.

Questão 02 (UFJF MG/2012) Considere as afirmativas abaixo envolvendo as funções f (x) = sen(x), g(x) = x 2 3x + 2 e h(x) = e x. SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO POLÍCIA MILITAR DO ESTADO DE GOIÁS COMANDO DE ENSINO POLICIAL MILITAR COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS SÉRIE/ANO: ª Série

Leia mais

b) a 0 e 0 d) a 0 e 0

b) a 0 e 0 d) a 0 e 0 IFRN - INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DO RN PROFESSOR: MARCELO SILVA MATEMÁTICA FUNÇÃO DO º GRAU 1. Um grupo de pessoas gastou R$ 10,00 em uma lanchonete. Quando foram pagar a conta,

Leia mais

Mini-curso: Vestibular e Concurso sem Complicação II Orientação: Profa. Dra. Edna Maura Zuffi Monitor Responsável: Bruno Aguiar Alves de Camargo

Mini-curso: Vestibular e Concurso sem Complicação II Orientação: Profa. Dra. Edna Maura Zuffi Monitor Responsável: Bruno Aguiar Alves de Camargo Mini-curso: Vestibular e Concurso sem Complicação II Orientação: Profa. Dra. Edna Maura Zuffi Monitor Responsável: Bruno Aguiar Alves de Camargo Atividades Atividade 1 1) (Vunesp-SP) Uma escada apoiada

Leia mais

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI

LISTA DE EXERCÍCIOS DE PRISMAS PROF.: ARI 01.: (Acafe SC) Num paralelepípedo reto, as arestas da base medem 8 dm e 6dm, e a altura mede 4dm. Calcule a área da figura determinada pela diagonal do paralelepípedo com a diagonal da base e a aresta

Leia mais

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano a série EM Geometria Analítica 1 Coordenadas, Distâncias e Razões de Segmentos no Plano Cartesiano 1 Exercícios

Leia mais

Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho. Questões: Lista de exercícios: Funções de 1ºgrau Problemas Gerais Prof ºFernandinho Questões: 01.(UNESP) Apresentamos a seguir o gráfico do volume do álcool em função de sua massa, a uma temperatura fixa de 0 C.

Leia mais

TEORIA DOS CONJUNTOS PLANO CARTESIANO. Matemática Professor: Mattheus Jucá REVISÃO ENEM

TEORIA DOS CONJUNTOS PLANO CARTESIANO. Matemática Professor: Mattheus Jucá REVISÃO ENEM TEORIA DOS CONJUNTOS 01. (ENEM Cancelado 2009) Uma pesquisa foi realizada para tentar descobrir, do ponto de vista das mulheres, qual é o perfil da parceira ideal procurada pelo homem do séc. XXI. Alguns

Leia mais

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02

Nome: Data. Prof: Manoel Amaurício. p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 M A T E M Á T I C A PROPORÇÕES Nome: Data Prof: Manoel Amaurício P O R C E N T A G E M p p% de C é C. 100 exemplo 1: 14% = 0,14 20% = 0,2 2% = 0,02 Após um aumento de p% sobre C passamos a ter 100 p C.

Leia mais

www.aliancaprevestibular.com

www.aliancaprevestibular.com Professor Victor Eduardo Disciplina Matemática Lista nº 2 Assuntos Função - Modelo UERJ e Exercícios Complementares 1 - (Uerj 2002) Sabedoria egípcia Há mais de 5.000 anos os egípcios observaram que a

Leia mais

Resolução dos Exercícios sobre Derivadas

Resolução dos Exercícios sobre Derivadas Resolução dos Eercícios sobre Derivadas Eercício Utilizando a idéia do eemplo anterior, encontre a reta tangente à curva nos pontos onde e Vamos determinar a reta tangente à curva nos pontos de abscissas

Leia mais

CAPÍTULO 2 FUNÇÕES 1. INTRODUÇÃO. y = 0,80.x. 2. DEFINIÇÃO DE FUNÇÃO DE A EM B ( f: A B) 4. GRÁFICO DE UMA FUNÇÃO

CAPÍTULO 2 FUNÇÕES 1. INTRODUÇÃO. y = 0,80.x. 2. DEFINIÇÃO DE FUNÇÃO DE A EM B ( f: A B) 4. GRÁFICO DE UMA FUNÇÃO CAPÍTULO 2 FUNÇÕES 1. INTRODUÇÃO Muitas grandezas com as quais lidamos no nosso cotidiano dependem uma da outra, isto é, a variação de uma delas tem como conseqüência a variação da outra. Exemplo 1: Tio

Leia mais

LISTA BÁSICA MATEMÁTICA

LISTA BÁSICA MATEMÁTICA LISTA BÁSICA Professor: ARGENTINO FÉRIAS: O ANO DATA: 0 / 06 / 0 MATEMÁTICA 6 0 6 +, + 4 é:. O valor de ( ) ( ) ( ) a) b) c) 7 d) 9 e). Considere a epressão numérica a) 9 b) 0 c) 8,00 d) 69 e) 9,00000

Leia mais

Exercícios complementares envolvendo a equação de Torricelli

Exercícios complementares envolvendo a equação de Torricelli 01. (Vunesp-SP) Um veículo está rodando à velocidade de 36 km/h numa estrada reta e horizontal, quando o motorista aciona o freio. Supondo que a velocidade do veículo se reduz uniformemente à razão de

Leia mais

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A

PROVA DO VESTIBULAR ESAMC-2003-1 RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A PROVA DO VESTIBULAR ESAMC-- RESOLUÇÃO E COMENTÁRIO DA PROFA. MARIA ANTÔNIA GOUVEIA M A T E M Á T I C A Q. O valor da epressão para = é : A, B, C, D, E, ( (,..., ( ( RESPOSTA: Alternativa A. Q. Sejam A

Leia mais

Intensivo 2015.2. Trabalho, potência e Energia mecânica. Obs: cada andar do edifício tem aproximadamente 2,5m.

Intensivo 2015.2. Trabalho, potência e Energia mecânica. Obs: cada andar do edifício tem aproximadamente 2,5m. Intensivo 2015.2 Trabalho, potência e Energia mecânica 01 - (PUC PR) Uma motocicleta de massa 100kg se desloca a uma velocidade constante de 10m/s. A energia cinética desse veículo é equivalente ao trabalho

Leia mais

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação

matemática álgebra 2 potenciação, radiciação, produtos notáveis, fatoração, equações de 1 o e 2 o graus Exercícios de potenciação matemática álgebra equações de o e o graus Exercícios de potenciação. (FUVEST ª Fase) Qual desses números é igual a 0,064? a) ( 80 ) b) ( 8 ) c) ( ) d) ( 800 ) e) ( 0 8 ). (GV) O quociente da divisão (

Leia mais

MATEMÁTICA FINANCEIRA Professor Fábio Maia. AULA 1 - Juros Simples. Formulário: Juros Simples: j = C.i.n e Montante: M = C. (1 + i.

MATEMÁTICA FINANCEIRA Professor Fábio Maia. AULA 1 - Juros Simples. Formulário: Juros Simples: j = C.i.n e Montante: M = C. (1 + i. MATEMÁTICA FINANCEIRA Professor Fábio Maia AULA 1 - Juros Simples Juros Simples é o processo financeiro onde apenas o principal rende juros, isto é, os juros são diretamente proporcionais ao capital empregado.

Leia mais

Aluno (a): Nº. Professor: Fabrízio Gentil Série: 3 o ano. Disciplina: Física Corrente elétrica e Leis de Ohm. Pré Universitário Uni-Anhanguera

Aluno (a): Nº. Professor: Fabrízio Gentil Série: 3 o ano. Disciplina: Física Corrente elétrica e Leis de Ohm. Pré Universitário Uni-Anhanguera Lista de Exercícios Aluno (a): Nº. Pré Universitário Uni-Anhanguera Professor: Fabrízio Gentil Série: 3 o ano. Disciplina: Física Corrente elétrica e Leis de Ohm 01 - (UEL PR) As baterias de íon-lítio

Leia mais

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br. Aula Gratuita PORCENTAGEM

Curso destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET www.concursosecursos.com.br. Aula Gratuita PORCENTAGEM MATEMÁTICA FINANCEIRA ON LINE Aula Gratuita PORCENTAGEM Introdução (Clique aqui para assistir à aula gravada) A porcentagem é o estudo da matemática financeira mais aplicado ao nosso dia-a-dia. É freqüente

Leia mais

LISTA 10. = ax + b onde f é uma função decrescente. Podemos afirmar que o valor exato de g(a) é igual a: a) 1 b) 2 c) 3 d) 4

LISTA 10. = ax + b onde f é uma função decrescente. Podemos afirmar que o valor exato de g(a) é igual a: a) 1 b) 2 c) 3 d) 4 LISTA 10 1 - João tem, hoje, 36 anos, idade que é igual a duas vezes a idade que Maria tinha quando João tinha a idade que Maria tem hoje. A idade, hoje, de Maria é: a) 7 ) 30 c) 33 d) 37 O custo de um

Leia mais

Potência elétrica. 06/05/2011 profpeixinho.orgfree.com pag.1

Potência elétrica. 06/05/2011 profpeixinho.orgfree.com pag.1 1. (Unicamp) Um aluno necessita de um resistor que, ligado a uma tomada de 220 V, gere 2200 W de potência térmica. Ele constrói o resistor usando fio de constante N. 30 com área de seção transversal de

Leia mais

Matemática Básica - 08. Função Logarítmica

Matemática Básica - 08. Função Logarítmica Matemática Básica Função Logarítmica 08 Versão: Provisória 0. Introdução Quando calculamos as equações exponenciais, o método usado consistia em reduzirmos os dois termos da equação à mesma base, como

Leia mais

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação.

(A) é Alberto. (B) é Bruno. (C) é Carlos. (D) é Diego. (E) não pode ser determinado apenas com essa informação. 1. Alberto, Bruno, Carlos e Diego beberam muita limonada e agora estão apertados fazendo fila no banheiro. Eles são os únicos na fila, e sabe se que quem está imediatamente antes de Carlos bebeu menos

Leia mais

Inequação do Segundo Grau

Inequação do Segundo Grau Inequação do Segundo Grau 1. (Pucrj 01) A soma dos valores inteiros que satisfazem a desigualdade a) 9 b) 6 c) 0 d) 4 e) 9. (G1 - ifce 014) O conjunto solução S da inequação 4 S,,1. 4 S,,1. 4 S, 1,. 4

Leia mais

Lista de exercícios: Funções Problemas Gerais Prof ºFernandinho. Questões:

Lista de exercícios: Funções Problemas Gerais Prof ºFernandinho. Questões: Lista de eercícios: Funções Problemas Gerais Prof ºFernandinho Questões: 01.(Unesp) Apresentamos a seguir o gráfico do volume do álcool em função de sua massa, a uma temperatura fia de 0 C. Baseado nos

Leia mais

Progressão Geométrica- 1º ano

Progressão Geométrica- 1º ano Progressão Geométrica- 1º ano 1. Uma seqüência de números reais a, a 2, a 3,... satisfaz à lei de formação A n+1 = 6a n, se n é ímpar A n+1 = (1/3) a n, se n é par. Sabendo-se que a = 2, a) escreva os

Leia mais

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UFBA VESTIBULAR 2011 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UFBA VESTIBULAR a Fase Profa. Maria Antônia Gouveia. Questão. Considerando-se as funções f: R R e g: R R definidas por f(x) = x e g(x) = log(x² + ), é correto afirmar: () A função

Leia mais

VESTIBULAR 2004 - MATEMÁTICA

VESTIBULAR 2004 - MATEMÁTICA 01. Dividir um número real não-nulo por 0,065 é equivalente a multiplicá-lo por: VESTIBULAR 004 - MATEMÁTICA a) 4 c) 16 e) 1 b) 8 d) 0. Se k é um número inteiro positivo, então o conjunto A formado pelos

Leia mais

Simulado OBM Nível 2

Simulado OBM Nível 2 Simulado OBM Nível 2 Gabarito Comentado Questão 1. Quantos são os números inteiros x que satisfazem à inequação? a) 13 b) 26 c) 38 d) 39 e) 40 Entre 9 e 49 temos 39 números inteiros. Questão 2. Hoje é

Leia mais

c) diretamente proporcional ao quadrado da distância entre as partículas. d) diretamente proporcional à distância entre as partículas.

c) diretamente proporcional ao quadrado da distância entre as partículas. d) diretamente proporcional à distância entre as partículas. LISTA 0 ELETOSTÁTICA POFESSO MÁCIO 01 - (UFJ ) Três cargas q 1, q e q 3 ocupam três vértices de um quadrado, como mostra a figura a seguir. Sabendo que q 1 e q têm o mesmo módulo e que a força que q 1

Leia mais

Unidade 3 Função Logarítmica. Definição de logaritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica

Unidade 3 Função Logarítmica. Definição de logaritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica Unidade 3 Função Logarítmica Definição de aritmos de um número Propriedades operatórias Mudança de base Logaritmos decimais Função Logarítmica Definição de Logaritmo de um número Suponha que certo medicamento,

Leia mais

É aquela Matemática aplicada em operações comerciais, de compra e venda, envolvendo dois ou mais agentes econômicos.

É aquela Matemática aplicada em operações comerciais, de compra e venda, envolvendo dois ou mais agentes econômicos. Bertolo 1 1 Não é propaganda da Globo e não é usada em Genética... É aquela Matemática aplicada em operações comerciais, de compra e venda, envolvendo dois ou mais agentes econômicos. Suponhamos que o

Leia mais

9- (UFC) O número de átomos de H, em 2,02 g de H 2, é: A) 12,046 x 10 23 B) 18,069 x 10 23 C) 6,023 x 10 23 D) 3,012 x 10 23 E) 24,092 x 10 23

9- (UFC) O número de átomos de H, em 2,02 g de H 2, é: A) 12,046 x 10 23 B) 18,069 x 10 23 C) 6,023 x 10 23 D) 3,012 x 10 23 E) 24,092 x 10 23 CÁLCULOS QUÍMICOS 1- (CESGRANRIO) Sabendo-se que: X ++ íon isoeletrônico do gás nobre do 3º período da tabela periódica Q halogênio mais eletronegativo O número de mols contido em 3,90g do composto XQ

Leia mais

(Testes intermédios e exames 2005/2006)

(Testes intermédios e exames 2005/2006) 158. Indique o conjunto dos números reais que são soluções da inequação log 3 (1 ) 1 (A) [,1[ (B) [ 1,[ (C) ], ] (D) [, [ 159. Na figura abaio estão representadas, em referencial o. n. Oy: parte do gráfico

Leia mais

Recursos para Estudo / Atividades

Recursos para Estudo / Atividades COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 1ª Etapa 2012 Disciplina: FÍSICA Ano: 2012 Professor (a): Marcos Vinicius Turma: _1º ANO FG Caro aluno, você está recebendo o conteúdo

Leia mais

5º MATERIAL EXTRA 3º ANO PROF. PASTANA

5º MATERIAL EXTRA 3º ANO PROF. PASTANA 5º MATERIAL EXTRA 3º ANO PROF. PASTANA RESOLUÇÃO DOS DESAFIOS 1º Material Extra Ex. 10 E h D 45 0 60 0 45 0 6 C A 6 B plano que passa pelo ponto D Seja h a altura da torre. DÊB = 45 0 O EDB é retângulo

Leia mais

MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA

MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA 1 MATEMÁTICA II EXERCÍCIOS DE REVISÃO GEOMETRIA SÓLIDA ===================================================== 1) As dimensões de um paralelepípedo retângulo são dadas por números inteiros em P.A. de razão

Leia mais

FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE

FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE FÍSICA - 1 o ANO MÓDULO 17 LANÇAMENTO VERTICAL E QUEDA LIVRE Como pode cair no enem? celeração de 5 g (ou 50 m/s²), ocorrendo o enrijecimento dos músculos devido a força que o sangue exerce na volta

Leia mais

CPV O Cursinho que Mais Aprova na GV

CPV O Cursinho que Mais Aprova na GV CPV O Cursinho que Mais Aprova na GV FGV ADM Objetiva Prova A 03/junho/01 matemática 01. Em um período de grande volatilidade no mercado, Rosana adquiriu um lote de ações e verificou, ao final do dia,

Leia mais

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco

Lista de exercícios Trigonometria Problemas Gerais. Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco Lista de eercícios Trigonometria Problemas Gerais Prof ºFernandinho Parte 1 : Tangente da soma e da diferença de arcos e tangente do dobro de um arco 01.(Fuvest) Se é um ângulo tal que 0 < < 90 e sen =,

Leia mais

MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA

MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA PORCENTAGEM MINICURSO DE MATEMÁTICA FINANCEIRA NO DIA A DIA Quando é dito que 40% das pessoas entrevistadas votaram no candidato A, esta sendo afirmado que, em média, de cada pessoas, 40 votaram no candidato

Leia mais

Exercícios: Lançamento Vertical e Queda Livre

Exercícios: Lançamento Vertical e Queda Livre Exercícios: Lançamento Vertical e Queda Livre Cursinho da ETEC Prof. Fernando Buglia 1. (Unifesp) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após

Leia mais

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 2 o ano Disciplina: Física - Calorimetria. Pré Universitário Uni-Anhanguera

Aluno(a): Nº. Professor: Fabrízio Gentil Série: 2 o ano Disciplina: Física - Calorimetria. Pré Universitário Uni-Anhanguera Lista de Exercícios Pré Universitário Uni-Anhanguera Aluno(a): Nº. Professor: Fabrízio Gentil Série: 2 o ano Disciplina: Física - Calorimetria 01 - (MACK SP) Um estudante no laboratório de física, por

Leia mais

A 'BC' e, com uma régua, obteve estas medidas: = h = 3,6. Portanto a área do triângulo ABC vale = 7,56cm

A 'BC' e, com uma régua, obteve estas medidas: = h = 3,6. Portanto a área do triângulo ABC vale = 7,56cm 1 Um estudante tinha de calcular a área do triângulo C, mas um pedaço da folha do caderno rasgou-se. Ele, então, traçou o segmento 'C' paralelo a C, a altura C' H do triângulo 'C' e, com uma régua, obteve

Leia mais

Matemática. Resolução das atividades complementares. M5 Função Polinomial

Matemática. Resolução das atividades complementares. M5 Função Polinomial Resolução das atividades complementares Matemática M Função Polinomial p. 6 (UFRJ) Uma operadora de celular oferece dois planos no sistema pós-pago. No plano A, paga-se uma assinatura de R$, e cada minuto

Leia mais

Resolvendo problemas com logaritmos

Resolvendo problemas com logaritmos A UA UL LA Resolvendo problemas com logaritmos Introdução Na aula anterior descobrimos as propriedades dos logaritmos e tivemos um primeiro contato com a tábua de logarítmos. Agora você deverá aplicar

Leia mais

RESOLUÇÃO PROVA TJ PR

RESOLUÇÃO PROVA TJ PR PROVA TJ PR Questão 6 Três amigas estavam de férias em três cidades diferentes. Com base nas informações abaixo, descubra o nome do lugar e o número do quarto de hotel em que Ana, Claudia e Vanessa estavam

Leia mais

Capítulo 5: Aplicações da Derivada

Capítulo 5: Aplicações da Derivada Instituto de Ciências Exatas - Departamento de Matemática Cálculo I Profª Maria Julieta Ventura Carvalho de Araujo Capítulo 5: Aplicações da Derivada 5- Acréscimos e Diferenciais - Acréscimos Seja y f

Leia mais

5 d) . c. log. log 3. log log 6. x d) log 9. log2. log 2x. x b) log x. 1) Calcule: a) log. 2) Calcule o valor de x: 3) Calcule: b) log 7

5 d) . c. log. log 3. log log 6. x d) log 9. log2. log 2x. x b) log x. 1) Calcule: a) log. 2) Calcule o valor de x: 3) Calcule: b) log 7 1) Calcule: b) 15 a) 7 1 c) 5 4 d) 8 7 ) Calcule o valor de x: 1 16 a) x 8 b) x c) 5 1 x x d) 9 7 x e) ) Calcule: a) 5 b) 7 7 c) 5 7 5 d) 7 e) a. b 4) Dados a = 5, b = e c =, calcule. c 5) Sendo x = a,

Leia mais

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ

Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ Soluções das Questões de Física da Universidade do Estado do Rio de Janeiro UERJ º Exame de Qualificação 011 Questão 6 Vestibular 011 No interior de um avião que se desloca horizontalmente em relação ao

Leia mais

FUNÇÕES E INEQUAÇÕES

FUNÇÕES E INEQUAÇÕES UNIVERSIDADE FEDERAL DO PARANÁ PROGRAMA INSTITUCIONAL DE BOLSAS DE INICIAÇÃO À DOCÊNCIA ANDRÉIA SCHMIDT GEHHANNY ASSIS JAQUELINI ROCHA SIMÃO LARISSA VANESSA DOMINGUES FUNÇÕES E INEQUAÇÕES CURITIBA 2012

Leia mais

Gabarito de Matemática do 7º ano do E.F.

Gabarito de Matemática do 7º ano do E.F. Gabarito de Matemática do 7º ano do E.F. a Lista de Exercícios (L0) Queridos alunos, chegamos à nossa última lista de exercícios! Nesta lista vocês trabalharão com razão, proporção e regra de três. Façam

Leia mais

GEOMETRIA ESPACIAL - PIRÂMIDES

GEOMETRIA ESPACIAL - PIRÂMIDES GEOMETRIA ESPACIAL - PIRÂMIDES Questão 0 - (FAMERP SP) O gráfico indica uma reta r, que intersecta o eixo y no ponto de coordenadas (0, n). De acordo com os dados disponíveis nesse gráfico, n é igual a

Leia mais

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro.

1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 1. Determine x no caso a seguir: 2. No triângulo ABC a seguir, calcule o perímetro. 3. (Ufrrj) Milena, diante da configuração representada abaixo, pede ajuda aos vestibulandos para calcular o comprimento

Leia mais

LISTA 3 ( ) Q = 700 400e -0,5t, onde. Q = quantidade de peças produzidas mensalmente por um funcionário; t = meses de experiência; e = 2,7183.

LISTA 3 ( ) Q = 700 400e -0,5t, onde. Q = quantidade de peças produzidas mensalmente por um funcionário; t = meses de experiência; e = 2,7183. LISTA 3 1. A trajetória de um salto de um golfinho nas proximidades de uma praia, do instante em que ele saiu da água (t = 0) até o instante em que mergulhou (t = T), foi descrita por um observador por

Leia mais

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS

EXERCÍCIOS 2ª SÉRIE - LANÇAMENTOS EXERCÍCIOS ª SÉRIE - LANÇAMENTOS 1. (Unifesp 01) Em uma manhã de calmaria, um Veículo Lançador de Satélite (VLS) é lançado verticalmente do solo e, após um período de aceleração, ao atingir a altura de

Leia mais

CPV 82% de aprovação dos nossos alunos na ESPM

CPV 82% de aprovação dos nossos alunos na ESPM CPV 8% de aprovação dos nossos alunos na ESPM ESPM Resolvida Prova E 11/novembro/01 MATEMÁTICA 1. A distribuição dos n moradores de um pequeno prédio de 4 5 apartamentos é dada pela matriz 1 y, 6 y + 1

Leia mais

O QUE É A ESCALA RICHTER? (OU COMO SE MEDE UM TERREMOTO)

O QUE É A ESCALA RICHTER? (OU COMO SE MEDE UM TERREMOTO) 1 O QUE É A ESCALA RICHTER? (OU COMO SE MEDE UM TERREMOTO) Ilydio Pereira de Sá Atualmente, com o crescimento da tecnologia e da informação, tem sido muito comum o noticiário sobre catástrofes, principalmente

Leia mais

Lista de férias. Orientação de estudos:

Lista de férias. Orientação de estudos: Lista de férias Orientação de estudos: 1. Você deve rever as aulas iniciais sobre distância entre dois pontos e coeficiente angular. Lembre-se que há duas maneiras para determinar o coeficiente angular.

Leia mais

EXERCÍCIOS DE REVISÃO PFV

EXERCÍCIOS DE REVISÃO PFV COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF. MARCOS EXERCÍCIOS DE REVISÃO PFV www.professorwaltertadeu.mat.br 1) Seja f uma função de N em N definida por f(n) = 10 n. Escreva

Leia mais

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980

AV1 - MA 12-2012. (b) Se o comprador preferir efetuar o pagamento à vista, qual deverá ser o valor desse pagamento único? 1 1, 02 1 1 0, 788 1 0, 980 Questão 1. Uma venda imobiliária envolve o pagamento de 12 prestações mensais iguais a R$ 10.000,00, a primeira no ato da venda, acrescidas de uma parcela final de R$ 100.000,00, 12 meses após a venda.

Leia mais

(www.joseferreira.com.br. Adaptado)

(www.joseferreira.com.br. Adaptado) Questão 01 - (FGV) A imagem da lâmina a seguir mostra um resultado obtido em teste de tipagem sanguínea humana para os sistemas ABO e Rh. O método consiste, basicamente, em pingar três gotas de sangue

Leia mais

Problemas de função do 1º grau

Problemas de função do 1º grau Problemas de função do º grau. (Ucs 204) O salário mensal de um vendedor é de R$ 750,00 fixos mais 2,5% sobre o valor total, em reais, das vendas que ele efetuar durante o mês. Em um mês em que suas vendas

Leia mais

EXERCÍCIOS DE REVISÃO PFV - GABARITO

EXERCÍCIOS DE REVISÃO PFV - GABARITO COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE MATEMÁTICA I PROF MARCOS EXERCÍCIOS DE REVISÃO PFV - GABARITO 1 wwwprofessorwaltertadeumatbr 1) Seja f uma função de N em N definida por f(n) 10 n Escreva

Leia mais

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010.

Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. Olá pessoal! Resolverei neste artigo uma prova da fundação VUNESP realizada em 2010. 01. (Fundação CASA 2010/VUNESP) Em um jogo de basquete, um dos times, muito mais forte, fez 62 pontos a mais que o seu

Leia mais

. Determine os valores de P(1) e P(22).

. Determine os valores de P(1) e P(22). Resolução das atividades complementares Matemática M Polinômios p. 68 Considere o polinômio P(x) x x. Determine os valores de P() e P(). x x P() 0; P() P(x) (x x)? x (x ) x x x P()? 0 P() ()? () () 8 Seja

Leia mais

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO

André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Pág. 1 de 7 Aluno (: Disciplina Matemática Curso Professor Ensino Fundamental II André Ito ROTEIRO DE ESTUDOS DE RECUPERAÇÃO E REVISÃO Série 8º ANO Número: 1 - Conteúdo: Equações de 1º grau (Operações,

Leia mais

PROVA DE FÍSICA QUESTÃO 01 UFMG

PROVA DE FÍSICA QUESTÃO 01 UFMG QUESTÃO 01 Em uma corrida de Fórmula 1, o piloto Miguel Sapateiro passa, com seu carro, pela linha de chegada e avança em linha reta, mantendo velocidade constante Antes do fim da reta, porém, acaba a

Leia mais

(Testes intermédios e exames 2010/2011)

(Testes intermédios e exames 2010/2011) (Testes intermédios e eames 00/0) 57. Na Figura, está parte da representação gráfica da função f, de domínio +, definida por f() = log 9 () Em qual das opções seguintes está definida uma função g, de domínio,

Leia mais

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA CAMPUS: CURSO: ALUNO:

INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA CAMPUS: CURSO: ALUNO: INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA CAMPUS: CURSO: ALUNO: DISCIPLINA: FÍSICA II PROFESSOR: EDSON JOSÉ LENTES ESFÉRICAS 1. (FGV/2012) Uma estudante usou uma lupa para pesquisar a formação

Leia mais

Guia de aulas: Equações diferenciais. Prof. Carlos Vidigal Profª. Érika Vidigal

Guia de aulas: Equações diferenciais. Prof. Carlos Vidigal Profª. Érika Vidigal Guia de aulas: Equações diferenciais Prof. Carlos Vidigal Profª. Érika Vidigal 1º Semestre de 013 Índice 1.Introdução... 3. Equações Diferenciais de 1ª Ordem... 7.1. Equações Diferenciais Separáveis...

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web 1. (Enem 2013) Na aferição de um novo semáforo, os tempos são ajustados de modo que, em cada ciclo completo (verde-amarelo-vermelho), a luz amarela permaneça acesa por 5 segundos, e o tempo em que a luz

Leia mais

17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS

17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS 1 17- EXERCÍCIOS PROPORÇÕES E REGRA DE TRÊS 1 - (PUCSP) Um mapa está na escala de 1 para 20.000.Qual o valor real de uma distância representada no mapa por um segmento de 5cm? a) 100m b) 250m c) 1Km d)

Leia mais

Calcular o oitavo termo da progressão geométrica (5, 10, 20,...).

Calcular o oitavo termo da progressão geométrica (5, 10, 20,...). Calcular o oitavo termo da progressão geométrica (5, 10, 20,...). Na progressão geométrica (4, 16,...), o número 4096 é o: A)5 o termo 6 o termo 7 o termo 8 o termo 9 o termo Se a sequência (1; a; b; c;

Leia mais

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão

Matemática para Concursos - Provas Gabaritadas. André Luiz Brandão Matemática para Concursos - Provas Gabaritadas André Luiz Brandão CopyMarket.com Todos os direitos reservados. Nenhuma parte desta publicação poderá ser reproduzida sem a autorização da Editora. Título:

Leia mais

Física. Questão 1. Avaliação: Aluno: Data: Ano: Turma: Professor:

Física. Questão 1. Avaliação: Aluno: Data: Ano: Turma: Professor: Avaliação: Aluno: Data: Ano: Turma: Professor: Física Questão 1 No setor de testes de velocidade de uma fábrica de automóveis, obteve-se o seguinte gráfico para o desempenho de um modelo novo: Com relação

Leia mais

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 2. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Intermédio de Matemática Versão 2 Teste Intermédio Matemática Versão 2 Duração do Teste: 90 minutos 06.05.2011 10.º no de Escolaridade Decreto-Lei n.º 74/2004, de 26 de Março Na sua folha de respostas,

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 2 o ANO DO ENSINO MÉDIO DATA: 05/04/14 PROFESSOR: MALTEZ RESOLUÇÃO VLIÇÃO E MTEMÁTI o NO O ENSINO MÉIO T: 05/0/1 PROFESSOR: MLTEZ QUESTÃO 01 São dados os triângulos retângulos E e TE conforme a figura ao lado; T se = E = E = 60 cm, então: E Os triângulos e TE

Leia mais

Lista de Exercícios 3 Estrutura Condicional

Lista de Exercícios 3 Estrutura Condicional 1 Lista de Exercícios 3 Estrutura Condicional 1. A nota final de um estudante é calculada a partir de três notas atribuídas respectivamente a um trabalho de laboratório, a uma avaliação semestral e a um

Leia mais

C O L É G I O F R A N C O - B R A S I L E I R O

C O L É G I O F R A N C O - B R A S I L E I R O C O L É G I O F R A N C O - B R A S I L E I R O Nome: N.º: Turma: Professor: Ano: 6º Data: / 07 / 2014 EXERCÍCIOS DE RECUPERAÇÃO DE MATEMÁTICA 1) Numa divisão, qual é o dividendo, se o divisor for 12,

Leia mais

Professores: Moysés/Abud

Professores: Moysés/Abud LISTA DE RECUPERAÇÃO PARALELA 1 a UNIDADE FÍSICA Professores: Moysés/Abud 01. Se dois corpos, A e B, estão em equilíbrio térmico, então: a) as massas de A e B são iguais. b) as capacidades térmicas de

Leia mais

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física

Professor(a): Série: 1ª EM. Turma: Bateria de Exercícios de Física Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Física 3º Trimestre 1- A casa de Dona Maria fica no alto de uma ladeira. O desnível entre sua

Leia mais

UFSM 2009 - MATEMÁTICA

UFSM 2009 - MATEMÁTICA UFSM 009 - MATEMÁTICA 0) Coronel Pilar afinado com a música é a manchete do jornal A Razão, seção Educação, do dia de julho de 008. Segundo a notícia, a Escola Estadual Coronel Pilar deu início ao projeto

Leia mais

PA Progressão Aritmética

PA Progressão Aritmética PA Progressão Aritmética 1. (Unicamp 014) O perímetro de um triângulo retângulo é igual a 6,0 m e as medidas dos lados estão em progressão aritmética (PA). A área desse triângulo é igual a a) 3,0 m. b),0

Leia mais

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20.

V = 0,30. 0,20. 0,50 (m 3 ) = 0,030m 3. b) A pressão exercida pelo bloco sobre a superfície da mesa é dada por: P 75. 10 p = = (N/m 2 ) A 0,20. 11 FÍSICA Um bloco de granito com formato de um paralelepípedo retângulo, com altura de 30 cm e base de 20 cm de largura por 50 cm de comprimento, encontra-se em repouso sobre uma superfície plana horizontal.

Leia mais

Física. Questão 1. Questão 2. Avaliação: Aluno: Data: Ano: Turma: Professor:

Física. Questão 1. Questão 2. Avaliação: Aluno: Data: Ano: Turma: Professor: Avaliação: Aluno: Data: Ano: Turma: Professor: Física Questão 1 (Unirio 2000) Um aluno pegou um fina placa metálica e nela recortou um disco de raio r. Em seguida, fez um anel também de raio r com um fio

Leia mais

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015

Conteúdo. Apostilas OBJETIVA - Ano X - Concurso Público 2015 Apostilas OBJETIVA - Ano X - Concurso Público 05 Conteúdo Matemática Financeira e Estatística: Razão; Proporção; Porcentagem; Juros simples e compostos; Descontos simples; Média Aritmética; Mediana; Moda.

Leia mais

α rad, assinale a alternativa falsa.

α rad, assinale a alternativa falsa. Nome: ºANO / CURSO TURMA: DATA: 0 / 09 / 0 Professor: Paulo (G - ifce 0) Considere um relógio analógico de doze horas O ângulo obtuso formado entre os ponteiros que indicam a hora e o minuto, quando o

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Funções 1º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Funções º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista º Bimestre/0 Aluno(a): Número: Turma: ) Na função f : R R, com f()

Leia mais

EXERCÍCIOS 1ª SÉRIE ESPELHOS ESFÉRICOS

EXERCÍCIOS 1ª SÉRIE ESPELHOS ESFÉRICOS EXERCÍCIOS 1ª SÉRIE ESPELHOS ESFÉRICOS 1. (Uel 2011) Considere a figura a seguir. Com base no esquema da figura, assinale a alternativa que representa corretamente o gráfico da imagem do objeto AB, colocado

Leia mais

O estado no qual um ou mais corpos possuem a mesma temperatura e, dessa forma, não há troca de calor entre si, denomina-se equilíbrio térmico.

O estado no qual um ou mais corpos possuem a mesma temperatura e, dessa forma, não há troca de calor entre si, denomina-se equilíbrio térmico. 4. CALORIMETRIA 4.1 CALOR E EQUILÍBRIO TÉRMICO O objetivo deste capítulo é estudar a troca de calor entre corpos. Empiricamente, percebemos que dois corpos A e B, a temperaturas iniciais diferentes, ao

Leia mais

Exercícios Complementares 5.2

Exercícios Complementares 5.2 Exercícios Complementares 5.2 5.2A Veri que se a função dada é ou não solução da edo indicada: (a) y = 2e x + xe x ; y 00 + 2y 0 + y = 0: (b) x = C e 2t + C 2 e 3t ; :: x 0 : x + 6x = 0: (c) y = ln x;

Leia mais

Refração da Luz Prismas

Refração da Luz Prismas Refração da Luz Prismas 1. (Fuvest 014) Um prisma triangular desvia um feixe de luz verde de um ângulo θ A, em relação à direção de incidência, como ilustra a figura A, abaixo. Se uma placa plana, do mesmo

Leia mais

Função Quadrática Função do 2º Grau

Função Quadrática Função do 2º Grau Colégio Adventista Portão EIEFM MATEMÁTICA Função Quadrática 1º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 5 º Bimestre/13 Aluno(a): Número: Turma: Função Quadrática

Leia mais

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas

XXVI Olimpíada de Matemática da Unicamp. Instituto de Matemática, Estatística e Computação Científica Universidade Estadual de Campinas Gabarito da Prova da Primeira Fase 15 de Maio de 010 1 Questão 1 Um tanque de combustível, cuja capacidade é de 000 litros, tinha 600 litros de uma mistura homogênea formada por 5 % de álcool e 75 % de

Leia mais

Prova bimestral MATEMÁTICA. 1 o BIMESTRE 4 o ANO. 1. O Decreto n o 3.179, de 21 de setembro de 1999, afirma que:

Prova bimestral MATEMÁTICA. 1 o BIMESTRE 4 o ANO. 1. O Decreto n o 3.179, de 21 de setembro de 1999, afirma que: Material elaborado pelo Ético Sistema Ensino Ensino Fundamental Publicado em 2011 Prova bimestral 1 o BIMESTRE 4 o ANO MATEMÁTICA Data: / / Nível: Escola: Nome: 1. O Decreto n o 3.179, de 21 de setembro

Leia mais