UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS"

Transcrição

1 ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br 1

2 PIRÂMIDES Pirâmide é o poliedro convexo tal que uma face é um polígono convexo e as demais faces são triângulos que têm um vértice comum. Numa pirâmide devemos destacar os seguintes elementos: h PIRAMIDE OBLÍQUA: projeção ortogonal do vértice não coincide com o centro da base. PIRAMIDE RETA: projeção ortogonal do vértice coincide com o centro da base. Nomenclatura O nome de uma pirâmide, é de acordo com o número de lados do polígono da sua base. Se for triângulo, chama-se triangular, se for quadrilátero, quadrangular e assim sucessivamente. Pirâmide Regular Para uma pirâmide ser regular, é necessário que ela satisfaça duas condições: 1ª) A base deve ser um polígono regular; 2ª) A projeção ortogonal do vértice sobre o plano da base coincide com o centro da base. Numa pirâmide regular devemos destacar os seguintes elementos: blog.portalpositivo.com.br 2

3 Em uma pirâmide regular, as arestas laterais são iguais, logo, as faces laterais são triângulos isósceles congruentes. Área total de uma pirâmide (A t ) : A t = A b + A l, onde A b ( área da base ) e A l ( área lateral ou seja soma das áreas das faces ). Volume de uma pirâmide ( V ) : V = 3 1. Ab. h, onde A b ( área da base ) e h ( sua altura). Tetraedro Regular É a pirâmide que possui quatro faces que são triângulos equiláteros. apótema da base ( m ) : m = apótema do tetraedro ( g ) : g = a 3 6 a 3 2 blog.portalpositivo.com.br 3

4 altura de um tetraedro regular ( h ) : h = 2 área total ( A t ) : A t = a 3 a 6 3 volume ( V ) : V = 3 a Exemplos: 1) Calcule a área total e o volume de uma pirâmide quadrangular regular cuja a aresta da base mede 8 cm e a sua altura 3 cm. Resolução: 2) O volume de uma pirâmide triangular regular é igual a 24 3 cm 3 e sua altura igual a 6cm. Calcule a medida da aresta da sua base. Resolução: 3) A soma de todas as arestas de um tetraedro regular é igual a 36 cm. Calcule a sua área total e o seu volume. Resolução: blog.portalpositivo.com.br 4

5 EXERCÍCIOS DE FIXAÇÃO DA APRENDIZAGEM 1) Dada uma pirâmide quadrangular regular cuja a altura mede 12cm e o apótema da base mede 9cm. Calcule: a) O apótema da pirâmide. Resp: 15 cm b) A aresta da base. Resp: 18 cm c) A aresta lateral. Resp: 3 34 cm d) A área lateral. Resp: 540 cm 2 e) O volume. Resp: 1296 cm 3 2) Dada uma pirâmide triangular regular cuja a aresta lateral mede 15cm e a aresta da base mede 18cm. Calcule: a) O apótema da pirâmide. Resp: 12 cm b) A apótema da base. Resp: 3 3 cm c) A altura da pirâmide. Resp: 3 13 cm d) A área lateral. Resp: 324 cm 2 e) A área total. Resp: 81( 3 + 4) cm 2 3) O perímetro da base de uma pirâmide hexagonal regular mede 36cm e o apótema da pirâmide 20cm. Calcule: a) O apótema da base. Resp: 3 3 cm b) A altura da pirâmide. Resp: 373 cm c) A área lateral. Resp: 360 cm 2 d) A área total. Resp: 18( ) cm 2 4) Uma pirâmide regular tem por base um quadrado de 12cm de lado. Ache o volume, sabendo que a aresta lateral mede 15cm. Resp: cm 3 5) A base de uma pirâmide regular é um triângulo de lados 8cm, 10cm e 10cm. Ache o volume, sabendo que a altura da pirâmide mede 27cm. Resp: cm 6) A aresta de um tetraedro regular mede 12 cm. Ache a sua altura e sua área total. Resp: h = 2 2 cm A t = 12 3 cm 2 7) A área total de um tetraedro regular é 81 3 cm 2. Ache o apótema do tetraedro. Resp: cm blog.portalpositivo.com.br 5

6 8) Considerando um tetraedro regular, Calcule: a) Seu volume, sabendo que aresta mede 3 2 cm. Resp: 9cm 3 b) Seu volume, sabendo que a área total dele é 24 3 cm 2. Resp: 8 3 cm 3 c) Sua altura, sabendo que o seu volume é 36 2 cm 3. Resp: cm 9) Calcule a área total e o volume de um octaedro regular cuja aresta mede 3 cm. Resp: A = 18 3 cm 2 V = 9 cm 3 10) (Unifesp) Quatro dos oito vértices de um cubo de aresta unitária são vértices de um tetraedro regular. As arestas do tetraedro são diagonais das faces do cubo, conforme mostra a figura. a) Obtenha a altura do tetraedro e verifique que ela é igual a dois terços da diagonal do cubo. Resp: b) Obtenha a razão entre o volume do cubo e o volume do tetraedro. Resp: 3 11) (Fuvest) Um telhado tem a forma da superfície lateral de uma pirâmide regular, de base quadrada. O lado da base mede 8m e a altura da pirâmide 3m. As telhas para cobrir esse telhado são vendidas em lotes que cobrem 1m 2. Supondo que possa haver 10 lotes de telhas desperdiçadas (quebras e emendas), o número mínimo de lotes de telhas a ser comprado é: a) 90 b) 100 c) 110 d) 120 e) 130 Resp: a 12) (Uff) A grande pirâmide de Quéops, antiga construção localizada no Egito, é uma pirâmide regular de base quadrada, com 137 m de altura. Cada face dessa pirâmide é um triângulo isósceles cuja altura relativa à base mede 179 m. A área da base dessa pirâmide, em m 2, é: a) b) c) d) e) Resp: a blog.portalpositivo.com.br 6

7 13) Calcule o volume de uma pirâmide quadrangular inscrita num cubo de aresta 3cm. Resp: 9 cm 2 14) Numa pirâmide regular de base quadrada, sabe-se que a área da base é 32 cm 2 e que o apótema da pirâmide mede 8 cm. Calcule a medida da altura dessa pirâmide. Resp: 2 14 cm 15) Uma pirâmide regular hexagonal têm aresta da base igual a 5 cm e aresta lateral igual a 7 cm. Qual o volume dessa pirâmide? Resp: 75 2 cm 3 Bibliografia: Curso de Matemática Volume Único Autores: Bianchini&Paccola Ed. Moderna Matemática Fundamental - Volume Único Autores: Giovanni/Bonjorno&Givanni Jr. Ed. FTD Contexto&Aplicações Volume Único Autor: Luiz Roberto Dante Ed. Ática blog.portalpositivo.com.br 7

UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS

UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PIRÂMIDES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portalpositivo.com.br 1 PIRÂMIDES Pirâmide é o poliedro convexo tal que uma face é um

Leia mais

Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e

Lista de exercícios - 2os anos - matemática 2 - prova Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e Lista de exercícios - 2os anos - matemática 2 - prova 7-2013 Professores: Cebola, Figo, Guilherme, Rod e Sandra 1 - Para se fabricar uma caixa de sabão em pó com 25 cm de altura, 16 cm de largura e 5 cm

Leia mais

UNITAU APOSTILA PRISMAS

UNITAU APOSTILA PRISMAS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA PRISMAS Nome: nº: blog.portalpositivo.com.br/capitcar 1 PRISMAS São os poliedros convexos que têm duas faces paralelas e congruentes (chamadas

Leia mais

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3.

2. (Fuvest 2005) A base ABCD da pirâmide ABCDE é um retângulo de lados AB = 4 e BC = 3. 1. (Fuvest 2004) No sólido S representado na figura ao lado, a base ABCD é um retângulo de lados AB = 2Ø e AD = Ø; as faces ABEF e DCEF são trapézios; as faces ADF e BCE são triângulos eqüiláteros e o

Leia mais

Matemática Pirâmides Fácil [20 Questões]

Matemática Pirâmides Fácil [20 Questões] Matemática Pirâmides Fácil [0 Questões] 01 - (MACK SP) Considere uma pirâmide cuja base é um polígono convexo. Se a soma das medidas dos ângulos internos de todas as suas faces é 600º, o número de lados

Leia mais

Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides.

Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides. Pirâmides: Neste momento, continuaremos a estudar a geometria espacial dos sólidos geométricos, enfatizando agora as pirâmides. A seguir, algumas representações de pirâmides: Essa forma espacial é bastante

Leia mais

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases.

GEOMETRIA MÉTRICA. As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. GEOMETRIA MÉTRICA 1- I- PRISMA 1- ELEMENTOS E CLASSIFICAÇÃO Considere o prisma: As bases são polígonos congruentes. Os prismas são designados de acordo com o número de lados dos polígonos das bases. BASES

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA POLIEDROS PROF. CARLINHOS

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA POLIEDROS PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA POLIEDROS PROF. CARLINHOS 1 Sólidos Geométricos Introdução Grande parte dos objetos que nos são familiares tem formas geométricas definidas; são

Leia mais

Lista de Recuperação Bimestral de Matemática 2

Lista de Recuperação Bimestral de Matemática 2 Lista de Recuperação Bimestral de Matemática NOME Nº SÉRIE: DATA / /01 BIMESTRE PROFESSOR : Denis Rocha DISCIPLINA : Matemática VISTO COORDENAÇÃO INSTRUÇÕES EM Visto: 1) Preencha seu nome número e série

Leia mais

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz )

REVISÃO Lista 11 Geometria Espacial. para área lateral, total, V para volume, d para diagonal, h para altura, r para raio, g para geratriz ) NOME: ANO: º Nº: PROFESSOR(A): Ana Luiza Ozores DATA: Algumas definições (Nas fórmulas a seguir, vamos utilizar aqui REVISÃO Lista Geometria Espacial A B para área da base, para área lateral, total, V

Leia mais

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces

Relação de Euler nos prismas V= número de vértices A= número de arestas F= número de faces Prismas A reunião dos infinitos segmentos, paralelos a s, que têm um de seus extremos no polígono ABCDEF contido em e outro extremo pertencente ao plano, constitui um sólido geométrico chamado prisma.

Leia mais

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m.

Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides. 3 ano/e.m. Módulo Geometria Espacial II - volumes e áreas de prismas e pirâmides Pirâmide ano/em Pirâmide Geometria Espacial II - volumes e áreas de prismas e pirâmides 1 Exercícios Introdutórios Exercício 1 Determine

Leia mais

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU MATEMÁTICA-PROF. CARLINHOS/KOBA-2º ENSINO MÉDIO

ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU MATEMÁTICA-PROF. CARLINHOS/KOBA-2º ENSINO MÉDIO ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI -UNITAU ATEÁTICA-PROF. CARLINHOS/KOBA-º ENSINO ÉDIO EXERCÍCIOS PARA ESTUDO DE RECUPERAÇÃO DO º SEESTRE ATEÁTICA I ) Um corretor de imóveis pretende vender o terreno

Leia mais

Definição da pirâmide. Seja D uma superfície poligonal contida em um plano α, e V um ponto não pertencente a esse plano.

Definição da pirâmide. Seja D uma superfície poligonal contida em um plano α, e V um ponto não pertencente a esse plano. Unidade 9 - Pirâmide Introdução Definição de pirâmide Denominação de Pirâmides Pirâmide regular Medida da superfície (área) de uma pirâmide regular Volume da pirâmide Introdução A palavra pirâmide, normalmente,

Leia mais

2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume

2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 1 TETRAEDRO REGULAR. 2.1 Área lateral. 2.2 Área da base. 2.3 Área total. 2.4 Volume Matemática Pedro Paulo GEOMETRIA ESPACIAL VI são 1 TETRAEDRO REGULAR É uma piramide regular triangular, cujas faces triângulos equiláteros de lado 2 ÁREAS E VOLUME DO TETRAEDRO REGULAR 2.1 Área lateral

Leia mais

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:

1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2014 1ª. SÉRIE 1.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: 2.-Ao fazer uma

Leia mais

Matemática Geometria Espacial. Professor Bacon

Matemática Geometria Espacial. Professor Bacon Matemática Geometria Espacial Professor Bacon Prismas Volume Fórmula Geral: V= A.base x Altura (h) Área lateral = soma das áreas laterais Um caminhão basculante tem a carroceria com as dimensões indicadas

Leia mais

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE

GEOMETRIA ESPACIAL TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO REGULARES RETO POLIEDROS OBLÍQUO PRISMA REGULAR IRREGULARES RETA OBLÍQUA PIRÂMIDE GEOMETRIA ESPACIAL SÓLIDOS GEOMÉTRICOS POLIEDROS REGULARES SÓLIDOS DE REVOLUÇÃO IRREGULARES CONE TETRAEDRO HEXAEDRO OCTAEDRO DODECAEDRO ICOSAEDRO ESFERA CILINDRO PRISMA PIRÂMIDE RETO OBLÍQUO RETO RETO

Leia mais

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016

INSTITUTO GEREMÁRIO DANTAS COMPONENTE CURRICULAR: MATEMÁTICA II EXERCÍCIOS DE RECUPERAÇÃO FINAL 2016 INSTITUTO GEREMÁRIO DANTAS Educação Infantil, Ensino Fundamental e Médio Fone: (1) 1087900 Rio de Janeiro RJ www.igd.com.br Aluno(a): º Ano:C1 Nº Professora: Marcilene Siqueira Gama COMPONENTE CURRICULAR:

Leia mais

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF

Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF Nome: Nº Ano: Turma: Disciplina: Professor: Data: / / GABARITO - LISTA DE REFORÇO MATEMÁTICA 2 0 ANO EF 01) Observando a figuras e simplesmente contando, determine o número de faces, arestas e o vértices

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...) Resp. 249 2. Determinar a razão da PA ( a 1,a 2, a 3,...) em que o primeiro

Leia mais

Disciplina: Matemática Data da entrega: 21/11/2014.

Disciplina: Matemática Data da entrega: 21/11/2014. Lista de Exercícios - 08 Aluno (a): Nº. Professor: Flávio Série: 2º (Ensino médio) Disciplina: Matemática Data da entrega: 21/11/2014. Observação: A lista deverá apresentar capa e enunciados. 1. Uma pirâmide

Leia mais

MATEMÁTICA - 3 o ANO MÓDULO 53 PIRÂMIDE

MATEMÁTICA - 3 o ANO MÓDULO 53 PIRÂMIDE MATEMÁTICA - 3 o ANO MÓDULO 53 PIRÂMIDE Como pode cair no enem (ENEM) Uma indústria fabrica brindes promocionais em forma de pirâmide. A pirâmide é obtida a partir de quatro cortes em um sólido

Leia mais

Geometria Descritiva. Revisão: Polígonos regulares/irregulares. Linhas e Pontos pertencentes a Faces/Arestas de Poliedros

Geometria Descritiva. Revisão: Polígonos regulares/irregulares. Linhas e Pontos pertencentes a Faces/Arestas de Poliedros Geometria Descritiva Revisão: Polígonos regulares/irregulares Linhas e Pontos pertencentes a Faces/Arestas de Poliedros - Os Poliedros em estudo em GD podem ser: regulares (cujas fases são polígonos regulares,

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Geometria Espacial 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre 2012 Aluno(a): Número: Turma: 1) Resolva

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Uff 99) Considere o cubo de vértices A, B, C, D, E, F, G e H representando na figura abaixo. Sabendo que a área do triângulo DEC é Ë2/2m, calcule o volume da pirâmide cujos vértices são D, E, G e C.

Leia mais

singular Exercícios-Paralelepípedo

singular Exercícios-Paralelepípedo singular Prof. Liana Turma: C17-27 Lista mínima de exercícios para revisão das unidades 1,2 e : Poliedros Exercícios-Prismas 1. Determine a área da base, a área lateral, a área total e o volume de um prisma

Leia mais

Questão 7 FGV O número de anagramas da palavra ECONOMIA que não começam nem terminam com a letra O é:

Questão 7 FGV O número de anagramas da palavra ECONOMIA que não começam nem terminam com a letra O é: COLÉGIO SHALOM Ensino Fundamental 2 Ano Prof.º: kaká Disciplina Matemática Aluno (a):. No. Trabalho de Recuperação Entrega Na data da prova Nota: Orientações: - Responder manuscrito; - Cópias de colegas,

Leia mais

Lista de exercícios 05. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 05. Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 05 Aluno (a) : Série: 2º ano (Ensino médio) Professor: Flávio Disciplina: Matemática No Anhanguera você é + Enem Observações: Data da entrega: 29/08/2015. A lista deverá apresentar

Leia mais

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2

V = 12 A = 18 F = = 2 V=8 A=12 F= = 2 Por: Belchior, Ismaigna e Jannine Relação de Euler Em todo poliedro convexo é válida a relação seguinte: V - A + F = 2 em que V é o número de vértices, A é o número de arestas e F, o número de faces. Observe

Leia mais

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA

Poliedross. ANOTAÇÕES EM AULA Capítulo 23 Poliedros 1.5 CONEXÕES COM A MATEMÁTICA Poliedross 1.5 Superfície poliédrica fechada Uma superfície poliédrica fechada é composta de um número finito (quatro ou mais) de superfícies poligonais planas, de modo que cada lado de uma dessas superfícies

Leia mais

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes

Apostila de Matemática II 3º bimestre/2016. Professora : Cristiane Fernandes Apostila de Matemática II 3º bimestre/2016 Professora : Cristiane Fernandes Pirâmide A pirâmide é uma figura geométrica espacial, um poliedro composto por uma base (triangular, pentagonal, quadrada, retangular,

Leia mais

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE

EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 1ª. SÉRIE Inequações Modulares 1.- Resolver em IR a) x 1 < 2 b) 1-2x > 3 c) x 2 4x < 0 Exercícios de PA e PG 1. Determinar o 61º termo da PA ( 9,13,17,21,...)

Leia mais

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição

Lista de exercícios de Geometria Espacial 2017 Prof. Diego. Assunto 1 Geometria Espacial de Posição Assunto 1 Geometria Espacial de Posição (01). Considere um plano a e um ponto P qualquer no espaço. Se por P traçarmos a reta perpendicular a a, a intersecção dessa reta com a é um ponto chamado projeção

Leia mais

3ª Ficha de Trabalho

3ª Ficha de Trabalho SOL SUNÁRI LRTO SMPIO 3ª icha de Trabalho MTMÁTI - 10º no 01/013 1ª. Parte : ( Questões Múltiplas ) 1. O perímetro do retângulo é igual a: ( ) 0 8 ( ) 10 8 ( ) 5 3 10 ( ) 100 15 15 75. diagonal de um quadrado

Leia mais

UNITAU APOSTILA CILINDROS PROF. CARLINHOS

UNITAU APOSTILA CILINDROS PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA CILINDROS PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: 1 CILINDROS Na figura abaixo, temos: - Dois planos paralelos α e β; - Um círculo contido em

Leia mais

Geometria Espacial: Sólidos Geométricos

Geometria Espacial: Sólidos Geométricos Aluno(a): POLIEDROS E PRISMA (1º BIM) Noções Sobre Poliedros Denominam-se sólidos geométricos as figuras geométricas do espaço. Entre os sólidos geométricos, destacamos os poliedros e os corpos redondos.

Leia mais

1ª Parte SÓLIDOS GEOMÉTRICOS. Prof. Danillo Alves 6º ano Matutino

1ª Parte SÓLIDOS GEOMÉTRICOS. Prof. Danillo Alves 6º ano Matutino 1ª Parte SÓLIDOS GEOMÉTRICOS Prof. Danillo Alves 6º ano Matutino "Um monstro ou uma bela senhora, a forma como vemos a Matemática é produto dos nossos esforços." Prof. Jerriomar Ferreira As Formas existentes

Leia mais

1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3.

1 POLIEDROS 2 ELEMENTOS 4 POLIEDROS REGULARES 3 CLASSIFICAÇÃO. 3.2 Quanto ao número de faces. 4.1 Tetraedro regular. 3. Matemática 2 Pedro Paulo GEOMETRIA ESPACIAL II 1 POLIEDROS Na Geometria Espacial, como o nome diz, o nosso assunto são as figuras espaciais (no espaço). Vamos estudar sólidos e corpos geométricos que possuem

Leia mais

Resumo de Geometria Espacial Métrica

Resumo de Geometria Espacial Métrica 1) s. esumo de Geometria Espacial Métrica Extensivo - São João da Boa Vista Matemática - Base Base Base Base Base oblíquo reto quadrangular regular exagonal regular triangular regular Base Fórmulas dos

Leia mais

3 PIRÂMIDE RETA 1 ELEMENTOS DA PIRÂMIDE 4 PIRÂMIDE REGULAR 2 CLASSIFICAÇÃO DE PIRÂMIDES. Matemática Pedro Paulo GEOMETRIA ESPACIAL V

3 PIRÂMIDE RETA 1 ELEMENTOS DA PIRÂMIDE 4 PIRÂMIDE REGULAR 2 CLASSIFICAÇÃO DE PIRÂMIDES. Matemática Pedro Paulo GEOMETRIA ESPACIAL V Matemática Pedro Paulo GEOMETRIA ESPACIAL V 1 ELEMENTOS DA PIRÂMIDE Pirâmide é um poliedro formado por um polígono que é a base e um ponto fora do plano da base que é o vértice. Cada lado do polígono da

Leia mais

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio

Escola da Imaculada. Estudo da Pirâmide. Aluno (a): Professora: Jucélia 2º ano ensino médio Escola da Imaculada Estudo da Pirâmide Aluno (a): Professora: Jucélia 2º ano ensino médio Estudo da Pirâmide 1- Definição As pirâmides são poliedros cuja base é uma região poligonal e as faces laterais

Leia mais

MATEMÁTICA LISTA DE PRISMAS

MATEMÁTICA LISTA DE PRISMAS NOME: MÊS: SÉRIE:: 1 a TURMA: ENSINO: MÉDIO LISTA DE PRISMAS MATEMÁTICA 1) Observe o prisma regular hexagonal ilustrado na figura a seguir. A medida da aresta da base é 6 cm e a medida da altura é 10 cm.

Leia mais

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar

Exercícios de Revisão 1º Ano Ensino Médio Prof. Osmar Exercícios de Revisão 1º no Ensino Médio Prof. Osmar 1.- Sendo = { x Z / 0 x 2 } e = { y Z / 0 x 5}. esboce o gráfico da função f : tal que y = 2 x + 1 e dê seu conjunto imagem. 2.- No gráfico abaixo de

Leia mais

GEOMETRIA MÉTRICA ESPACIAL

GEOMETRIA MÉTRICA ESPACIAL GEOMETRIA MÉTRICA ESPACIAL .. PARALELEPÍPEDOS RETÂNGULOS Um paralelepípedo retângulo é um prisma reto cujas bases são retângulos. AB CD A' B' C' D' a BC AD B' C' A' D' b COMPRIMENTO LARGURA AA' BB' CC'

Leia mais

Sólidos Inscritos e Circunscritos 3.º Ano

Sólidos Inscritos e Circunscritos 3.º Ano Sólidos Inscritos e Circunscritos 3.º Ano 1. (Fuvest 2013) Os vértices de um tetraedro regular são também vértices de um cubo de aresta 2. A área de uma face desse tetraedro é a) 2 3 b) 4 c) 3 2 d)3 3

Leia mais

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones)

Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) Volumes (prismas e cilindros) Áreas (prismas e cilindros) Volumes (pirâmides e cones) Áreas (pirâmides e cones) A geometria é um ramo da matemática que se dedica ao estudo do espaço e das figuras que podem

Leia mais

2.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente:

2.- Escrevendo como uma potência de base 2 cada um dos números : A= ( 2 3 ) 7 ; B = e C = escreva-os em ordem decrescente: EXERCÍCIOS DE REVISÃO ENSINO MÉDIO 4º. BIMESTRE 2012 1ª. SÉRIE 1.- A média das notas dos 21 alunos do 1º Ano do Ensino Médio, em Matemática é 5,80. Se a nota de Álvaro que é 1,80 for excluída, então qual

Leia mais

Lista de exercícios 06 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Pirâmides

Lista de exercícios 06 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Pirâmides Lista de exercícios 06 Aluno (a): Turma: 2º série: (Ensino médio) Professores: Flávio Disciplina: Matemática Pirâmides Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

Leia mais

Lista de exercícios 08 Aluno (a):

Lista de exercícios 08 Aluno (a): Lista de exercícios 08 Aluno (a): Turma: 3º série (Ensino médio) Professores: Flávio Disciplina: Matemática Prismas e pirâmides Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações:

Leia mais

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO

DESENHO GEOMÉTRICO 3º ANO ENSINO MÉDIO DESENHO GEOMÉRICO º NO ENSINO MÉDIO PROFESSOR: DENYS YOSHID PERÍODO: NOIE DESENHO GEOMÉRICO NO ENSINO MÉDIO - 016 1 Sumário 1.Pirâmide... 1.1 Elementos de uma pirâmide... 1. Classificação da pirâmide...

Leia mais

Projeto de Recuperação Final - 2ª Série (EM) Apostila Aula Exercícios Conteúdo De aula: 2 De casa: 1,2,4,5,7,8. De aula: 1,3

Projeto de Recuperação Final - 2ª Série (EM) Apostila Aula Exercícios Conteúdo De aula: 2 De casa: 1,2,4,5,7,8. De aula: 1,3 Projeto de Recuperação Final - ª Série (EM) MATEMÁTICA 1 MATÉRIA A SER ESTUDADA: Apostila Aula Exercícios Conteúdo De aula: De casa: 1,,4,5,7,8 4 De aula: 1, De casa: 1,,,4,5,7 5 De aula: 1, De casa: 1,,,4,5,9

Leia mais

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3.

3 ÁREAS E VOLUME DO TRONCO DE PIRÂMIDE 1 TRONCO DE PIRÂMIDE 2 SEMELHANÇA ENTRE AS PIRÂMIDES. 3.1 Área lateral. 3.2 Área das bases. 3. Matemática Pedro Paulo GEOMETRIA ESPACIAL VIII 1 TRONCO DE PIRÂMIDE Chamaremos de tronco de pirâmide de bases paralelas a porção da pirâmide limitada por sua base e por uma secção transversal qualquer

Leia mais

Hewlett-Packard PRISMAS. Aulas 01 e 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard PRISMAS. Aulas 01 e 02. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Packard PRISMAS Aulas 01 e 02 Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Ano: 2016 Sumário PRISMAS... 1 CLASSIFICAÇÃO DE UM PRISMA... 1 ÁREAS EM UM PRISMA... 1 EXERCÍCIOS FUNDAMENTAIS...

Leia mais

Prof. Paulo Cesar Costa

Prof. Paulo Cesar Costa 01. (UFPA) Uma pirâmide regular, cuja base é um quadrado de diagonal 6 6 cm, e altura igual a / do lado da base, tem área total igual a: 96 cm b) 5 cm 88 cm 8 cm e) 576 cm 06. (ITA) A aresta de um cubo

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

RECURSO PARA AS QUESTÕES DE MATEMÁTICA DO CONCURSO SEEMG 2015 PROFESSOR DE MATEMÁTICA (COLÉGIO TIRADENTES)

RECURSO PARA AS QUESTÕES DE MATEMÁTICA DO CONCURSO SEEMG 2015 PROFESSOR DE MATEMÁTICA (COLÉGIO TIRADENTES) RECURSO PARA AS QUESTÕES DE MATEMÁTICA DO CONCURSO SEEMG 2015 PROFESSOR DE MATEMÁTICA (COLÉGIO TIRADENTES) 11) Com relação a uma pirâmide de base eneagonal é correto afirmar que: a) O número de arestas

Leia mais

Matemática Uma circunferência de raio 12, tendo AB e CD como diâmetros, está ilustrada na figura abaixo. Indique a área da região hachurada.

Matemática Uma circunferência de raio 12, tendo AB e CD como diâmetros, está ilustrada na figura abaixo. Indique a área da região hachurada. Matemática 2 01. Pedro tem 6 bolas de metal de mesmo peso p. Para calcular p, Pedro colocou 5 bolas em um dos pratos de uma balança e a que restou, juntamente com um cubo pesando 100g, no outro prato,

Leia mais

OS PRISMAS. 1) Definição e Elementos :

OS PRISMAS. 1) Definição e Elementos : 1 OS PRISMAS 1) Definição e Elementos : Dados dois planos paralelos α e β, um polígono contido em um desses planos e um reta r, que intercepta esses planos, chamamos de PRISMA o conjunto de todos os segmentos

Leia mais

MATEMÁTICA - 2 o ANO MÓDULO 06 PIRÂMIDE

MATEMÁTICA - 2 o ANO MÓDULO 06 PIRÂMIDE MATEMÁTICA - 2 o ANO MÓDULO 06 PIRÂMIDE h a p 4 a p = 5 6 a b 6 a p = 3 B Como pode cair no enem (ENEM) Uma fábrica produz velas de parafina em forma de pirâmide quadrangular regular com 19 cm de altura

Leia mais

Geometria Métrica Espacial

Geometria Métrica Espacial UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Geometria Métrica Espacial

Leia mais

Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca

Relação da matéria para a recuperação final. 2º Colegial / Geometria / Jeca Relação da matéria para a recuperação final. º olegial / eometria / Jeca ula 33 - eometria métrica do espaço - Prisma reto. ula 34 - Paralelepípedo retorretângulo. ula 35 - ubo. ula 36 - Prisma regular.

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Fuvest 99) Considere uma caixa sem tampa com a forma de um paralelepípedo reto de altura 8 m e base quadrada de lado 6 m. Apoiada na base, encontra-se uma pirâmide sólida reta de altura 8m e base quadrada

Leia mais

Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO

Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO Colégio Adventista Portão EIEFM MATEMÁTICA Poliedros 2º Ano APROFUNDAMENTO/REFORÇO Professor: Hermes Jardim Disciplina: Matemática Lista 1 1º Bimestre/2013 Aluno(a): Número: Turma: 1) Coloque V ou F, conforme

Leia mais

Geometria Espacial - AFA

Geometria Espacial - AFA Geometria Espacial - AFA 1. (AFA) O produto da maior diagonal pela menor diagonal de um prisma hexagonal regular de área lateral igual a 1 cm e volume igual a 1 cm é: 10 7. 0 7. 10 1. (D) 0 1.. (AFA) Qual

Leia mais

Construção dos Poliedros: Cubo e Tetraedro e suas Aplicações

Construção dos Poliedros: Cubo e Tetraedro e suas Aplicações Construção dos Poliedros: Cubo e Tetraedro e suas Aplicações Rita de Cássia Pavani Lamas, Departamento de Matemática, IBILCE-UNESP rita@ibilce.unesp.br Uma aplicação da congruência de triângulos e polígonos

Leia mais

EMENTA ESCOLAR III Trimestre Ano 2014

EMENTA ESCOLAR III Trimestre Ano 2014 EMENTA ESCOLAR III Trimestre Ano 2014 Disciplina: Matemática Professor: Flávio Calônico Júnior Turma: 8 ano do Ensino Fundamental II Data 16/setembro 18/setembro 19/setembro 23/setembro 25/setembro 26/setembro

Leia mais

Geometria Espacial Profº Driko

Geometria Espacial Profº Driko Geometria Espacial Profº Driko PRISMAS Sejam α e β dois planos paralelos distintos, uma reta r secante a esses planos e uma região poligonal convexa A1A2A3...An contida em α. Consideremos todos os segmentos

Leia mais

OS PRISMAS. 1) Conceito :

OS PRISMAS. 1) Conceito : 1 SÍNTESE DE CONTEÚDO MATEMÁTICA SEGUNDA SÉRIE - ENSINO MÉDIO ASSUNTO : OS PRISMAS NOME :...NÚMERO :... TURMA :... ============================================================ OS PRISMAS 1) Conceito :

Leia mais

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff

Sólidos Geométricos, Poliedros e Volume Prof. Lhaylla Crissaff Sólidos Geométricos, Poliedros e Volume 2017.1 Prof. Lhaylla Crissaff www.professores.uff.br/lhaylla Sólidos Geométricos Prisma Pirâmide Cilindro Cone Esfera Prisma Ex.: P é um pentágono. Prisma Prisma

Leia mais

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito

2 CILINDRO E ESFERA 1 CUBO E ESFERA. 2.1 Cilindro inscrito. 1.1 Cubo inscrito. 2.2 Cilindro circunscrito. 1.2 Cubo circunscrito Matemática Pedro Paulo GEOMETRIA ESPACIAL XI A seguir, nós vamos analisar a relação entre alguns sólidos e as esferas. Os sólidos podem estar inscritos ou circunscritos a uma esfera. Lembrando: A figura

Leia mais

MA13 Geometria I Avaliação

MA13 Geometria I Avaliação 13 eometria I valiação 011 abarito Questão 1 (,0) figura abaixo mostra um triângulo equilátero e suas circunferências inscrita e circunscrita. circunferência menor tem raio 1. alcule a área da região sombreada.

Leia mais

EXERCICIOS - ÁREAS E ÂNGULOS:

EXERCICIOS - ÁREAS E ÂNGULOS: EXERCICIOS - ÁREAS E ÂNGULOS: 32 - Sabendo-se que um ângulo externo de um triângulo retângulo mede 287, quais os valores dos ângulos internos deste? 37 - Assinale qual dos polígonos abaixo possui todos

Leia mais

Interbits SuperPro Web

Interbits SuperPro Web POLÍGONOS REGULARES 1. No estudo da distribuição de torres em uma rede de telefonia celular, é comum se encontrar um modelo no qual as torres de transmissão estão localizadas nos centros de hexágonos regulares,

Leia mais

SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS)

SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS) SÓLIDOS DE BASE(S) HORIZONTAL(AIS) OU FRONTAL(AIS) 56. Exame de 1998 Prova Modelo (código 109) Represente, no sistema de dupla projecção ortogonal, dois segmentos de recta concorrentes, [AE] e [AI]. Os

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

Projeto Jovem Nota 10

Projeto Jovem Nota 10 1. (Ita 2003) Quatro esferas de mesmo raio R > 0 são tangentes externamente duas a duas, de forma que seus centros formam um tetraedro regular com arestas de comprimento 2 R. Determine, em função de R,

Leia mais

Lista de exercícios 04 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática

Lista de exercícios 04 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática Lista de exercícios 04 Aluno (a): Turma: 2ª série: (Ensino médio) Professor: Flávio Disciplina: Matemática Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: É fundamental

Leia mais

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR)

Geometria Espacial PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Espacial 1 PRISMAS Os prismas são sólidos geométricos bastante recorrentes em Espacial. Podemos definir o prisma da seguinte forma: PRISMA RETO DE BASE TRIANGULAR (OU PRISMA TRIANGULAR) Prisma é um sólido

Leia mais

Resumo. Maria Bernardete Barison apresenta Prisma em Geometria Descritiva. Geométrica vol.2 n PRISMA

Resumo. Maria Bernardete Barison apresenta Prisma em Geometria Descritiva. Geométrica vol.2 n PRISMA 1 PRISMA: DEFINIÇÃO PRISMA O prisma é um poliedro irregular compreendido entre dois polígonos iguais e paralelos, e cujas faces laterais são paralelogramos. Os dois polígonos iguais e paralelos são as

Leia mais

Turma 3.a série Professor(a)

Turma 3.a série Professor(a) Caderno de Questões Bimestre.o Questões 10 Disciplina Geometria Espacial Testes 00 Páginas 10 Turma 3.a série Professor(a) Período M Data da Prova 0/06/01 Verifique cuidadosamente se sua prova atende aos

Leia mais

Figuras Geométricas planas e espaciais. Rafael Carvalho

Figuras Geométricas planas e espaciais. Rafael Carvalho Figuras Geométricas planas e espaciais Rafael Carvalho Figuras geométricas planas Na geometria plana vamos então nos atentar ao método de cálculo da área das figuras geométricas planas. Sendo elas os polígonos,

Leia mais

Assunto: Estudo do ponto

Assunto: Estudo do ponto Assunto: Estudo do ponto 1) Sabendo que P(m+1;-3m-4) pertence ao 3º quadrante, determine os possíveis valores de m. resp: -4/3

Leia mais

POLIEDROS AULA I. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

POLIEDROS AULA I. Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos POLIEDROS AULA I Prof. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos POLIEDROS Vértice Face Aresta 1) Definição de POLIEDRO: É uma região do espaço delimitada por um conjunto finito de polígonos,

Leia mais

Sólidos Inscritos e Circunscritos

Sólidos Inscritos e Circunscritos Sólidos Inscritos e Circunscritos 1. (Fuvest 01) Os vértices de um tetraedro regular são também vértices de um cubo de aresta. A área de uma face desse tetraedro é a) b) 4 c) d) e) 6. (Uerj 01) Um cristal

Leia mais

MATEMÁTICA - 1 o ANO MÓDULO 52 POLÍGONOS E QUADRILÁTEROS

MATEMÁTICA - 1 o ANO MÓDULO 52 POLÍGONOS E QUADRILÁTEROS MTEMÁTI - 1 o NO MÓULO 52 POLÍGONOS E QURILÁTEROS B b a c d B E B E B β X γ Y W α Z θ B B B B B B B B B M N B M N Fixação 1) Qual o polígono convexo que tem 90 diagonais? Fixação F 2) diferença entre

Leia mais

1. Encontre a equação das circunferências abaixo:

1. Encontre a equação das circunferências abaixo: Nome: nº Professor(a): Série: 2ª EM. Turma: Data: / /2013 Nota: Sem limite para crescer Exercícios de Matemática II 2º Ano 2º Trimestre 1. Encontre a equação das circunferências abaixo: 2. Determine o

Leia mais

Projeto de Recuperação Final - 2ª Série (EM)

Projeto de Recuperação Final - 2ª Série (EM) Projeto de Recuperação Final - ª Série (EM) Matemática 1 MATÉRIA A SER ESTUDADA Nome do Fascículo Aula Ex de Ex da aula tarefa Análise Combinatória Problemas de contagem 1,,4,5,7,8 Análise Combinatória

Leia mais

Aresta. Lateral. Altura. Aresta da Base Apótema da Base. Observação: na pirâmide regular a base é um polígono regular; a projeção ortogonal do

Aresta. Lateral. Altura. Aresta da Base Apótema da Base. Observação: na pirâmide regular a base é um polígono regular; a projeção ortogonal do # Pirâmides / Elementos # Pirâmide Regular Vértice Aresta Lateral Face Lateral Altura Aresta Lateral Altura Raio Base Aresta da Base Base Aresta da Base Apótema da Base Apótema da Pirâmide Área da Base

Leia mais

GEOMETRIA ESPACIAL CONTEÚDOS. Capacidade e volume Poliedros Pirâmides Cilindros Cone Esfera AMPLIANDO SEUS CONHECIMENTOS

GEOMETRIA ESPACIAL CONTEÚDOS. Capacidade e volume Poliedros Pirâmides Cilindros Cone Esfera AMPLIANDO SEUS CONHECIMENTOS GEOMETRIA ESPACIAL CONTEÚDOS Capacidade e volume Poliedros Pirâmides Cilindros Cone Esfera AMPLIANDO SEUS CONHECIMENTOS Capacidade e volume Na receita de bolo estava indicado 500 ml de leite ou 500 cm³?

Leia mais

III REPRESENTAÇÃO DO PLANO. 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares

III REPRESENTAÇÃO DO PLANO. 1. Representação do plano Um plano pode ser determinado por: a) três pontos não colineares 59 MINISTÉRIO DA EDUCAÇÃO - UNIVERSIDADE FEDERAL DO PARANÁ SETOR DE CIÊNCIAS EXATAS - DEPARTAMENTO DE EXPRESSÃO GRÁFICA Professora Deise Maria Bertholdi Costa Disciplina CD020 Geometria Descritiva Curso

Leia mais

Poliedros Teoria. Superfície Poliédrica é um conjunto finito de polígonos planos cuja disposição no espaço satisfaz as seguintes propriedades:

Poliedros Teoria. Superfície Poliédrica é um conjunto finito de polígonos planos cuja disposição no espaço satisfaz as seguintes propriedades: Poliedros Teoria Superfície Poliédrica é um conjunto finito de polígonos planos cuja disposição no espaço satisfaz as seguintes propriedades: P1. Todo polígono da Superfície Poliédrica possui algum lado

Leia mais

Plano de Aula 1 IDENTIFICAÇÃO

Plano de Aula 1 IDENTIFICAÇÃO Ministério da Educação Secretária de Educação Profissional e Tecnologia Instituto Federal Catarinense - Câmpus Avançado Sombrio Curso de Licenciatura em Matemática Plano de Aula 1 IDENTIFICAÇÃO Instituto

Leia mais

NOÇÕES DE GEOMETRIA PLANA

NOÇÕES DE GEOMETRIA PLANA NOÇÕES DE GEOMETRIA PLANA Polígonos são figuras planas fechadas com lados retos. Todo polígono possui os seguintes elementos: ângulos, vértices, diagonais e lados. Altura de um triângulo é o segmento de

Leia mais

Onde usar os conhecimentos

Onde usar os conhecimentos VIII GEOMETRIA PLANA Por que aprender Geometria Plana?... O estudo da Geometria nasceu da necessidade que o homem tinha em medir as suas terras. É de grande importância conhecermos as formas e suas características,

Leia mais

Área das figuras planas

Área das figuras planas AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:

Leia mais

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem.

ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO. 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. ESCOLA SECUNDÁRIA DE ALBERTO SAMPAIO 1ª Ficha Informativa MATEMÁTICA - A 10º Ano 2012/2013 1- Ângulos Definição: Chama-se ângulo à porção de plano limitada por duas semirretas com a mesma origem. Definição:

Leia mais

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro

Poliedros 1 ARESTAS FACES VERTICES. Figura 1.1: Elementos de um poliedro Poliedros 1 Os poliedros são sólidos cujo volume é definido pela interseção de quatro ou mais planos (poli + edro). A superfície poliédrica divide o espaço em duas regiões: uma região finita, que é a parte

Leia mais

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA!

U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! 1 U. E. PROF. EDGAR TITO - Turma: 2º ano A Prof. Ranildo Lopes Obrigado pela preferência de nossa ESCOLA! http://ueedgartito.wordpress.com RESUMO DE GEOMETRIA ESPACIAL São conceitos primitivos ( e, portanto,

Leia mais

Matemática - 3C12/14/15/16/26 Lista 2

Matemática - 3C12/14/15/16/26 Lista 2 Matemática - 3C12/14/15/16/26 Lista 2 Poliedros Convexos 1) Determine qual é o poliedro convexo e fechado que tem 6 vértices e 12 arestas. 2) Determine o nº de vértices de dodecaedro convexo que tem 20

Leia mais