O perímetro da figura é a soma de todos os seus lados: P = P =

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "O perímetro da figura é a soma de todos os seus lados: P = P ="

Transcrição

1 PERÍMETRO Prof. Patricia Caldana O cálculo do perímetro de uma região pode vir a ser útil em certas situações do dia a dia; como por exemplo para se determinar a quantidade de arame farpado que é necessário para cercar um lote. Se precisarmos calcular o perímetro de uma região, nós podemos nos deparar com três diferentes situações: a região ser um polígono, uma circunferência ou uma região com forma completamente aleatória. 1º caso (Polígono): Se conhecermos o tamanho de cada lado do polígono, a única coisa que precisamos fazer para acharmos o perímetro é somar cada um deles. Por exemplo, um triângulo de lados 4cm, 4cm e 5cm terá o perímetro igual a 4cm + 4cm + 5cm = 13cm. Um campo de futebol que meça 100m x 70m terá o seu perímetro P = = 340 m. 2º caso (Circunferência): Para calcularmos o perímetro de uma circunferência, precisamos conhecer apenas do tamanho do seu raio. Aplicamos o valor diretamente na fórmula P = 2 π R, onde R é o raio. Por exemplo, uma lupa que tenha raio igual a 5 cm terá o seu perímetro P = 2 π R = 2 * 3.14 * 5 = 31.4 cm. 3º caso (Região Aleatória): Se não conhecermos o tamanho dos lados de uma figura, como na figura abaixo, uma solução para acharmos o perímetro dela é contornála com um barbante para então esticá-lo e medi-lo. Outra solução seria contornar o polígono com pequenos segmentos de reta (o resultado será mais preciso se esses segmentos forem o menor possível), e então somar o comprimento destes segmentos. Por exemplo: O perímetro da figura é a soma de todos os seus lados: P = P = Pagina: 1

2 P = P = 36 Prof. Patricia Caldana A unidade de medida utilizada no cálculo do perímetro é a mesma unidade de medida de comprimento: metro e seus múltiplos e submúltiplos. Unidades de medida de comprimento De acordo com o SI (sistema internacional de medidas), o metro é considerado a unidade principal de medida de comprimento, seguido de seus múltiplos e submúltiplos. Os múltiplos do metro são o quilômetro (km), hectômetro (hm) e decâmetro (dam) e os submúltiplos são decímetro (dm), centímetro (cm) e milímetro (mm). São estabelecidos alguns critérios de conversão, de acordo com a tabela a seguir: À medida que as unidades seguem a orientação da direita, os valores são multiplicados por 10. E à medida que seguem a orientação da esquerda, os valores são divididos por 10. Essa tabela de conversão existe para que os valores estejam sempre na mesma unidade. Vamos realizar as seguintes transformações: 10 km em metros 10 * 10 * 10 * 10 = metros 7 hm em dam 7 * 10 = 70 decâmetros 5 m em cm 5 * 10 * 10 = 500 centímetros 10 cm em m 10 : 10 : 10 = 0,1 metros 1000 m em km 1000 : 10 : 10 : 10 = 1 quilômetro 1 m em hm 1 : 10 : 10 = 0,01 hectômetro 2 hm em mm 2 * 10 * 10 * 10 * 10 * 10 = milímetros 5 mm em m 5 : 10 : 10 : 10 = 0,005 metros 4 km em mm 4 * 10 * 10 * 10 * 10 * 10 * 10 = milímetros Exemplo: Algumas medidas foram fornecidas à empresa responsável pela construção de casas populares. As informações trazem as dimensões das casas em várias Pagina: 2

3 unidades de comprimento diferenciadas. Faça a transformação das unidades de forma que as unidades fiquem padronizadas. Observe as dimensões das casas populares: Casa 1: Comprimento: 120 dm Largura: 700 cm Casa 2: Comprimento: 0,8 dam Largura: 90 dm Casa 3: Comprimento: mm Largura: 0,009 km Casa 4: Comprimento: mm Largura: 11 dm Vamos realizar a conversão para a unidade padrão: o metro. Casa 1: 120 dm em m = 120 : 10 = 12 metros 700 cm em m = 700 : 10 : 10 = 7 metros Casa 2: 0,8 dam em m = 0,8 * 10 = 8 metros 9 dm em m = 90 : 10 = 9 metros Casa 3: mm em m = : 10 : 10 : 10 = 10 metros 0,009 km em m = 0,009 : 10 : 10 : 10 = 9 metros Casa 4: mm em m = : 10 : 10 : 10 = 7 metros 110 dm em m = 110 : 10 = 11 metros ÁREA Área ou superfície de uma figura plana tem a ver com o conceito (primitivo) de sua extensão (bidimensional). Usamos a área do quadrado de lado unitário como referência de unidade de área, chamando de metro quadrado (m²) sua unidade de medida principal. O cálculo de áreas é uma parte da Geometria que possui uma variedade de aplicações no cotidiano. A área pode ser calculada através do produto entre duas dimensões do plano: comprimento x largura ou base x altura. Existem algumas Pagina: 3

4 expressões algébricas matemáticas que são associadas a figuras geométricas, possibilitando o cálculo de suas áreas. Seguem algumas fórmulas para cálculo da área de diferentes figuras geométricas. Unidades de medida de área As unidades usuais de áreas, de acordo com o SI (sistema internacional de unidades), são as seguintes: km² = quilômetro quadrado hm² = hectômetro quadrado dam² = decâmetro quadrado m² = metro quadrado dm² = decímetro quadrado cm² = centímetro quadrado mm² = milímetro quadrado Pagina: 4

5 O procedimento para o cálculo da área de uma região plana exige que todas as dimensões estejam numa mesma unidade de comprimento. Transformando 1m² (metro quadrado) em cm² (centímetro quadrado) 1º passo: transformar m² em dm² 2º passo: transformar dm² em cm² Pelo processo prático podemos multiplicar o m² por 100x100 (10 000) 1 x 100 x 100 = m² = cm² Exemplo 1: Um muro com as seguintes medidas: 20m de comprimento e 2m de altura foi construído com tijolos de dimensões 20cm de comprimento e 20cm de altura. Quantos tijolos foram gastos na construção desse muro, descartando a hipótese de desperdício? Área do muro 20m x 2m = 40m² Área do tijolo 20cm x 20cm = 400cm² A área do muro e a do tijolo estão em unidades diferentes, para isso devemos utilizar a tabela de conversões no intuito de igualar as medidas. Podemos escolher entre as seguintes transformações: m² em cm² ou cm² em m² Vamos transformar m² em cm²: 40 x 100 x 100 = cm² Para descobrir quantos tijolos foram gastos, basta dividirmos a área do muro em cm² pela área de um tijolo: cm² : 400 cm² = 1000 Foram gastos 1000 tijolos na construção do muro. Pagina: 5

6 Exemplo 2: Pedro deseja colocar cerâmica na área de lazer de sua casa, que possui 9 m de comprimento por 6 m de largura. Se forem usadas cerâmicas quadradas com lado medindo 100cm, quantas serão gastas? Área em m² 9m x 6m = 54m² Área da cerâmica em m² 100cm x 100cm = cm² Transformando cm² em m², temos: : 100 : 100 = 1m² 54m² : 1m² = 54 Serão utilizadas 54 cerâmicas na área de lazer da casa de Pedro. Pagina: 6

Grandeza superfície Outras medidas de comprimento

Grandeza superfície Outras medidas de comprimento Noções de medida As primeiras noções de medida foram adquiridas com o auxílio de algumas partes do corpo humano, tornandoseunidades de medida o pé, o passo, o palmo, os dedos. É importante ressaltar que

Leia mais

Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS

Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS Nome: nº Data: / / Professor: Lucas Factor Curso/Série 8º Ano Ensino Fundamental II Conteúdo: PERÍMETRO E ÁREA DE FIGURAS PLANAS Os cálculos de perímetro e área são necessários, seja para a compra de um

Leia mais

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho

Material de aula. Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Desenho Técnico Material de aula Régua Compasso Par de esquadros (30 e 45 ) Borracha Lápis ou lapiseira Papel sulfite ou caderno de desenho Geometria Conversão de unidades Polígonos e sólidos Escala Desenho

Leia mais

Grandezas geométricas: perímetros, áreas e volumes

Grandezas geométricas: perímetros, áreas e volumes Grandezas geométricas: perímetros, áreas e volumes Aula 12 Ricardo Ferreira Paraizo e-tec Brasil Matemática Instrumental Meta Apresentar as grandezas geométricas: perímetro, área e volume. Objetivos Após

Leia mais

FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA DESAFIO DO DIA. Aula 26.1 Conteúdo:

FORTALECENDO SABERES CONTEÚDO E HABILIDADES DINÂMICA LOCAL INTERATIVA MATEMÁTICA DESAFIO DO DIA. Aula 26.1 Conteúdo: Aula 26.1 Conteúdo: Múltiplos e submúltiplos do metro. 2 Habilidades: Resolver problemas que envolvam medidas de Comprimento e Área. 3 Pedro gastou R$9,45 para comprar 2,1kg de tomate. Quanto custa 1kg

Leia mais

Equipe de Matemática MATEMÁTICA

Equipe de Matemática MATEMÁTICA Aluno (a): Série: 3ª Turma: TUTORIAL 9R Ensino Médio Equipe de Matemática Data: Áreas de Figuras Planas MATEMÁTICA O estudo da área de figuras planas está ligado aos conceitos relacionados à Geometria

Leia mais

Atividade: Escalas utilizadas em mapas

Atividade: Escalas utilizadas em mapas Atividade: Escalas utilizadas em mapas I. Introdução: Os mapas são representações gráficas reduzidas de uma determinada região e de grande importância para vários profissionais como engenheiros, geógrafos,

Leia mais

Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão.

Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão. Unidades de Medidas Como você mediria a sua apostila sem utilizar uma régua? Medir é comparar duas grandezas, utilizando uma delas como padrão. Como os antigos faziam para realizar medidas? - Na antiguidade:

Leia mais

Grandezas e Medidas no CAp UFRJ Introdução. Exercícios

Grandezas e Medidas no CAp UFRJ Introdução. Exercícios Grandezas e Medidas no CAp UFRJ Introdução Exercícios 1) Indique três aspectos diferentes que podem ser medidos num carro. Para cada aspecto identificado, informe a grandeza e a unidade de medida correspondente

Leia mais

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento.

MEDIDAS. O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. MEDIDAS Comprimento O tamanho de uma régua, a distância entre duas cidades, a altura de um poste e a largura de uma sala tudo isso é medido em comprimento. Existem várias unidades que podem ser utilizadas

Leia mais

Eletricidade Aula ZERO. Profª Heloise Assis Fazzolari

Eletricidade Aula ZERO. Profª Heloise Assis Fazzolari Eletricidade Aula ZERO Profª Heloise Assis Fazzolari Plano de aulas O objetivo da disciplina é dar ao aluno noções de eletricidade e fenômenos relacionados. Critério de Avaliação Quatro provas bimestrais

Leia mais

Regras de Conversão de Unidades

Regras de Conversão de Unidades Unidades de comprimento Regras de Conversão de Unidades A unidade de principal de comprimento é o metro, entretanto existem situações em que essa unidade deixa de ser prática. Se quisermos medir grandes

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL 1 - Medida de comprimento SISTEMA MÉTRICO DECIMAL No sistema métrico decimal, a unidade fundamental para medir comprimentos é o metro, cuja abreviação é m. Existem os múltiplos e os submúltiplos do metro,

Leia mais

ESCOLA ESTADUAL MARECHAL RONDON ANA PATRÍCIA PICOLO FÁBIO JOSÉ DE ARAUJO GIOVANA FERREIRA APRENDENDO GEOMETRIA PLANA E ESPACIAL COM AS TECNOLOGIAS

ESCOLA ESTADUAL MARECHAL RONDON ANA PATRÍCIA PICOLO FÁBIO JOSÉ DE ARAUJO GIOVANA FERREIRA APRENDENDO GEOMETRIA PLANA E ESPACIAL COM AS TECNOLOGIAS ESCOLA ESTADUAL MARECHAL RONDON ANA PATRÍCIA PICOLO FÁBIO JOSÉ DE ARAUJO GIOVANA FERREIRA APRENDENDO GEOMETRIA PLANA E ESPACIAL COM AS TECNOLOGIAS NOVA ANDRADINA - MS MAIO DE 2009 ESCOLA ESTADUAL MARECHAL

Leia mais

MEDIDAS LINEARES. Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/ segundo.

MEDIDAS LINEARES. Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/ segundo. MEDIDAS LINEARES Um metro equivale à distância linear percorrida pela luz no vácuo, durante um intervalo de 1/299.792.458 segundo. Nome e símbolo As unidades do Sistema Internacional podem ser escritas

Leia mais

MÓDULO VII SISTEMAS DE UNIDADES DE MEDIDA 2ª PARTE

MÓDULO VII SISTEMAS DE UNIDADES DE MEDIDA 2ª PARTE MÓDULO VII SISTEMAS DE UNIDADES DE MEDIDA 2ª PARTE No módulo anterior, estudamos os Sistemas de Unidades de Comprimento, Massa e de Tempo. Nesse módulo iremos estudar outros Sistemas de Unidades de Medidas,

Leia mais

3.1 Distâncias na Terra, no Sistema Solar e para além do Sistema Solar

3.1 Distâncias na Terra, no Sistema Solar e para além do Sistema Solar Distâncias no Universo Na Terra utilizamos unidades pequenas para medir distâncias. Distâncias no Universo Dada a grande distância entre os diferentes corpos estelares e o grande tamanho das estruturas

Leia mais

UNIVERSIDADE ANHANGUERA UNIDERP E N G E N H A R I A C I V I L N 5 0. Aluno: R.A :

UNIVERSIDADE ANHANGUERA UNIDERP E N G E N H A R I A C I V I L N 5 0. Aluno: R.A : UNIVERSIDADE ANHANGUERA UNIDERP E N G E N H A R I A C I V I L N 5 0 Aluno: R.A : 1) Realize as operações abaixo: a) 45 45 59 + 86º54 12 = b) 128º42 57 + 325º41 52 = c) 120º00 00 56º24º03 = d) 178º20 30

Leia mais

MÓDULO 1. Os Métodos da Física:

MÓDULO 1. Os Métodos da Física: MÓDULO 1 O QUE É FÍSICA? Física é o ramo da ciência que estuda as propriedades das partículas elementares e os fenômenos naturais e provocados, de modo lógico e ordenado. Os Métodos da Física: Todas as

Leia mais

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medidas de Comprimentos e Primeiros Exercícios.

Módulo Unidades de Medidas de Comprimentos e Áreas. Unidades de Medidas de Comprimentos e Primeiros Exercícios. Módulo Unidades de Medidas de Comprimentos e Áreas Unidades de Medidas de Comprimentos e Primeiros Exercícios. 8 ano E.F. Professores Cleber Assis e Tiago Miranda Unidades de Medidas de Comprimentos e

Leia mais

Sumário 4- As distâncias no Universo Ficha de trabalho

Sumário 4- As distâncias no Universo Ficha de trabalho Sumário 4- As distâncias no Universo - Que unidades se usam para medir distâncias no nosso dia-a-dia? - A unidade astronómica, o ano-luz e o parsec. Ficha de trabalho. Vídeo: Distâncias no dia-a-dia Que

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 SUPERFÍCIE E ÁREA Medir uma superfície é compará-la com outra, tomada como unidade. O resultado da comparação é um número positivo, ao

Leia mais

APOSTILA DE MATEMÁTICA PM/PA 2016

APOSTILA DE MATEMÁTICA PM/PA 2016 APOSTILA DE MATEMÁTICA PM/PA 2016 Olá, tudo bem? Sou o Prof. Arthur Lima, e resumi nas próximas páginas os pontos do edital de MATEMÁTICA da POLÍCIA MILITAR DO PARÁ, cujas provas serão aplicadas pela banca

Leia mais

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO.

CURSO TÉCNICO MPU Disciplina: Matemática Tema: Matemática básica: potenciação Prof.: Valdeci Lima Data: Novembro/Dezembro de 2006 POTENCIAÇÃO. Data: Novembro/Dezembro de 006 POTENCIAÇÃO A n A x A x A... x A n vezes A Base Ex.: 5.... n Expoente Observação: Em uma potência, a base será multiplicada por ela mesma quantas vezes o expoente determinar.

Leia mais

Colégio Jardim Paulista

Colégio Jardim Paulista Colégio Jardim Paulista Nome: Nº Série: Profª:_ Roberto Salgado Período: 4º Bimestre Data: / / Trabalho de Matemática 6 º ano A Nota Medidas de comprimento: 1) Ana e Antônia fizeram algumas medições e

Leia mais

CADERNO DE EXERCÍCIOS 1B

CADERNO DE EXERCÍCIOS 1B CADERNO DE EXERCÍCIOS B Ensino Fundamental Ciências da Natureza I Questão Conteúdo Habilidade da Matriz da EJA/FB Fração Soma de frações Multiplicação de frações Subtração de frações Divisão de frações

Leia mais

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013

CÁLCULO DE ÁREA DAS FIGURAS PLANAS. Professor: Marcelo Silva. Natal-RN, agosto de 2013 CÁLCULO DE ÁREA DAS FIGURAS PLANAS Professor: Marcelo Silva Natal-RN, agosto de 013 ÁREA A reunião de um polígono com sua região interior é denominada superfície do polígono. A medida da superfície é expressa

Leia mais

Matemática Régis Cortes SISTEMA MÉTRICO

Matemática Régis Cortes SISTEMA MÉTRICO SISTEMA MÉTRICO 1 Unidades de medida ou sistemas de medida Para podermos comparar um valor com outro, utilizamos uma grandeza predefinida como referência, grandeza esta chamada de unidade padrão. As unidades

Leia mais

A tabela abaixo mostra os múltiplos e submúltiplos do metro e os seus respectivos valores em relação à unidade padrão:

A tabela abaixo mostra os múltiplos e submúltiplos do metro e os seus respectivos valores em relação à unidade padrão: Unidades de Medidas e Conversões Medidas de comprimento Prof. Flavio Fernandes E-mail: flavio.fernandes@ifsc.edu.br Prof. Flavio Fernandes E-mail: flavio.fernandes@ifsc.edu.br O METRO E SEUS MÚLTIPLOS

Leia mais

Cursinho UECEVest TD Matemática Prof. Matheus Sousa Nome: Data: / / 20. ABCD, em centímetros quadrados, é

Cursinho UECEVest TD Matemática Prof. Matheus Sousa Nome: Data: / / 20. ABCD, em centímetros quadrados, é Cursinho UECEVest TD Matemática Prof. Matheus Sousa Nome: Data: / / 20. Considere o setor circular de raio 6 e ângulo central 60 da figura abaixo. a) 36 3 b) 36 2 c) 8 3 d) 8 2 3. A figura abaixo é a reprodução

Leia mais

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) Acomodação dos alunos em quartetos e realização da chamada.

PROPOSTA DIDÁTICA. 3. Desenvolvimento da proposta didática (10 min) Acomodação dos alunos em quartetos e realização da chamada. PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Tanara da Silva Dicetti 1.2 Público alvo: 8º e 9º ano 1.3 Duração: Aproximadamente 2 horas 1.4 Conteúdo desenvolvido: Figuras planas: Áreas

Leia mais

Conteúdos Exame Final

Conteúdos Exame Final Componente Curricular: Matemática Série/Ano: 6º ANO Professora Fernanda S. Hamerski Conteúdos Exame Final. Frações * Comparação de frações e representação por desenho * Operações com frações (adição, subtração,

Leia mais

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan

Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matéria: Matemática Assunto: Sistema Métrico Decimal Prof. Dudan Matemática Sistema Métrico Decimal Definição: O SISTEMA MÉTRICO DECIMAL é parte integrante do Sistema de Medidas. É adotado no Brasil tendo

Leia mais

Sumário. O Universo. Vídeo: Distâncias no Universo 27/10/ e 14

Sumário. O Universo. Vídeo: Distâncias no Universo 27/10/ e 14 Sumário Correção do TPC. Que unidades se usam para medir distâncias no nosso dia-a-dia? A unidade astronómica, o ano-luz e o parsec. Ficha de trabalho. Vídeo: 1 Distâncias no dia-a-dia Que unidades se

Leia mais

Matéria: Matemática Assunto: Conversão de unidades Prof. Dudan

Matéria: Matemática Assunto: Conversão de unidades Prof. Dudan Matéria: Matemática Assunto: Conversão de unidades Prof. Dudan Matemática CONVERSÃO DE UNIDADES Apresentamos a tabela de conversão de unidades do sistema Métrico Decimal Medida de Grandeza Fator Múltiplos

Leia mais

NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO 6 (OITAVA SÉRIE) PROFESSOR Ardelino R Puhl

NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO 6 (OITAVA SÉRIE) PROFESSOR Ardelino R Puhl NEEJA: NÚCLEO ESTADUAL DE EDUCAÇÃO DE JOVENS E ADULTOS CONSTRUINDO UM NOVO MUNDO MÓDULO 6 (OITAVA SÉRIE) PROFESSOR Ardelino R Puhl MEDIDAS DE SUPERFÍCIE Introdução As medidas de superfície fazem parte

Leia mais

Módulo Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Medidas de Comprimento. 6 ano/e.f.

Módulo Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Medidas de Comprimento. 6 ano/e.f. Módulo Unidades de Medidas de Comprimentos e Áreas Exercícios Diversos de Medidas de Comprimento. 6 ano/e.f. Unidades de Medidas de Comprimentos e Áreas. Exercícios Diversos de Medidas de Comprimento.

Leia mais

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m

. Calcule a medida do segmento CD. 05. No triângulo retângulo da figura ao lado, BC = 13m 05. No triângulo retângulo da figura ao lado, = 1m, D = 8m e D = 4m. alcule a medida do segmento D. LIST DE EXERÍIOS GEOMETRI PLN PROF. ROGERINHO 1º Ensino Médio Triângulo retângulo, razões trigonométricas,

Leia mais

CADERNO DE EXERCÍCIOS 1C

CADERNO DE EXERCÍCIOS 1C CADERNO DE EXERCÍCIOS 1C Ensino Fundamental Matemática Questão 1 2 Conteúdo Fração. Interpretação de problema envolvendo a relação parte todo. Soma de frações. Cálculo de área e situações problema envolvendo

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado?

Uma pessoa caminha diariamente m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa caminha diariamente 4 000 m. Ao final de 10 dias, quantos quilômetros terá caminhado? Uma pessoa trabalhou durante 10 dias para fazer um serviço pelo qual recebeu R$ 325,00. Quanto recebeu por

Leia mais

RESISTÊNCIA DOS MATERIAIS

RESISTÊNCIA DOS MATERIAIS 2 RESISTÊNCIA DOS MATERIAIS Revisão de Matemática Faremos aqui uma pequena revisão de matemática necessária à nossa matéria, e sem a qual poderemos ter dificuldades em apreender os conceitos básicos e

Leia mais

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo

3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo 3º TRI - MATEMATICA - LISTA MARAVILHA 20/10/16 Ensino Fundamental 9º ano A-B-C-D Profº Marcelo LISTA DE ESTUDO.. Áreas 1. Calcule a área da região mais escura. 2. Um quadrado tem área de 25 cm 2. O que

Leia mais

DESENHO GEOMÉTRICO 9º ANO Prof. Danilo A. L. Pereira. Atividades básicas no GEOGEBRA. Polígonos Regulares

DESENHO GEOMÉTRICO 9º ANO Prof. Danilo A. L. Pereira. Atividades básicas no GEOGEBRA. Polígonos Regulares Exercícios Polígonos Regulares 1 - Calcular a área de um triângulo. Para construção da figura você irá clicar no ícone que tem um triângulo, para fazer um polígono clique no ícone indicado por polígono,

Leia mais

SISTEMA MÉTRICO DECIMAL

SISTEMA MÉTRICO DECIMAL Unidades de Medida A necessidade de contar e mensurar as coisas sempre se fez presente no nosso dia a dia. Na prática, cada país ou região criou suas próprias unidades de medidas. A falta de padronização

Leia mais

MATERIAIS E REVESTIMENTOS CST DESIGN DE INTERIORES

MATERIAIS E REVESTIMENTOS CST DESIGN DE INTERIORES MATERIAIS E REVESTIMENTOS CST DESIGN DE INTERIORES DOCENTE: Júlio Cesar e Márcia Silva CÁLCULO PARA PISOS E AZULEJOS CÁLCULO DE PISO Deve-se levar em conta o tamanho das placas e da área. Quanto maior

Leia mais

1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides.

1.0. Conceitos Utilizar os critérios de divisibilidade por 2, 3, 5 e Utilizar o algoritmo da divisão de Euclides. Conteúdo Básico Comum (CBC) Matemática - do Ensino Fundamental do 6º ao 9º ano Os tópicos obrigatórios são numerados em algarismos arábicos Os tópicos complementares são numerados em algarismos romanos

Leia mais

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos)

Geometria. Nome: N.ª: Ano: Turma: POLÍGONOS = POLI (muitos) + GONOS (ângulos) MATEMÁTICA 3º CICLO FICHA 16 Geometria regular inscrito numa circunferência Nome: N.ª: Ano: Turma: Data: / / 20 POLÍGONOS = POLI (muitos) + GONOS (ângulos) é uma figura plana limitada por segmentos de

Leia mais

Áreas parte 1. Rodrigo Lucio Silva Isabelle Araújo

Áreas parte 1. Rodrigo Lucio Silva Isabelle Araújo Áreas parte 1 Rodrigo Lucio Silva Isabelle Araújo Introdução Desde os egípcios, que procuravam medir e demarcar suas terras, até hoje, quando topógrafos, engenheiros e arquitetos fazem seus mapeamentos

Leia mais

3º TRIMESTRE DE 2016

3º TRIMESTRE DE 2016 COLÉGIO MILITAR DO RIO E JANEIRO LISTA DE EXERCÍCIOS COMPLEMENTARES GEOMETRIA ESPACIAL º ANO DO ENSINO MÉDIO Equipe: Prof. Cap Boente, Prof Magda, Prof Fernando e Prof Zamboti 3º TRIMESTRE DE 06 PRISMAS

Leia mais

UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI FACULDADE DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE AGRONOMIA

UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI FACULDADE DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE AGRONOMIA UNIVERSIDADE FEDERAL DOS VALES DO JEQUITINHONA E MUCURI FACULDADE DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE AGRONOMIA LISTA EXERCÍCIOS CONVERSÃO MÉTRICA, ESCALA E COTAS Disciplina: Desenho Técnico Código: AGR069/AGR012

Leia mais

Área das figuras planas

Área das figuras planas AS ESPOSTAS ESTÃO NO FINAL DOS EXECÍCIOS. ) Calcule as áreas dos retângulos de base b e altura h nos seguintes casos: a) b = cm e h = 7cm b) b =,dm e h = dm c) b = m e h = m d) b =,m e h =,m ) Determine:

Leia mais

RECURSO PARA AS QUESTÕES DE MATEMÁTICA DO CONCURSO SEEMG 2015 PROFESSOR DE MATEMÁTICA (COLÉGIO TIRADENTES)

RECURSO PARA AS QUESTÕES DE MATEMÁTICA DO CONCURSO SEEMG 2015 PROFESSOR DE MATEMÁTICA (COLÉGIO TIRADENTES) RECURSO PARA AS QUESTÕES DE MATEMÁTICA DO CONCURSO SEEMG 2015 PROFESSOR DE MATEMÁTICA (COLÉGIO TIRADENTES) 11) Com relação a uma pirâmide de base eneagonal é correto afirmar que: a) O número de arestas

Leia mais

SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR

SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR SUPERINTENDÊNCIA DE ACOMPANHAMENTO DOS PROGRAMAS INSTITUCIONAIS NÚCLEO DE ORIENTAÇÃO PEDAGÓGICA GERÊNCIA DE DESENVOLVIMENTO CURRICULAR 2ª AVALIAÇÃO DIAGNÓSTICA DO 8º ANO DO ENSINO FUNDAMENTAL 2012 MATEMÁTICA

Leia mais

OFICINA: MEDIDAS DE COMPRIMENTO. Resumo

OFICINA: MEDIDAS DE COMPRIMENTO. Resumo OFICINA: MEDIDAS DE COMPRIMENTO Resumo O aprendizado dos conhecimentos e as habilidades relativas à medida envolvem o seguinte processo: em primeiro lugar, é imprescindível uma fase de preparação, que

Leia mais

PADRÕES DE DESEMPENHO ESTUDANTIL. O que são Padrões de Desempenho? ABAIXO DO BÁSICO Até 150 pontos. BÁSICO De 150 até 200 pontos

PADRÕES DE DESEMPENHO ESTUDANTIL. O que são Padrões de Desempenho? ABAIXO DO BÁSICO Até 150 pontos. BÁSICO De 150 até 200 pontos PADRÕES DE DESEMPENHO ESTUDANTIL O que são Padrões de Desempenho? Os Padrões de Desempenho constituem uma caracterização das competências e habilidades desenvolvidas pelos alunos de determinada etapa de

Leia mais

Gabarito. 6. a) Quatro mil, setecentos e sessenta e nove unidades.

Gabarito. 6. a) Quatro mil, setecentos e sessenta e nove unidades. O COTIDIANO E OS NÚMEROS CAPÍTULO 1 Um pouco da história dos números 1. a) 32 d) 311 22 e) 1.000.110 211 f) 1.000.101 2. Não. DC = 600 e CD = 400. 3. a) VIII d) LI g) CIII CVI e) CDII h) CCCVIII DCCCIII

Leia mais

Matéria: Matemática Assunto: Volume Prof. Dudan

Matéria: Matemática Assunto: Volume Prof. Dudan Matéria: Matemática Assunto: Volume Prof. Dudan Matemática VOLUME DEFINIÇÃO As medidas de volume possuem grande importância nas situações envolvendo capacidades de sólidos. Podemos definir volume como

Leia mais

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora! MATEMÁTICA BÁSICA

Vestibular1 A melhor ajuda ao vestibulando na Internet Acesse Agora!  MATEMÁTICA BÁSICA MATEMÁTICA BÁSICA CONJUNTOS Conjunto é um grupo de objeto e cada objeto que forma o conjunto é chamado elemento. Ex.: Conjunto de vogais do alfabeto Elementos: a, e, i, o, u Conjunto das cores da bandeira

Leia mais

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2012/2013 1º ANO DO ENSINO MÉDIO

PROVA DE MATEMÁTICA CONCURSO DE ADMISSÃO 2012/2013 1º ANO DO ENSINO MÉDIO CONCURSO DE ADMISSÃO 01/013 PROVA DE MATEMÁTICA 1º ANO DO ENSINO MÉDIO CONFERÊNCIA: Membro da CEOCP (Mat / 1º EM) Presidente da CEI Dir Ens CPOR / CMBH PÁGINA 1 RESPONDA AS QUESTÕES DE 1 A 0 E TRANSCREVA

Leia mais

Escala. Instrumento utilizado para determinar a distância entre dois pontos. Prof. Wilton Oliveira

Escala. Instrumento utilizado para determinar a distância entre dois pontos. Prof. Wilton Oliveira Escala Instrumento utilizado para determinar a distância entre dois pontos. Representa as relações das dimensões apresentadas em um mapa, no contexto dos valores reais do terreno e sua representatividade.

Leia mais

Roteiro de Recuperação do 3º Bimestre - Matemática

Roteiro de Recuperação do 3º Bimestre - Matemática Roteiro de Recuperação do 3º Bimestre - Matemática Nome: Nº 6º Ano Data: / /2015 Professores Leandro e Renan Nota: (valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela

Leia mais

a) b) c) x 3 x 2- O perímetro de um quadrado é 20 cm. Determine sua diagonal.

a) b) c) x 3 x 2- O perímetro de um quadrado é 20 cm. Determine sua diagonal. 1- Calcule x nos triângulos abaixo: a) b) c) 12 13 x 3 x x 5 13 2- O perímetro de um quadrado é 20 cm. Determine sua diagonal. 4 3- A diagonal de um quadrado tem 7 2 cm. Determine o perímetro do quadrado.

Leia mais

Professor Alexandre Assis. Lista de exercícios de Geometria

Professor Alexandre Assis. Lista de exercícios de Geometria 1. A figura representa três círculos idênticos no interior do triângulo retângulo isósceles ABC. 3. Observando a figura a seguir, determine (em cm): a) o valor de x. b) a medida do segmento AN, sabendo

Leia mais

ÁREAS. Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede:

ÁREAS. Com base nos dados apresentados nessa figura, é correto afirmar que a área do terreno reservado para o parque mede: ÁREAS 1 A prefeitura de certa cidade reservou um terreno plano, com o formato de um quadrilátero, para construir um parque, que servirá de área de lazer para os habitantes dessa cidade O quadrilátero ABCD,

Leia mais

ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE MATEMÁTICA

ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE MATEMÁTICA ROTEIRO DE RECUPERAÇÃO DO 2º SEMESTRE MATEMÁTICA Nome: Nº 6ºAno Data: / / Professores: Leandro e Renan Nota: (Valor 1,0) 1. Apresentação: Prezado aluno, A estrutura da recuperação bimestral paralela do

Leia mais

Disciplina: Matemática. Período: I. Professor (a): Maria Aparecida Holanda Veloso e Liliane Cristina de Oliveira Vieira

Disciplina: Matemática. Período: I. Professor (a): Maria Aparecida Holanda Veloso e Liliane Cristina de Oliveira Vieira COLÉGIO LA SALLE BRASILIA Associação Brasileira de Educadores Lassalistas ABEL SGAS Q. 906 Conj. E C.P. 320 Fone: (061) 3443-7878 CEP: 70390-060 - BRASÍLIA - DISTRITO FEDERAL Disciplina: Matemática Período:

Leia mais

9 0 Fund. II Disciplina Professora Natureza Trimestre/Ano Data Valor Roteiro de estudo Matemática Vânia e exercícios de revisão

9 0 Fund. II Disciplina Professora Natureza Trimestre/Ano Data Valor Roteiro de estudo Matemática Vânia e exercícios de revisão Nome Nº Ano Ensino Turma 9 0 Fund. II Disciplina Professora Natureza Trimestre/Ano Data Valor Roteiro de estudo Matemática Vânia e exercícios de revisão 0 /016 0 a 05/08/016 5,0 Introdução Querido(a) aluno(a),

Leia mais

a) R$ 8,20 b) R$ 8,40 c) R$ 8,60 d) R$ 8,80 e) R$ 9,00

a) R$ 8,20 b) R$ 8,40 c) R$ 8,60 d) R$ 8,80 e) R$ 9,00 Aula n ọ 03 01. Um engenheiro, precisando calcular a área de um terreno com forma quadrangular (conforme a figura abaixo), utilizou como referencial as duas ruas, A e B, que se cruzavam perpendicularmente.

Leia mais

PREPARATÓRIO PROFMAT/ AULA 8 Geometria

PREPARATÓRIO PROFMAT/ AULA 8 Geometria PREPARATÓRIO PROFMAT/ AULA 8 Geometria QUESTÕES DISCURSIVAS Questão 1. (PROFMAT-2012) As figuras a seguir mostram duas circunferências distintas, com centros C 1 e C 2 que se intersectam nos pontos A e

Leia mais

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão

Grupo de exercícios I.2 - Geometria plana- Professor Xanchão Grupo de exercícios I - Geometria plana- Professor Xanchão 1 (G1 - utfpr 013) Um triângulo isósceles tem dois lados congruentes (de medidas iguais) e o outro lado é chamado de base Se em um triângulo isósceles

Leia mais

O Pi não é de Pizza. Dinâmica 3. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. Polígonos regulares e áreas de figuras planas.

O Pi não é de Pizza. Dinâmica 3. Professor. 9º Ano 4º Bimestre. DISCIPLINA Ano CAMPO CONCEITO DINÂMICA. Polígonos regulares e áreas de figuras planas. Reforço escolar M ate mática O Pi não é de Pizza Dinâmica 3 9º Ano 4º Bimestre DISCIPLINA Ano CAMPO CONCEITO Matemática DINÂMICA HABILIDADE Básica 9º do Ensino Fundamental O Pi não é de Pizza. Geométrico.

Leia mais

PROPOSTA DIDÁTICA. A atividade será divididas em etapas. Cada etapa e o tempo previsto estão descritos a seguir.

PROPOSTA DIDÁTICA. A atividade será divididas em etapas. Cada etapa e o tempo previsto estão descritos a seguir. PROPOSTA DIDÁTICA 1. Dados de Identificação 1.1 Nome do bolsista: Tanara da Silva Dicetti 1.2 Público alvo: 6 e 7 anos 1.3 Duração: 2 Horas 1.4 Conteúdo desenvolvido: Áreas de figuras planas 2. Objetivo(s)

Leia mais

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos.

ASSUNTO: ÂNGULOS e TRIÂNGULOS. 2) A soma de dois ângulos é 140º e um deles vale 1/3 do suplemento do outro. Determine esses ângulos. ASSUNTO: ÂNGULOS e TRIÂNGULOS 1) Determine: a) O complemento de 47º Resp: 43º b) O suplemento de 12º Resp: 168º c) O replemento de 3º Resp: 357º 2) A soma de dois ângulos é 140º e um deles vale 1/3 do

Leia mais

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período

DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período ANO LETIVO 2015/2016 DEPARTAMENTO DE MATEMÁTICA INFORMÁTICA DISCIPLINA: Matemática (7º Ano) METAS CURRICULARES/CONTEÚDOS... 1º Período Metas / Objetivos Conceitos / Conteúdos Aulas Previstas Números e

Leia mais

PROFESSOR(A): MARCELO PESSOA 9º ANO DO ENSINO FUNDAMENTAL

PROFESSOR(A): MARCELO PESSOA 9º ANO DO ENSINO FUNDAMENTAL NOME: TURMA: PROFESSOR(A): MARCELO PESSOA MATEMÁTICA DATA: / / 9º ANO DO ENSINO FUNDAMENTAL Lista de exercícios de equação do 2º grau 1)Quais das equações abaixo são do 2º grau? ( ) x 5x + 6 = 0 ( ) 2x³

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

FIGURAS PLANAS E O CÁLCULO DE ÁREAS

FIGURAS PLANAS E O CÁLCULO DE ÁREAS unifmu Nome: Professor: Ricardo Luís de Souza Curso de Design Matemática Aplicada Atividade Exploratória III Turma: Data: FIGURAS PLANAS E O CÁLCULO DE ÁREAS Objetivo: Rever o conceito de área de figuras

Leia mais

ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL

ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL ESCALA DE PROFICIÊNCIA DE MATEMÁTICA 5º ANO DO ENSINO FUNDAMENTAL Nível* Nível 1: 125-150 Nível 2: 150-175 Nível 3: 175-200 Nível 4: 200-225 Descrição do Nível - O estudante provavelmente é capaz de: Determinar

Leia mais

3º Bimestre Preciosidades da vida AULA: 108 Conteúdos:

3º Bimestre Preciosidades da vida AULA: 108 Conteúdos: CONTEÚDO E HABILIDADES FORTALECENDO SABERES DESAFIO DO DIA DINÂMICA LOCAL INTERATIVA I 3º Bimestre Preciosidades da vida AULA: 108 Conteúdos: Pronomes pessoais do caso Oblíquo O metro O ser humano e os

Leia mais

Assunto: Escalas Prof. Ederaldo Azevedo Aula 4 e-mail: ederaldoazevedo@yahoo.com.br 3. Escalas: É comum em levantamentos topográficos a necessidade de representar no papel uma certa porção da superfície

Leia mais

CADERNO DE EXERCÍCIOS 2B

CADERNO DE EXERCÍCIOS 2B CADERNO DE EXERCÍCIOS 2B Ensino Fundamental Matemática Questão Conteúdo 1 Cálculo de área de circunferência, triângulo e quadrado. Habilidade da Matriz da EJA/FB H21 2 Equação do 1º grau H38 H39 3 Teorema

Leia mais

Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta.

Assine e coloque seu número de inscrição no quadro abaixo. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Prezado(a) candidato(a): Assine e coloque seu número de inscrição no quadro abaio. Preencha, com traços firmes, o espaço reservado a cada opção na folha de resposta. Nº de Inscrição Nome PROVA DE MATEMÁTICA

Leia mais

Comprimento, altura e distância são a mesma coisa? Como medir?

Comprimento, altura e distância são a mesma coisa? Como medir? Comprimento, altura e distância são a mesma coisa? Como medir? Profa. Ângela Maria Hartmann O que é o comprimento? Na Física, o comprimento é uma das grandezas físicas fundamentais que expressa a distância

Leia mais

Equipe de Matemática. Matemática

Equipe de Matemática. Matemática Aluno (a): Série: 3ª Turma: TUTORIAL 2R Ensino Médio Equipe de Matemática Data: Matemática Unidades de Medidas Medidas de Comprimento A unidade fundamental de comprimento é o metro. Designa-se abreviadamente

Leia mais

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO

ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO ESCOLA SECUNDÁRIA COM 2º E 3º CICLOS ANSELMO DE ANDRADE 9º ANO ANO LECTIVO 2011-2012 Sólidos Geométricos NOME: Nº TURMA: Polígonos Um polígono é uma figura geométrica plana limitada por uma linha fechada.

Leia mais

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália

LISTA DE EXERCÍCIOS 9º ano 2º bim. Prof. Figo, Cebola, Sandra e Natália 1. A idade de Paulo, em anos, é um número inteiro par que satisfaz a desigualdade x - x + 5 < 0. O número que representa a idade de Paulo pertence ao conjunto a) {1, 1, 14}. b) {15, 16, 17}. c) {18, 19,

Leia mais

Professora Esp. Eliana V. Conquista

Professora Esp. Eliana V. Conquista Professora Esp. Eliana V. Conquista Estudo e elaboração de Mapas: Projeções e Escalas 1-Projeções Cartográficas (Formas: Cilíndrica, Cônica e Plana). 2-Escala (Gráfica e Numérica). Os mapas produzidos

Leia mais

Roteiro de Estudos - RECUPERAÇÃO FINAL

Roteiro de Estudos - RECUPERAÇÃO FINAL Roteiro de Estudos - RECUPERAÇÃO FINAL Nome completo: nº Disciplina: Geometria Ano: 9 Data: / / Professor: André Moreira Instruções Gerais: 1) Leia atentamente as questões. Confira sempre os resultados

Leia mais

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos

COLÉGIO XIX DE MARÇO excelência em educação 3ª PROVA SUBSTITUTIVA DE MATEMÁTICA Professor(a): Cláudia e Gustavo Valor da Prova: 65 pontos ª PROA SUBSTITUTIA DE MATEMÁTICA 01 Aluno(a): Nº Ano: º Turma: Data: Nota: Professor(a): Cláudia e Gustavo alor da Prova: 5 pontos Orientações gerais: 1) Número de questões desta prova: 17 ) alor das questões:

Leia mais

Lista de exercícios 06 Aluno (a): Turma: 9º ano (Ensino fundamental) Professor: Flávio Disciplina: Matemática

Lista de exercícios 06 Aluno (a): Turma: 9º ano (Ensino fundamental) Professor: Flávio Disciplina: Matemática Antes de iniciar a lista de exercícios leia atentamente as seguintes orientações: É fundamental a apresentação de uma lista legível, limpa e organizada. Rasuras podem invalidar a lista. Nas questões que

Leia mais

Memorial Descritivo. Unidade Autônoma no. 23 Condomínio Villavista Golf

Memorial Descritivo. Unidade Autônoma no. 23 Condomínio Villavista Golf Unidade Autônoma no. 23 Área Total do Lote: 2.751,35m² Área livre do Lote: 2.751,35 m² nas LOTE 23: FRENTE segue com o azimute de 62 34 02 e 6,71 metros, mais 24,44 metros em arco, com o raio de 27,50

Leia mais

deseja refazer a cerca com duas voltas de arame liso ao redor de todo o pasto.

deseja refazer a cerca com duas voltas de arame liso ao redor de todo o pasto. Atividade extra Exercício 1 Uma fazenda tem um pasto em formato retangular, de 95m de comprimento por 65m de largura. O proprietário deseja refazer a cerca com duas voltas de arame liso ao redor de todo

Leia mais

Sistema Internacional de unidades (SI). 22/06/1799 sistema métrico na França

Sistema Internacional de unidades (SI). 22/06/1799 sistema métrico na França CURSO DE ENGENHARIA CARTOGRÁFICA Carlos Aurélio Nadal Doutor em Ciências Geodésicas Professor Titular do Departamento de Geomática - Setor de Ciências da Terra Sistema Internacional de unidades (SI). 22/06/1799

Leia mais

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática

Atividade extra. Exercício 1. Exercício 2. Matemática e suas Tecnologias Matemática Atividade extra Exercício 1 Duas esferas de raios distintos se interceptam formando um conjunto com mais de um ponto na interseção. Qual a figura geométrica formada por esse conjunto de pontos? (a) Esfera

Leia mais

Exercícios de Revisão

Exercícios de Revisão Professor: Cassio Kiechaloski Mello Disciplina: Matemática Exercícios de Revisão Geometria Analítica Geometria Plana Geometria Espacial Números Complexos Polinômios Na prova de recuperação final, não será

Leia mais

01- Suzana precisa fazer uma caixa para presente na forma da figura abaixo. Quantos cm 2 de papelão serão necessários para fabricar essa caixa?

01- Suzana precisa fazer uma caixa para presente na forma da figura abaixo. Quantos cm 2 de papelão serão necessários para fabricar essa caixa? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - 6º ANO - ENSINO FUNDAMENTAL ============================================================================================== MEDIDAS DE SUPERFÍCIE

Leia mais

Proposta de teste de avaliação Matemática 9

Proposta de teste de avaliação Matemática 9 Proposta de teste de avaliação Matemática 9 Oo Nome da Escola no letivo 0-0 Matemática 9.º ano Nome do luno Turma N.º Data Professor - - 0 PRTE Nesta parte é permitido o uso da calculadora.. Relativamente

Leia mais

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI

LISTA DE EXERCÍCIOS DE REVISÃO DE MATEMÁTICA 2º ANO PROF.: ARI 01.: (FATEC) Um terreno retangular tem 170 m de perímetro. e a razão entre as medidas dos lados é 0,7, então a área desse terreno, em metros quadrados, é igual a: a) 7000 b) 5670 c) 4480 d) 1750 e) 1120

Leia mais

MATRIZ DE CONTEÚDOS TESTE 6.º ANO MARÇO 2015

MATRIZ DE CONTEÚDOS TESTE 6.º ANO MARÇO 2015 MATRIZ DE CONTEÚDOS TESTE 6.º ANO MARÇO 2015 Domínio Conteúdos Números naturais - Números primos; - Crivo de Eratóstenes; - Teorema fundamental da aritmética e aplicações. Números e Operações Números racionais

Leia mais