x.x = c = 2 = 2 a 1 (ab 2 +a 2 b) = ab(b+a) = (produto)(soma)=2x4=8 Alternativa correta: (E) 8

Save this PDF as:
Tamanho: px
Começar a partir da página:

Download "x.x = c = 2 = 2 a 1 (ab 2 +a 2 b) = ab(b+a) = (produto)(soma)=2x4=8 Alternativa correta: (E) 8"

Transcrição

1 Prova Aprendiz de Marinheiro / 01 1) Uma aeronave decola fazendo, com a pista plana e horizontal, um ângulo de elevação de 30. Após percorrer 1,km, a aeronave se encontra, em relação ao solo, a uma altura igual a (A) 900m (B) 600m (C) 500m (D) 400m (E) 300m x +x = - b = -(-4) = 4 a 1 x.x = c = = a 1 Soma das raízes = 4 Produto das raízes = Sendo a e b, as raízes reais da equação (x e x ), o valor numérico de: (ab +a b) = ab(b+a) = (produto)(soma)=x4=8 (E) 8 3) A solução da equação irracional 1 4x x 1 0 é Sen 30º = cateto oposto hipotenusa 1 = x. 100 x = X = 600 m Alternativa correta (B) 600 m ) Sendo a e b raízes reais da equação x 4x 0, o valor numérico de ab a b (A) 1 (B) 4 (C) 5 (D) 6 (E) 8 X -4x+=0 coeficientes a=1 b=-4 c= é (A) { 0 } (B) { 6 } (C) { 0, 4 } (D) { 0, 5 } (E) { 0, 6 } 1+4x=1-x+x² -x²+6x=0 (-1) x²-6x=0 x(x-6)=0 x =0 x =6 Verificação x =0-1=0 0=0 verifica x =0 x =6 +6-1=0 +6-1= x =6 não verifica (A) {0} Av. Portugal nº 7 (53)331073

2 Prova Aprendiz de Marinheiro / 01 4) Se seis torneiras iguais enchem um tanque em 40 minutos, em quantos minutos dez torneiras iguais às anteriores enchem esse tanque? (A) 40 (B) 45 (C) 50 (D) 5 (E) 60 (A) (B) (C) (D) (E) ,4 dm = 4 Torneiras Tempo x As grandezas torneiras e tempo se relacionam inversamente proporcional, logo temos: A 1 = pr = p4 = 16p A = pr = p = 4p 10x = 40.6 x= 5 minutos (D) 5 5) A figura abaixo representa duas circunferências concêntricas. A -A 1 = 1p (A) 1p 6) Duas retas paralelas r e s são cortadas por uma reta transversal t, formando, no mesmo plano, dois ângulos obtusos alternos internos que medem 3x 15 5 ângulos mede x 30º. Então o suplemento de um desses e (A) 75 (B) 80 (C) 8 (D) 85 (E) 88 Sendo o raio da menor igual a e o raio da maior igual a 0,4dm, quanto mede a área da coroa circular sombreada? Av. Portugal nº 7 (53)331073

3 Prova Aprendiz de Marinheiro / 01 Ângulos alternos = ângulos côngruos, logo temos: a+b=3a b=a concluímos que: 5x-6x= x=-150 (-1) x=150 Cada ângulo vale : Ângulos suplementares somam 180º; 105º + suplemento = 180º Suplemento = 75º (A) 75º a/b = 0,5 (C) 0,5 8) Simplificando a expressão E 3. 3 E? (A) 4 (B) 3 (C) (D) 1 (E) 0, que valor obtém-se para Das propriedades dos radicais: a b a b 7) Na equação a ab a = 3, sendo a e b, temos: números reais não nulos, o valor de b a é (A) 0, 8 (B) 0, 7 (C) 0, 5 (D) 0, 4 (E) 0, 3 Após simplificação, temos: Recordando o produto notável (A+B)(A-B)=A -B (D) 1 9) Os valores numéricos do quociente e do resto da 4 divisão de x 5x 3x 6x 1 d x x x 1, para 1 (A) -7 e -1 (B) -7 e 14 (C) 7 e -14 (D) 7 e -1 (E) -7 e 1 p por x são, respectivamente, Av. Portugal nº 7 (53)331073

4 Prova Aprendiz de Marinheiro / 01 Área = cateto.cateto = 1. 5 = 30 (B) 30 11) O valor de k>0 na equação x kx16 0, de modo que a diferença entre as suas raízes seja 6, é x=-1 Q(x)= 5(-1)²-5(-1)-3=5+5-3= 7 R(x) = 14(-1)+=-14+= -1 (A) (B) 3 (C) 4 (D) 5 (E) 7 Das relações entre coeficientes e raízes, temos: (D) 7 e -1 10) A área do triângulo retângulo de lados 1,3dm, 0,05dm e 0,01dam é (A) (B) (C) (D) (E) Transformando, 1,3 dm = 13 0,05 m = 5 0,01 dam = 1 Do enunciado: Fazendo I + II, encontramos x = -k-3 Da equação III -k-3 x = -6 x = 3-k Da equação II (-k-3)(-k+3)=16 Aplicando produtos notáveis: K²-9=16 K²=5 K=±, do enunciado k>0, logo k=5 (D) 5 Av. Portugal nº 7 (53)331073

5 Prova Aprendiz de Marinheiro / 01 1) Os ângulos internos de um triângulo são diretamente proporcionais a, 7 e 9. Então o menor ângulo interno desse triângulo mede: (A) 90 (B) 80 (C) 70 (D) 40 (E) 0 Lei Angular De Tales propriedade que possui qualquer triângulo de que a soma de seus três ângulos internos é sempre igual a 180º tem como forma mais efetiva de representação a equação a + b + c = 180º, onde a, b e c representam as medidas dos ângulos em graus. x+7x+9x=180º x=10º o menor ângulo interno é x = 0º Se acrescentarmos 3 moedas na mão esquerda, ficamos com 30 moedas. x+9 +3 = 30 x= 18 moedas (C)18 14) O tempo, em meses, necessário para triplicar um determinado capital, a uma taxa de 5% ao mês, no regime de juros simples, é : (A) 40 (B) 45 (C) 50 (D) 60 (E) 80 Capital = x Capital triplica = 3x (Montante) Recordando, M=C+J, temos que Juros = x Da relação (E) 0º 13) Uma pessoa que tem, na mão direita, certo número x de moedas, e, na mão esquerda, 9 a mais que na direita leva 3 moedas da mão direita para a mão esquerda, ficando com 30 moedas nesta mão. De acordo com o exposto, x vale: (A) 4 (B) 0 (C) 18 (D) 13 (E) 1 Mão direita = x Mão esquerda = x+9 Simplificando por x, encontramos t = Alternativa correta : (A) 40 15) Uma geladeira de R$ 1.50,00 passou a custar R$ 1.100,00 para pagamento à vista. O preço dessa geladeira teve, portanto, um desconto de: (A) 14% (B) 13% (C) 1% (D) 11% (E) 10% Av. Portugal nº 7 (53)331073

6 Prova Aprendiz de Marinheiro / 01 P. Venda = R$ 150,00 P. Custo = R$ 1100,00 Desconto R$ 150,00 R$ % 150, ,00 x As grandezas se relacionam diretamente proporcional. (C) 1% Av. Portugal nº 7 (53)331073

CPV - especializado na ESPM

CPV - especializado na ESPM - especializado na ESPM ESPM NOVEMBRO/006 PROVA E MATEMÁTICA 0. Entre as alternativas abaixo, assinale a de maior valor: a) 8 8 b) 6 c) 3 3 d) 43 6 e) 8 0 Das alternativas a) 8 8 = 3 3 b) 6 = 8 c) 3 3

Leia mais

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. leonardosantos.inf@gmail.com 6 de dezembro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 2 Matemática 2014/2015

Leia mais

rapazes presentes. Achar a porcentagem das moças que estudam nessa Universidade, em relação ao efetivo da Universidade.

rapazes presentes. Achar a porcentagem das moças que estudam nessa Universidade, em relação ao efetivo da Universidade. 01 Marcar a frase certa: (A) Todo número terminado em 0 é divisível por e por 5. (B) Todo número cuja soma de seus algarismos é 4 ou múltiplo de 4, é divisível por 4 (C) O produto de dois números é igual

Leia mais

Ângulos nos triângulos Teorema angular de Tales: a soma dos ângulos internos de qualquer triângulo é igual a 180º. a a + b + c = 180º

Ângulos nos triângulos Teorema angular de Tales: a soma dos ângulos internos de qualquer triângulo é igual a 180º. a a + b + c = 180º RANILDO LOPES Ângulos nos triângulos Teorema angular de Tales: a soma dos ângulos internos de qualquer triângulo é igual a 180º. b a c a + b + c = 180º Teorema do ângulo externo: em qualquer triângulo,

Leia mais

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir:

Exemplo Aplicando a proporcionalidade existente no Teorema de Tales, determine o valor dos segmentos AB e BC na ilustração a seguir: GEOMETRIA PLANA TEOREMA DE TALES O Teorema de Tales pode ser determinado pela seguinte lei de correspondência: Se duas retas transversais são cortadas por um feixe de retas paralelas, então a razão entre

Leia mais

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4

(A) 30 (B) 6 (C) 200 (D) 80 (E) 20 (A) 6 (B) 10 (C) 15 (D) 8 (E) 2 (A) 15 (B) 2 (C) 6 (D) 27 (E) 4 (A) 3 (B) 2 (C) 6 (D) 27 (E) 4 TEOREMA DE TALES 1. Na figura abaixo as retas r, s e t são (A) 0 (B) 6 (C) 00 (E) 0. Três retas paralelas são cortadas por duas Se AB = cm; BC = 6 cm e XY = 10 cm a medida, em cm, de XZ é: (A) 0 (B) 10

Leia mais

MATEMÁTICA SARGENTO DA FAB

MATEMÁTICA SARGENTO DA FAB MATEMÁTICA BRUNA PAULA 1 COLETÂNEA DE QUESTÕES DE MATEMÁTICA DA EEAr (QUESTÕES RESOLVIDAS) QUESTÃO 1 (EEAr 2013) Se x é um arco do 1º quadrante, com sen x a e cosx b, então é RESPOSTA: d QUESTÃO 2 (EEAr

Leia mais

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Aprendizes-Marinheiros Barbosa, L.S. leonardosantos.inf@gmail.com 4 de janeiro de 2014 2 Sumário I Provas 5 1 Matemática 2013/2014 7 II Soluções 11 2 Matemática

Leia mais

Nome: nº Data: / / Professor Gustavo - Ensino Fundamental II - 8º ano FICHA DE ESTUDO

Nome: nº Data: / / Professor Gustavo - Ensino Fundamental II - 8º ano FICHA DE ESTUDO Nome: nº Data: / / Professor Gustavo - Ensino Fundamental II - 8º ano FICHA DE ESTUDO 1) Na figura abaixo, C é ponto médio do segmento AB, e B é ponto médio do segmento CD. Se AB mede 12 cm, quanto mede

Leia mais

MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169

MATEMÁTICA. Capítulo 2 LIVRO 1. Triângulos. Páginas: 157 à169 MATEMÁTICA LIVRO 1 Capítulo 2 Triângulos Páginas: 157 à169 I. Soma dos Ângulos Internos Teorema demonstração: a soma das medidas dos ângulos internos de qualquer triângulo vale 180 x B β y r // AC A γ

Leia mais

COLÉGIO MARQUES RODRIGUES - SIMULADO

COLÉGIO MARQUES RODRIGUES - SIMULADO COLÉGIO MRQUES RODRIGUES - SIMULDO PROFESSOR HENRIQUE LEL DISCIPLIN MTEMÁTIC SIMULDO: P6 Estrada da Água Branca, 2551 Realengo RJ Tel: (21) 3462-7520 www.colegiomr.com.br LUNO TURM 901 Questão 1 Um feixe

Leia mais

02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a

02 Do ponto P exterior a uma circunferência tiramos uma secante que corta a 01 Em um triângulo AB AC 5 cm e BC cm. Tomando-se sobre AB e AC os pontos D e E, respectivamente, de maneira que DE seja paralela a BC e que o quadrilátero BCED seja circunscritível a um círculo, a distância

Leia mais

Desenho e Projeto de Tubulação Industrial Nível II

Desenho e Projeto de Tubulação Industrial Nível II Desenho e Projeto de Tubulação Industrial Nível II Módulo I Aula 04 TRIÂNGULOS Triângulo é um polígono de três lados. É o polígono que possui o menor número de lados. Talvez seja o polígono mais importante

Leia mais

Plano de Recuperação Semestral 1º Semestre 2016

Plano de Recuperação Semestral 1º Semestre 2016 Disciplina: MATEMÁTICA Série/Ano: 9º ANO Objetivo: Proporcionar ao aluno a oportunidade de resgatar os conteúdos trabalhados durante o 1º semestre nos quais apresentou defasagens e que servirão como pré-requisitos

Leia mais

1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13

1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 Sumário CAPÍTULO 1 Construindo retas e ângulos 1. Posição de retas 11 Construindo retas paralelas com régua e compasso 13 2. Partes da reta 14 Construindo segmentos congruentes com régua e compasso 15

Leia mais

RECRO MATEMÁTICA 6º ANO 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES

RECRO MATEMÁTICA 6º ANO 1º BIMESTRE EIXO: NÚMEROS E OPERAÇÕES 6º ANO 1º BIMESTRE S Compreender o sistema de numeração decimal como um sistema de agrupamentos e trocas na base 10; Compreender que os números Naturais podem ser escritos de formas diferenciadas e saber

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 23/junho/2013

CPV especializado na ESPM ESPM Resolvida Prova E 23/junho/2013 CPV especializado na ESPM ESPM Resolvida Prova E 3/junho/03 MATEMÁTICA. O valor numérico da expressão (x + 4x + 4). (x x) x 4 para x = 48 é: a) 4800 b) 00 c) 400 d) 3500 e) 800 Fatorando a expressão, temos:.

Leia mais

Exercícios (Potenciação)

Exercícios (Potenciação) COLÉGIO SHALOM Ensino Fundamental II 9º ANO Profº: RONALDO VILAS BOAS COSTA Disciplina: MATEMÁTICA TRABALHO Data: 0//0 Nota: Estudante :. No. Exercícios (Potenciação) 0. Calcule: b) c) d) e) (-) f) - g)

Leia mais

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta

Questão 2. Questão 1. Questão 3. Resposta. Resposta. Resposta ATENÇÃO: Escreva a resolução COMPLETA de cada questão no espaço a ela reservado. Não basta escrever apenas o resultado final: é necessário mostrar os cálculos ou o raciocínio utilizado. Questão Emumasalaháumalâmpada,umatelevisão

Leia mais

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma:

POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: POLINÔMIOS 1. INTRODUÇÃO Uma função é dita polinomial quando ela é expressa da seguinte forma: n P(x) a a x a x... a x, onde 0 1 n Atenção! o P(0) a 0 o P(1) a a a... a 0 1 n a 0,a 1,a,...,a n :coeficientes

Leia mais

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede

GEOMETRIA PLANA. 1) (UFRGS) Na figura abaixo, o vértice A do retângulo OABC está a 6 cm do vértice C. O raio do círculo mede GEOMETRI PLN 1) (UFRGS) Na figura abaixo, o vértice do retângulo O está a 6 cm do vértice. O raio do círculo mede O (a) 5 cm (b) 6 cm (c) 8 cm (d) 9 cm (e) 10 cm ) (UFRGS) Na figura abaixo, é o centro

Leia mais

Geometria Analítica - AFA

Geometria Analítica - AFA Geometria Analítica - AFA x = v + (AFA) Considerando no plano cartesiano ortogonal as retas r, s e t, tais que (r) :, (s) : mx + y + m = 0 e (t) : x = 0, y = v analise as proposições abaixo, classificando-

Leia mais

PET-FÍSICA TRIGONOMETRIA NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ

PET-FÍSICA TRIGONOMETRIA NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ PET-FÍSICA TRIGONOMETRIA Aula 5 NATÁLIA ALVES MACHADO TATIANA DE MIRANDA SOUZA FREDERICO ALAN DE OLIVEIRA CRUZ AGRADECIMENTOS Esse material foi produzido com apoio do Fundo Nacional de Desenvolvimento

Leia mais

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA

PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA PROGRAMA INSTITUCIONAL DE BOLSA DE INICIÇÃO Á DOCENCIA PROJETO MATEMÁTICA 1 TRIGONOMETRIA Curitiba 2014 TÓPICOS DE GEOMETRIA PLANA Ângulos classificação: Ângulo reto: mede 90. Med(AôB) = 90 Ângulo agudo:

Leia mais

CPV especializado na ESPM ESPM Resolvida Prova E 16/novembro/2014

CPV especializado na ESPM ESPM Resolvida Prova E 16/novembro/2014 CPV especializado na ESPM ESPM Resolvida Prova E 6/novembro/04 MATEMÁTICA. O valor da epressão + + para = 400 é igual a: 3. Se = 4, y = 3 e y = z, o valor de z é igual a: a) 0,05 b) 0,50 c) 0,0 d) 0,0

Leia mais

Matemática B Extensivo V. 6

Matemática B Extensivo V. 6 GRITO Matemática Etensivo V. 6 Eercícios 0) E 0) 0) omo essas retas são perpendiculares, temos que o coeficiente angular de uma das retas é o oposto e inverso da outra, ou seja, m reta. m reta a + a a

Leia mais

LEIA COM ATENÇÃO E SIGA RIGOROSAMENTE ESTAS INSTRUÇÕES

LEIA COM ATENÇÃO E SIGA RIGOROSAMENTE ESTAS INSTRUÇÕES DEPARTAMENTO DE RECURSOS HUMANOS - DRH SELEÇÃO PÚBLICA PARA FORMAÇÃO DE CADASTRO DE RESERVA DE PROFESSOR SUBSTITUTO PARA A SECRETARIA MUNICIPAL DE EDUCAÇÃO EDITAL 28/2012 PROFESSOR DE MATEMÁTICA LOCAL

Leia mais

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer.

CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. LISTA DE EXERCICIOS - ESTUDO PARA A PROVA PR1 3ºTRIMESTRE PROF. MARCELO CONTEÚDO: Razões trigonométricas no Triangulo Retângulo e em Triângulo qualquer. (seno, cosseno e tangente; lei dos senos e lei dos

Leia mais

Conteúdo programático por disciplina Matemática 6 o ano

Conteúdo programático por disciplina Matemática 6 o ano 60 Conteúdo programático por disciplina Matemática 6 o ano Caderno 1 UNIDADE 1 Significados das operações (adição e subtração) Capítulo 1 Números naturais O uso dos números naturais Seqüência dos números

Leia mais

Colégio Militar de Porto Alegre 2/11

Colégio Militar de Porto Alegre 2/11 DE ENSINO BÁSICO, TÉCNICO E TECNOLÓGICO 013 Escolha a única resposta certa, assinalando-a com um X nos parênteses à esquerda QUESTÃO 1 O valor de 74 + 43 + 31+ 1+ 13 + 7 + 3 + 1 é igual a (A) 13 (B) 13

Leia mais

Deste modo, ao final do primeiro minuto (1º. período) ele deverá se encontrar no ponto A 1. ; ao final do segundo minuto (2º. período), no ponto A 2

Deste modo, ao final do primeiro minuto (1º. período) ele deverá se encontrar no ponto A 1. ; ao final do segundo minuto (2º. período), no ponto A 2 MATEMÁTICA 20 Um objeto parte do ponto A, no instante t = 0, em direção ao ponto B, percorrendo, a cada minuto, a metade da distância que o separa do ponto B, conforme figura. Considere como sendo de 800

Leia mais

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação

araribá matemática Quadro de conteúdos e objetivos Quadro de conteúdos e objetivos Unidade 1 Potências Unidade 2 Radiciação Unidade 1 Potências 1. Recordando potências Calcular potências com expoente natural. Calcular potências com expoente inteiro negativo. Conhecer e aplicar em expressões as propriedades de potências com

Leia mais

Nome: N.º: endereço: data: telefone: PARA QUEM CURSA O 9 Ọ ANO EM Disciplina:

Nome: N.º: endereço: data: telefone:   PARA QUEM CURSA O 9 Ọ ANO EM Disciplina: Nome: N.º: endereço: data: telefone: E-mail: Colégio PARA QUEM CURSA O 9 Ọ ANO EM 203 Disciplina: MateMática Prova: desafio nota: QUESTÃO 6 (MACKENZIE ADAPTADO) Dois números naturais tem soma 63 e razão

Leia mais

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor.

2013 Copyright. Curso Agora eu Passo - Todos os direitos reservados ao autor. Curso: Exercícios ESAF para Receita Federal 2013 Disciplina: Raciocínio Lógico-Quantitativo Assunto: Tópico 03 Geometria/Trigonometria Professor: Valdenilson Garcia 2013 Copyright. Curso Agora eu Passo

Leia mais

Lista de Exercícios Revisão de Lógica. 01. Desenvolva um programa em C que receba três valores numéricos inteiros e mostre a soma desses três números.

Lista de Exercícios Revisão de Lógica. 01. Desenvolva um programa em C que receba três valores numéricos inteiros e mostre a soma desses três números. Lista de Exercícios Revisão de Lógica 01. Desenvolva um programa em C que receba três valores numéricos inteiros e mostre a soma desses três números. /*declaração de variáveis*/ int n1, n2, n3, soma; printf("digite

Leia mais

Colégio Santa Dorotéia

Colégio Santa Dorotéia olégio Santa Dorotéia Área de Matemática Disciplina: Matemática no: 9º Ensino Fundamental Professores: Elias e Elvira Matemática tividades para Estudos utônomos Data: / 1 / 01 ORIENTÇÕES PR REUPERÇÃO FINL

Leia mais

Quadro de conteúdos MATEMÁTICA

Quadro de conteúdos MATEMÁTICA Quadro de conteúdos MATEMÁTICA 1 Apresentamos a seguir um resumo dos conteúdos trabalhados ao longo dos quatro volumes do Ensino Fundamental II, ou seja, um panorama dos temas abordados na disciplina de

Leia mais

Modulo 1. Seja x a medida do ângulo procurado. x complemento: 90º x suplemento: 180º x Interpretando o enunciado temos:

Modulo 1. Seja x a medida do ângulo procurado. x complemento: 90º x suplemento: 180º x Interpretando o enunciado temos: Modulo 1 1) Seja x a medida do ângulo procurado x complemento: 90º x suplemento: 180º x Interpretando o enunciado temos: 180º - x = (90º x) + 16º 180º - x = 270º 3x + 48º 2x = 138º x = 69 3 2) â + b =

Leia mais

)81'$d 2 *(7Ò/,2 9$5*$6 9(67,%8/$5 5(62/8d 2 ( &20(17È5, )$ 0$5,$ $1721,$ *289(,$

)81'$d 2 *(7Ò/,2 9$5*$6 9(67,%8/$5 5(62/8d 2 ( &20(17È5, )$ 0$5,$ $1721,$ *289(,$ )81'$d 2 *(7Ò/,2 9$*$6 9(67,%8/$ (62/8d 2 ( &20(17È,26 32 32)$ 0$,$ $1721,$ *289(,$ QUESTÃO 01. Os números inteiros x e y satisfazem a equação 2 x 3 2 x 1 y 3 3. y. Então x y é: a) 8 b) c) 9 d) 6 e) 7

Leia mais

Representando a situação problema pelo gráfico ao lado. Podemos concluir:

Representando a situação problema pelo gráfico ao lado. Podemos concluir: 5(6/8d '$ 359$ '( 0$7(0È7,&$B $9$/,$d '$ 81,'$'( B B &/e*, $1&+,(7$%$ 359$ (/$%5$'$ 35 35) &7$0$5 0$548(6 5(6/8d ( &0(17È5,6 35)$ 0$5,$ $17Ð1,$ *89(,$ QUESTÃO 01 1,111 O número - 0,056 equivale a x%. Calcule

Leia mais

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA. 10,00 (dez) pontos distribuídos em 20 itens

QUESTÃO ÚNICA MÚLTIPLA ESCOLHA. 10,00 (dez) pontos distribuídos em 20 itens QUESTÃO ÚNI MÚLTIPL ESOLH 10,00 (dez) pontos distribuídos em 0 itens Marque no cartão de respostas, anexo, a única alternativa que responde de maneira correta ao pedido de cada item. 1. Leandro tinha,

Leia mais

MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00

MATEMÁTICA I A) R$ 4 500,00 B) R$ 6 500,00 C) R$ 7 000,00 D) R$ 7 500,00 E) R$ 6 000,00 MATEMÁTCA 0. Pedro devia a Paulo uma determinada importância. No dia do vencimento, Pedro pagou 30% da dívida e acertou para pagar o restante no final do mês. Sabendo que o valor de R$ 3 500,00 corresponde

Leia mais

p q ~p ~q p q p ~ q p q ~ p q ~ p ~q F F V V F V V V F

p q ~p ~q p q p ~ q p q ~ p q ~ p ~q F F V V F V V V F PROVA DE MATEMÁTICA ª ÉRIE E.M. _COLÉGIO ANCHIETA BA Elaboração: PROF. OCTAMAR MARQQUE. Resolução e comentários: PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. 01. upondo a, b, c, d R, qual das proposições a

Leia mais

Gabarito da Prova de Matemática 2ª fase do Vestibular 2009

Gabarito da Prova de Matemática 2ª fase do Vestibular 2009 Gabarito da Prova de Matemática ª fase do Vestibular 009 Questão 01: (a) Enuncie o Teorema de Pitágoras Solução: Em todo triângulo retângulo, o quadrado da medida da hipotenusa é igual a soma dos quadrados

Leia mais

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto)

Acadêmico(a) Turma: Capítulo 5: Trigonometria. Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) 1 Acadêmico(a) Turma: 5.1. Triangulo Retângulo Capítulo 5: Trigonometria Definição: Todo triângulo que tenha um ângulo de 90º (ângulo reto) Figura 1: Ângulos e catetos de um triangulo retângulo. Os catetos

Leia mais

Solução Comentada Prova de Matemática

Solução Comentada Prova de Matemática 18. Se f é uma função real de variável real definida por f() = a + b + c, onde a, b e c são números reais negativos, então o gráfico que melhor representa a derivada de f é: A) y B) y C) y D) y E) y Questão

Leia mais

Apostila de Matemática 06 Trigonometria

Apostila de Matemática 06 Trigonometria Apostila de Matemática 06 Trigonometria.0 Triângulo Retângulo. Introdução Quanto mais o ângulo ou o índice, mais íngreme o triângulo retângulo é. ÍNDICE Altura Afastamento Área do Triângulo Retângulo:

Leia mais

1-(Cesgranrio 2001) As retas r e s da figura são paralelas cortadas pela transversal t. Se o ângulo B é o triplo de A, então B - A vale:

1-(Cesgranrio 2001) As retas r e s da figura são paralelas cortadas pela transversal t. Se o ângulo B é o triplo de A, então B - A vale: MATEMÁTICA 1-(Cesgranrio 2001) As retas r e s da figura são paralelas cortadas pela transversal t. Se o ângulo B é o triplo de A, então B - A vale: a) 90 b) 85 c) 80 d) 75 e) 60 2- Nas figuras seguintes,

Leia mais

Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 24 de Outubro de 2014

Rumo Curso Pré Vestibular Assistencial - RCPVA Disciplina: Matemática Professor: Vinícius Nicolau 24 de Outubro de 2014 Sumário 1 Questões de Vestibular 1 1.1 UP 014...................................... 1 1.1.1 Questão 1................................. 1 1.1. Questão................................. 1 1.1.3 Questão 3.................................

Leia mais

Matemática (Prof. Lara) Lista de exercícios recuperação 2 semestre (3Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto)

Matemática (Prof. Lara) Lista de exercícios recuperação 2 semestre (3Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto) Matemática (Prof. Lara) Lista de exercícios recuperação 2 semestre (3Ano) Fazer todos os exercícios e entregar no dia da prova (1 ponto) 1-)(PUC_MG) Fatorar: (x + y) 2 - (x - y) 2 2-)De acordo com as identidades

Leia mais

Simulado 1 Matemática IME Soluções Propostas

Simulado 1 Matemática IME Soluções Propostas Simulado 1 Matemática IME 2012 Soluções Propostas 1 Para 0, temos: para cada um dos elementos de, valores possíveis em (não precisam ser distintos entre si, apenas precisam ser pertencentes a, pois não

Leia mais

(A) 3 (B) 1 (A) (B) (D) (E) ( 2 + 2) 2x 2 3x 2 = 0 é: (A) (2, 1 2 ) (B) ( 14 5, 1) (C) ( 1 2. (E) x + x = b a.

(A) 3 (B) 1 (A) (B) (D) (E) ( 2 + 2) 2x 2 3x 2 = 0 é: (A) (2, 1 2 ) (B) ( 14 5, 1) (C) ( 1 2. (E) x + x = b a. Pré-F 2017 Simulado #6 12 de julho de 2017 Q1. (EsS) Os preços de duas peças de fazenda estão entre si como 7 está para 8. Sabendo-se que o triplo do preço de uma menos o dobro do preço da outra vale R$

Leia mais

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL

RETAS PARALELAS INTERCEPTADAS POR UMA TRANSVERSAL GEOMETRIA PLANA MEDIDAS DE ÂNGULOS: Raso, se é igual a 180º; Nulo, se, é igual a 0º; Reto:é igual a 90 ; Agudo: é maior que 0 e menor que 90 ; Obtuso: é maior que 90 e menor que 180. IMPORTANTE: se a soma

Leia mais

Semelhança de triângulos

Semelhança de triângulos Semelhança de triângulos As três proposições a seguir estabelecem as condições suficientes usuais para que dois triângulos sejam semelhantes. Por tal razão, as mesmas são conhecidas como os casos de

Leia mais

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA

CONCURSO DE ADMISSÃO AO COLÉGIO MILITAR DO RECIFE - 97 / a QUESTÃO MÚLTIPLA ESCOLHA 11 1 a QUESTÃO MÚLTIPLA ESCOLHA ESCOLHA A ÚNICA RESPOSTA CERTA, ASSINALANDO-A COM X NOS PARÊNTESES ABAIXO. 0 Item 01. O valor de 45 é a. ( ) 1 b. ( 1 ) c. ( ) 5 d. ( 1 ) 5 e. ( ) Item 0. Num Colégio, existem

Leia mais

UFSC. Matemática (Amarela) Resposta: Correta. log (x + 2) log (x + 2) = Incorreta. 100% 23% = 77% Logo, V = 0,77. V 0.

UFSC. Matemática (Amarela) Resposta: Correta. log (x + 2) log (x + 2) = Incorreta. 100% 23% = 77% Logo, V = 0,77. V 0. Resposta: 6 0. Incorreta. 00% 3% = 77% Logo, V = 0,77. V 0 0. Correta. f(x) = x + 3 Para x > : f(x) = x + 3 f(x) = x (crescente) 04. Incorreta. 4 x x + 3 = 7 ( x ) x. 3 = 8 x = a a 8a 8 = 0 a = 6 x = 6

Leia mais

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF.

Pontos correspondentes: A e D, B e E, C e F; Segmentos correspondentes: AB e DE, BC e EF, AC e DF. Teorema de Tales O Teorema de Tales possui diversas aplicações no cotidiano, que devem ser demonstradas a fim de verificar sua importância. O Teorema diz que retas paralelas, cortadas por transversais,

Leia mais

Módulo de Geometria Anaĺıtica 1. 3 a série E.M.

Módulo de Geometria Anaĺıtica 1. 3 a série E.M. Módulo de Geometria Anaĺıtica 1 Equação da Reta. 3 a série E.M. Geometria Analítica 1 Equação da Reta. 1 Exercícios Introdutórios Exercício 1. Determine a equação da reta cujo gráfico está representado

Leia mais

Prova Vestibular ITA 2000

Prova Vestibular ITA 2000 Prova Vestibular ITA Versão. ITA - (ITA ) Sejam f, g : R R definidas por f ( ) = e g cos 5 ( ) =. Podemos afirmar que: f é injetora e par e g é ímpar. g é sobrejetora e f é bijetora e g é par e f é ímpar

Leia mais

Triângulos classificação

Triângulos classificação Triângulos classificação Quanto aos ângulos Acutângulo: possui três ângulos agudos. Quanto aos lados Equilátero: três lados de mesma medida. Obs.: os três ângulos internos têm medidas de 60º. Retângulo:

Leia mais

Disciplina: Matemática Professor (a): Rosângela Ano: 8º Turma: 8.1 e 8.2

Disciplina: Matemática Professor (a): Rosângela Ano: 8º Turma: 8.1 e 8.2 COLÉGIO NOSSA SENHORA DA PIEDADE Programa de Recuperação Paralela 2ª Etapa 2012 Disciplina: Matemática Professor (a): Rosângela Ano: 8º Turma: 8.1 e 8.2 Caro aluno, você está recebendo o conteúdo de recuperação.

Leia mais

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE

CURSO DE MATEMÁTICA BÁSICA PROGRAMA DE EDUCAÇÃO TUTORIAL CENTRO DE ENGENHARIA DA MOBILIDADE CURSO DE MATEMÁTICA BÁSICA Trigonometria Aula 0: Matrizes e Determinantes Trigonometria Deduzindo da própria palavra, trigonometria é a parte da geometria que estabelece relações métricas e angulares entre

Leia mais

No triângulo formado pelos ponteiros do relógio e pelo seguimento que liga suas extremidades apliquemos a lei dos cossenos: 3 2

No triângulo formado pelos ponteiros do relógio e pelo seguimento que liga suas extremidades apliquemos a lei dos cossenos: 3 2 COLÉGIO ANCHIETA-BA a AVALIAÇÃO de MATEMÁTICA _UNIDADE IV_ o ANO EM PROVA ELABORADA POR PROF OCTAMAR MARQUES. PROFA. MARIA ANTONIA CONCEIÇÃO GOUVEIA 0. Os ponteiros de um relógio têm comprimentos iguais

Leia mais

AULA ATIVIDADE 3 18/08/16

AULA ATIVIDADE 3 18/08/16 AULA ATIVIDADE 3 18/08/16 Tutor Presencial: Alex Bernardi Engenheiro Químico - UNOCHAPECÓ Pós Graduado em Engenharia de Produção - UTFPR Mestrando em Engenharia de Produção - UTFPR site: engenheiroalex.wordpress.com

Leia mais

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE

UNICAMP Você na elite das universidades! MATEMÁTICA ELITE SEGUNDA FASE www.elitecampinas.com.br Fone: (19) -71 O ELITE RESOLVE IME 004 PORTUGUÊS/INGLÊS Você na elite das universidades! UNICAMP 004 SEGUNDA FASE MATEMÁTICA www.elitecampinas.com.br Fone: (19) 51-101 O ELITE

Leia mais

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria

Nome: nº 1º Ano Ensino Médio Professor Fernando. Lista de Recuperação de Geometria. Trigonometria Nome: nº 1º no Ensino Médio Professor Fernando Lista de Recuperação de Geometria Trigonometria 1 ) Determine as medidas dos catetos do triângulo retângulo abaio. Use : Sen 37º = 0,60 os 37º = 0,80 tg 37º

Leia mais

( Marque com um X, a única alternativa certa )

( Marque com um X, a única alternativa certa ) (PROVA DE MATEMÁTICA DO CONCURSO DE ADMISSÃO À 1ª SÉRIE CMB ANO 004/0) MÚLTIPLA-ESCOLHA ( Marque com um X, a única alternativa certa ) QUESTÃO 01. Na figura abaixo, o círculo tem centro O, OT = 6 unidades

Leia mais

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas

Matemática. Nesta aula iremos aprender as. 1 Ponto, reta e plano. 2 Posições relativas de duas retas Matemática Aula 5 Geometria Plana Alexandre Alborghetti Londero Nesta aula iremos aprender as noções básicas de Geometria Plana. 1 Ponto, reta e plano Estes elementos primitivos da geometria euclidiana

Leia mais

COLÉGIO MARISTA - PATOS DE MINAS 2º ANO DO ENSINO MÉDIO Professor (a): Rodrigo Gonçalves Borges 1ª RECUPERAÇÃO AUTÔNOMA

COLÉGIO MARISTA - PATOS DE MINAS 2º ANO DO ENSINO MÉDIO Professor (a): Rodrigo Gonçalves Borges 1ª RECUPERAÇÃO AUTÔNOMA COLÉGIO MARISTA - PATOS DE MINAS º ANO DO ENSINO MÉDIO - 013 Professor (a): Rodrigo Gonçalves Borges 1ª RECUPERAÇÃO AUTÔNOMA ROTEIRO DE ESTUDO QUESTÕES Conteúdos: - Matemática Financeira - Geometria Plana

Leia mais

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y).

MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL. ENQ Gabarito. a(x x 0) = b(y 0 y). MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL ENQ 016.1 Gabarito Questão 01 [ 1,00 ::: (a)=0,50; (b)=0,50 ] (a) Seja x 0, y 0 uma solução da equação diofantina ax + by = c, onde a, b são inteiros

Leia mais

Matemática B Extensivo V. 7

Matemática B Extensivo V. 7 GRITO Matemática Etensivo V. 7 Eercícios ) D ) D ) I. Falso. O diâmetro é dado por. r. cm. II. Verdadeiro. o volume é dado por π. r² π. ² π cm² III. Verdadeiro. (, ) (, ) e assim, ( )² + ( )² r² fica ²

Leia mais

O problema proposto possui alguma solução? Se sim, quantas e quais são elas?

O problema proposto possui alguma solução? Se sim, quantas e quais são elas? PROVA PARA OS ALUNOS DE 3º ANO DO ENSINO MÉDIO 1) Considere o seguinte problema: Vitor ganhou R$ 3,20 de seu pai em moedas de 5 centavos, 10 centavos e 25 centavos. Se recebeu um total de 50 moedas, quantas

Leia mais

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo:

1. Com o auxílio de régua graduada e transferidor, calcular sen 42, cos 42 e tg 42. Resolução Traçamos uma perpendicular a um dos lados desse ângulo: Atividades Complementares 1. Com o auxílio de régua graduada e transferidor, calcular sen 4, cos 4 e tg 4. Traçamos uma perpendicular a um dos lados desse ângulo: Medimos, com auxílio da régua, os lados

Leia mais

CADERNO DE EXERCÍCIOS 2A

CADERNO DE EXERCÍCIOS 2A CADERNO DE EXERCÍCIOS A Ensino Fundamental Ciências da Natureza I Conteúdo Habilidade da Questão Matriz da EJA/FB 1 Raio e diâmetro da circunferência H4 Ângulos H6 3 Operações com números H9 negativos

Leia mais

(R. 2 3 ) a) 243 b) 81 c) 729 d) 243 e) 729

(R. 2 3 ) a) 243 b) 81 c) 729 d) 243 e) 729 08. Determine o valor de 8 + 14 + 6 + 4. (R. ) 01. O valor da expressão LISTA 1 GEOMETRIA PLANA PROF. NATHALIE 1º Ensino Médio - 017 1 + 1 + 1 1 a) b) c) 0 d) 4 e) 4 (Alternativa E) 0. A expressão com

Leia mais

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais.

1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são grandezas inversamente proporcionais. Nome: nº Professor(a): Série: 1ª EM. Turma: Data: / /2013 Sem limite para crescer Bateria de Exercícios de Matemática II 1º Trimestre 1. Calcular x e y sabendo-se que (1, 2, x,...) e (12, y, 4,...) são

Leia mais

A) 5 B) 4 C) 6 D) 7 E) 8

A) 5 B) 4 C) 6 D) 7 E) 8 20. (CONCURSO PORTEIRAS/2018) Sobre avaliação é INCORRETO afirmar: A) A avaliação da escola é chamada de avaliação Institucional, cujo apoio é o projeto político-pedagógico da escola. B) A avaliação da

Leia mais

a) 64. b) 32. c) 16. d) 8. e) 4.

a) 64. b) 32. c) 16. d) 8. e) 4. GEOMETRIA PLANA 1 1) (UFRGS) Observe com atenção o retângulo ABCD, na figura abaixo. Considerando as relações existentes entre as sua dimensões e a diagonal, a área desse retângulo será igual a ) (UFRGS)

Leia mais

QUESTÃO 01. Se x, y e z são números reais, é verdade que: 01) x = 2, se somente se, x 2 = 4. 02) x < y é condição suficiente para 2x < 3y.

QUESTÃO 01. Se x, y e z são números reais, é verdade que: 01) x = 2, se somente se, x 2 = 4. 02) x < y é condição suficiente para 2x < 3y. SIMULADO DE MATEMÁTICA _ 008 a SÉRIE E M _ COLÉGIO ANCHIETA-BA ELABORAÇÃO DA PROVA: PROF OCTAMAR MARQUES PROFA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO 0 Se x, y e z são números reais, é verdade que: 0)

Leia mais

Centro Educacional Evangélico - Trabalho 2º Bimestre

Centro Educacional Evangélico - Trabalho 2º Bimestre Centro Educacional Evangélico - Trabalho º Bimestre Disciplina: Matemática Data de Entrega:06/06/018 Nota: 10 Para cada questão que não conter a resposta completa (por escrito) será anulada 0,1 pontos;

Leia mais

Matemática GEOMETRIA PLANA. Professor Dudan

Matemática GEOMETRIA PLANA. Professor Dudan Matemática GEOMETRIA PLANA Professor Dudan Ângulos Geometria Plana Ângulo é a região de um plano concebida pelo encontro de duas semirretas que possuem uma origem em comum, chamada vértice do ângulo. A

Leia mais

Visite : e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180

Visite :  e) ) (UFC) O coeficiente de x 3) 5 é: a) 30 b) 50 c) 100 d) 120 e) 180 ) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições = P() = P() = P(3) = P(4) = P(5) e P(6) = 0, então temos: a) P(0) = 4 b) P(0) = 3 c) P(0) = 9 d) P(0) = e) N.D.A. ) (UFC) Seja P(x) um

Leia mais

Tarefa: SIMULADO DE MATEMÁTICA SIMULADO_2010 DE MATEMÁTICA APLICADO ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM JULHO DE 2010.

Tarefa: SIMULADO DE MATEMÁTICA SIMULADO_2010 DE MATEMÁTICA APLICADO ÀS TURMAS DO 3 O ANO DO ENSINO MÉDIO DO COLÉGIO ANCHIETA EM JULHO DE 2010. Tarefa: SIMULADO DE MATEMÁTICA ALUNO(A): ª série do ensino médio Professores: Octamar e Carié Nº de questões: 5 Data: / / Unidade: II Turma: Nº: Nota: SIMULADO_ DE MATEMÁTICA APLICADO ÀS TURMAS DO O ANO

Leia mais

Plano de Recuperação Semestral EF2

Plano de Recuperação Semestral EF2 Série/Ano: 9º ANO Matemática Objetivo: Proporcionar ao aluno a oportunidade de rever os conteúdos trabalhados durante o semestre nos quais apresentou dificuldade e que servirão como pré-requisitos para

Leia mais

CORREÇÃO NÃO OFICIAL DO PROFMAT/ENA-2019

CORREÇÃO NÃO OFICIAL DO PROFMAT/ENA-2019 CORREÇÃO NÃO OFICIAL DO PROFMAT/ENA-2019 Resolução: A área do triângulo equilátero é dada por: Portanto, e são grandezas diretamente proporcionais. Alternativa (b). www.doraci.com.br 1/30 Profmat/ENA-2019

Leia mais

ISOLADA DE MATEMÁTICA

ISOLADA DE MATEMÁTICA ISOLADA DE MATEMÁTICA ISOLADA DE MATEMÁTICA Nessa isolada de Matemática você terá acesso à 73 videoaulas, 100% on-line, com duração média de 30 minutos, cada, contendo material de acompanhamento e simulados

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Chamada

Prova final de MATEMÁTICA - 3o ciclo a Chamada Prova final de MATEMÁTICA - 3o ciclo 2007-2 a Chamada Proposta de resolução 1. Organizando todas as somas que o Paulo pode obter, com recurso a uma tabela, temos: + 1 2 3 4 5 6-6 -5-4 -3-2 -1 0-5 -4-3

Leia mais

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito

CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito CURSO ANUAL DE FÍSICA AULA 1 Prof. Renato Brito BREVE REVISÃO DE GEOMETRIA PARA AJUDAR NO ESTUDO DOS VETORES É importante que o aluno esteja bem familiarizado com as propriedades usuais da geometria plana,

Leia mais

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas

Programação anual. 6 º.a n o. Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Programação anual 6 º.a n o 1. Números naturais 2. Do espaço para o plano Sistemas de numeração Sequência dos números naturais Ideias associadas às operações fundamentais Expressões numéricas Formas geométricas

Leia mais

Prova final de MATEMÁTICA - 3o ciclo a Fase

Prova final de MATEMÁTICA - 3o ciclo a Fase Prova final de MATEMÁTICA - 3o ciclo 015-1 a Fase Proposta de resolução Caderno 1 1. 1.1. Os alunos que têm uma altura inferior a 155 cm são os que medem 150 cm ou 15 cm. Assim, o número de alunos com

Leia mais

SIMULADO GERAL DAS LISTAS

SIMULADO GERAL DAS LISTAS SIMULADO GERAL DAS LISTAS 1- Sejam as funções f e g definidas em R por f ( x) x + αx g β, em que α e β são números reais. Considere que estas funções são tais que: = e ( x) = ( x x 50) f g Valor mínimo

Leia mais

1ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA

1ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 1ª série EM - Lista de Questões para a RECUPERAÇÃO FINAL - MATEMÁTICA 01. Calcule m e n na figura abaixo. 0. Na figura abaixo, as retas r e s são paralelas, determine o valor de x. 03. Determine x nas

Leia mais

30's Volume 9 Matemática

30's Volume 9 Matemática 30's Volume 9 Matemática www.cursomentor.com 20 de janeiro de 201 Q1. Uma pessoa adulta possui aproximadamente litros de sangue. Em uma pessoa saudável, 1 mm 3 de sangue possui, aproximadamente: milhões

Leia mais

Taxas Trigonométricas

Taxas Trigonométricas Taas Trigonométricas Obs.: Com é mais difícil (confere a resolução). 1) A intensidade da componente F é p% da intensidade da força F. Então, p vale (a) sen(α) (b) 1sen(α) (c) cos(α) (d) 1cos(α) (e) cos(α)/1

Leia mais

CONTEÚDOS PARA A PROVA DE ADMISSÃO

CONTEÚDOS PARA A PROVA DE ADMISSÃO 6º ANO Ensino Fundamental 1. Gêneros textuais e conceitos (leitura, análise e produção de textos narrativos) 1.1. Procedimentos de leitura: Inferir uma informação implícita em um texto. Identificar elementos

Leia mais

Aula do cap. 03 Vetores. Halliday

Aula do cap. 03 Vetores. Halliday ula do cap. 03 Vetores. Conteúdo: Grandezas Escalares e Vetoriais dição de Vetores Método do Paralelogramo Decomposição de Vetores Vetores Unitários e dição Vetorial. Produto Escalar Referência: Halliday,

Leia mais

Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro?

Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? Qual o raio de um círculo com 53,38 cm de perímetro? (considera = 3,14) Qual o diâmetro de um círculo com 37,68 cm de perímetro? (considera = 3,14) Qual o perímetro de um círculo com 18 cm de raio? (considera

Leia mais

Datas de Avaliações 2016

Datas de Avaliações 2016 ROTEIRO DE ESTUDOS MATEMÁTICA (6ºB, 7ºA, 8ºA e 9ºA) SÉRIE 6º ANO B Conteúdo - Sucessor e Antecessor; - Representação de Conjuntos e as relações entre eles: pertinência e inclusão ( ). - Estudo da Geometria:

Leia mais

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S.

Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica. Barbosa, L.S. Soluções Comentadas Matemática Curso Mentor Escola de Especialistas da Aeronáutica Barbosa, L.S. leonardosantos.inf@gmail.com 4 de junho de 014 Sumário I Provas 5 1 Matemática 013 1 7 II Soluções 11 Matemática

Leia mais

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6.

x = 4 2sen30 0 = 4 2(1/2) = 2 2 e y = 4 2 cos 30 0 = 4 2( 3/2) = 2 6. CURSO DE PRÉ CÁLCULO ONLINE - PET MATEMÁTICA / UFMG LISTA DE EXERCÍCIOS RESOLVIDOS: Exercício 1 Calcule o valor de x e y indicados na figura abaixo. Solução: No triângulo retângulo ABD, temos que AD mede

Leia mais