Índice. Disciplina: Matemática Segundo Ano do Ensino Médio Matrizes Arquivo: Matrizes.doc 17/11/03, 17:13 h

Tamanho: px
Começar a partir da página:

Download "Índice. Disciplina: Matemática Segundo Ano do Ensino Médio Matrizes Arquivo: Matrizes.doc 17/11/03, 17:13 h"

Transcrição

1 CCeenn rroo FFeeeerrl ll ee EEuuççããoo TTeennoo llóóggi l ii hhi ii. Disiplin: Memái Seguno no o Ensino Méio Mrizes rquivo: Mrizes.o //, : h Ínie Mrizes. Definição.. Noção e um mriz Mriz Qur. Mriz Digonl Mriz linh. Mriz olun. Mrizes iguis.. Mriz Trnspos.. Propriees mriz rnspos Mriz Nul. Mriz Opos Mriz ienie ou Mriz unie. ição e Mrizes. Prouo e Mrizes.. Propriees:.. :.. Mriz Involuiv. Mriz Siméri.. Mriz ni-siméri:.. Deerminne e um mriz e orem. Deerminne e um mriz e orem Regr e Srrus.. Definição.. :.. Propriees Mriz Invers Complemenos 9 s.. Resposs Os Memáios. Pierre Simon e Lple, 9,.. Crl Gusv Jo (Joi),..

2 rquivo: mrizes.o Pge / Mrizes Definição São números isposos em linhs (fils horizonis) e oluns (fils veriis), formno um el. Gsos e um fmíli (proimmene) - Ren Fmilir R$.. Desrição Ouuro Novemro Dezemro Méi Supermero Súe Trnspore Vesiário Higiene Pessol Lzer Poupnç Tois el que voê ou e preenher, poemos rnsformá-l num mriz: One os nomes supermero, súe, rnspore, vesiário, higiene pessol, lzer e poupnç são s linhs ( ) e ouuro, novemro, ezemro e Méi são s oluns ( ). ssim voê erá mriz que é um mriz om elemenos., e orem, Noção e um mriz. Um mriz e orem : Eemplo:,.. D é um mriz, om elemenos, one, -, /,,. Um mriz genéri e orem nn: ` m Mriz Qur é o mriz one o número e linhs é igul o número e oluns. ` m m n n n mn

3 rquivo: mrizes.o Pge / Eemplo: é um mriz qur e orem ; 9 é um mriz qur e orem. Mriz Digonl É mriz qur n qul os elemenos que não perenem à igonl prinipl são iguis zero. Eemplos: ; 9 e C Mriz linh é o mriz o ipo n. Eemplo: ( ) C, mriz e orem. Mriz olun é o mriz o ipo m. Eemplo: M, mriz e orem. Mrizes iguis us mrizes e são iguis, se e somene se, os elemenos mesm posição são iguis. Eemplo: D e E logo DE.. Deermine e, seno que s mrizes 9 são iguis.. Seno s mrizes n m n m e, hr os vlores e,, m e n pr que se enh.. Se, eermine,, e. Mriz Trnspos quno se ro orenmene s linhs pels oluns e um mriz, nov mriz é i um mriz rnspos.

4 rquivo: mrizes.o Pge / Eemplo: su rnspos é. Propriees mriz rnspos. ( ). ( ). ( ).. α α. Seno s mrizes e, lule e e moo que.. Sejm s mrizes z z e. Se, eermine,, z e.. Sejm s mrizes e, e mesm orem mn. Demonsre que: ( ). Mriz Nul é mriz que em oos os elemenos iguis zero. Mriz Opos mriz opos e um mriz é um que som om mriz, resul n mriz Nul. Eemplo: su opos é: Mriz ienie ou Mriz unie e orem n, é mriz qur e orem n que em os elemenos igonl prinipl iguis e os emis elemenos iguis zero.

5 rquivo: mrizes.o Pge / Eemplos: ; I, mriz ienie e orem ; I, mriz ienie e orem. I, mriz ienie e orem ição e Mrizes som e us mrizes ( ) e ( ) é mriz ( ) mn. ij, e C ) C. Ds s mrizes ) C ij, ms o mesmo ipo ij ij, lulr:. Deerminr, e z seno que: z z. Prouo e Mrizes Requisio: O número e oluns primeir mriz sej igul o número e linhs segun mriz. D ssim: ). 9. Sejm s mrizes e. Sejm s mrizes C ; ). e M, eermine., lule s mrizes prouos: ). ). )..? V ou F.. Se, eermine mriz X l que. X I. Propriees:. muliplição e mrizes não é omuiv.. muliplição e mrizes é ssoiiv: (.).C.(.C). muliplição e mrizes é isriuiv em relção à ição:.(c)..c. Muliplição e um número rel por um mriz: ( α. ). α. (. ). Muliplição pel mriz ienie:. I I. n n

6 rquivo: mrizes.o Pge / I. n, se.. p p., pr p N 9. P...., p fores. ( ).. :. Sej mriz, eermine mriz polinomil,... I. Mriz Involuiv Um mriz qur é involuiv quno I. Um mriz igonl, e orem, é involuiv. Deermine-. Fç. Mriz Siméri é um mriz qur [ ] nn j, j n. Os: Se é siméri enão ij, iz-se siméri quno ij ji. pr oo i, i n, pr oo. Deermine o número R, pr que mriz, sej siméri. ij. Sej mriz [ ]. Se siméri? sen α osα ( senα osα ), pr qul sen α os α ii ij ij ji i j, se i < j, eermine os números, e.. Sej mriz, qur e orem n. Demonsre que é siméri.. Deermine e. é Mriz ni-siméri: é um mriz qur [ ij ], iz-se ni-siméri quno nn ij ji pr oo i, i n pr oo j, j n.,

7 rquivo: mrizes.o Pge / Os: Se é siméri enão ; os elemenos igonl prinipl são oos nulos.. mriz é ni-siméri. sej ni- 9. Deermine os números reis,,,, e z pr que mriz siméri. z. Sej mriz, qur e orem n. Demonsre que - é ni-siméri. Deerminne e um mriz e orem o mriz qur esá ssoio um número rel hmo eerminne. Eemplos: Clulr os eerminnes s mrizes: ) ) o eerminne ess mriz é: e. (-) o eerminne ess mriz é: e.. - Deerminne e um mriz e orem Regr e Srrus. Clulr os eerminnes s mrizes pel regr e Srrus: ) ) ). Clule os eerminnes ) log π g senπ ln e se ( π ) ) π sen log π os Mriz Invers Definição Sej um mriz qur e orem n. mriz qur, e orem n, iz-se um invers e, se e somene se:.. I. n

8 rquivo: mrizes.o Pge / Propriee: invers e um mriz eise se o e. :. Deermine mriz invers mriz.. Sej mriz. Deermine -, se eisir.. Pr mriz seguir, eermine -, se eisir:, se θ gθ C gθ se θ. Sej mriz. Deermine -, se eisir. e. Sejm s mrizes e. Resolv equção mriil X.. os sen sen os. Sejm s mrizes e os sen, Resolv equção mriil. X. Propriees (. ). ) ( ) ( ) α.. α ) ( ) p ) ( ) ( ) p 9. Um mriz qur, não singulr, iz-se orogonl quno osθ senθ senθ osθ é orogonl?. mriz. Pr s mrizes, e C, simplifique: C.. ( C.. ).( C).. Sej mriz. Deermine mriz X, seno-se que:. X. I O..

9 rquivo: mrizes.o Pge 9/. Sejm s mrizes e. Deermine s mrizes X e Y, e orem, is que Y X Y.X.. Seno om,. e, <, X e C, é vere que: () e () () e.e () Se.XC, enão X () Se.X, enão X () e(.) 9 Mriz Invers Complemenos. Enonrr mriz invers - mriz.. Usno efinição Solução:fzeno resolveno os sisems: e, enonrmos mriz invers /.. Deerminção mriz invers usno o eerminne e mriz rnspos os ofores: Enonrr mriz invers - mriz. Solução: ) Cálulo o eerminne e : e.-.(-) ) Deerminção mriz os ofores mriz : ( ) ( ) ( ) ( ) ( ).... ) Diviir oos os elemenos mriz rnspos form pelos ofores pelo e: / / / /

10 rquivo: mrizes.o Pge / ) Mriz invers e é: /. Usno o eslonmeno: olo-se à irei mriz, mriz ienie; fz-se o eslonmeno e moo que mriz ienie psse oupr posição mriz. Solução: /, oserve que posição mriz foi oup pel mriz ienie e n posição mriz ienie enonr-se mriz invers /. s. Enonrr mriz invers mriz, usno mriz rnspos os ofores. / / /. Enonrr mriz invers mriz, usno mriz os ofores. onlu!? Se. Deerminr mriz invers s mrizes: (usr o eslonmeno) ). / / / / ) / / / / / / / Deermine mriz invers mriz. / / / / / / Resposs ) e ) ; ; m e n - ),, e ) e ),, z e ) (-) ( (-)) (-).. ) ) 9 ) ), - e 9)

11 rquivo: mrizes.o Pge / ) e ) ) 9 9 ),,, ) ou ), sim é um mriz siméri. ), e ) Vej o. ),,, -,, 9) ; - e ) Se um mriz é ni-siméri enão: - -. Fzeno (- ) (- ) -. O que prov que - é um mriz ni-siméri. ) ) - ) - ) ) - ) / ) ) Não eise, pois mriz é singulr. ), θ θ θ θ se se g g C, - não eise. ) Eise, pois e -. ) X ) X sen os 9) Sim, é um mriz orogonl. ) C ) ) 9 X e Y ) V, F,V,V,F,V, ol: Os Memáios Pierre Simon e Lple, 9, Nseu n Frnç e é onsiero um os grnes memáios o períoo Revolução Frnes. Esuou n Esol Milir, eereu rgos políios, enre eles o e Minisro o Inerior e Npoleão. Foi professor Esol Norml e Esol Poliéni e Pris, lém e priipr o Comiê e Pesos e Meis. Como ienis, Lple onriuiu pr o esenvolvimeno Físi, priniplmene om relção à Meâni Celese. N Memái, que ele onsierv um oleção e insrumenos, que ele mnejv om mui hilie, seus prinipis esuos volrm-se pr Teori s Proilies. Ns sus prinipis ors, Teori nlíi s Proilies, e, e Ensios Filosófios Proilies, e, Lple

12 rquivo: mrizes.o Pge / mosrou um grne onheimeno e nálise, plino s noções e Cálulo vnço no esuo s proilies, (José Ru Giovnni e José Roero onjorno, Memái Trigonomeri, Mrizes, nálise Cominóri e Geomeri, Volume, FTD, 99). Crl Gusv Jo (Joi), Nseu n lemnh, one fez seus esuos, eino-se priniplmene à Filosofi e à Memái, perfeiçono-se nes úlim. Diferenemene e muios memáios e seu empo, Joi er um professor no e gosv e ensinr. Seus prinipis rlhos form no mpo Teori s Funções Elípis e Teori os Deerminnes. Nes, Joi preoupou-se om noção equ pr os eerminnes, rino lgorimos e regrs práis pr su uilizção. Foi por esse moivo onsiero um os grnes responsáveis pelo esenvolvimeno Teori os Deerminnes, (José Ru Giovnni e José Roero onjorno, Memái Trigonomeri, Mrizes, nálise Cominóri e Geomeri, Volume, FTD, 99).

ÁLGEBRA LINEAR - 1. MATRIZES

ÁLGEBRA LINEAR - 1. MATRIZES ÁLGEBRA LINEAR - 1. MATRIZES 1. Conceios Básicos Definição: Chmmos de mriz um el de elemenos disposos em linhs e coluns. Por exemplo, o recolhermos os ddos populção, áre e disânci d cpil referenes à quros

Leia mais

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4 A eori ds mrizes em cd vez mis plicções em áres como Economi, Engenhris, Memáic, Físic, enre ours. Vejmos um exemplo de mriz: A bel seguir represen s nos de rês lunos do primeiro semesre de um curso: Físic

Leia mais

2.1. Integrais Duplos (definição de integral duplo)

2.1. Integrais Duplos (definição de integral duplo) Análise Mtemáti II- no letivo 6/7.. Integris uplos (efinição e integrl uplo) Pr melhor ompreener efinição e integrl uplo vmos omeçr por olor o seguinte esfio: Tene eterminr o volume o sólio que está im

Leia mais

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Aul Clui Mzz Dis Snr Mr C. Mlt Introução o Conceito e Derivs Noção: Velocie Méi Um utomóvel é irigio trvés e um estr cie A pr cie B. A istânci s percorri pelo crro epene o tempo gsto

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

e b ij = , se i = j i 2 + j 2 i 3 j 3 b ij =

e b ij = , se i = j i 2 + j 2 i 3 j 3 b ij = Universie Feerl e Ouro Preto List e GAAL/MTM730 Professor: Antônio Mros Silv Oservção: Muitos os exeríios ixos form retiros s lists o professor Wenerson 0 Revej os exemplos feitos em sl e ul Sejm ij e

Leia mais

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule:

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule: Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe Definição Clule pel efinição os seguintes ritmos: ) (/8) ) 8 ) 0,5 Clule pel efinição os seguintes ritmos: ) 6 ) 7 (/7) ) 9 (/7) ) (/9) e) 7 8 f) 0,5 8

Leia mais

MODELOS DE EQUILÍBRIO DE FLUXO EM REDES. Prof. Sérgio Mayerle Depto. Eng. Produção e Sistemas UFSC/CTC

MODELOS DE EQUILÍBRIO DE FLUXO EM REDES. Prof. Sérgio Mayerle Depto. Eng. Produção e Sistemas UFSC/CTC MODELOS DE EQUILÍBRIO DE FLUXO EM REDES Pro. Sérgio Myerle Depo. Eng. Produção e Sisems UFSC/CTC Deinição Bási A rede é deinid por um gro ( N A onde: { } N...n G é um onjuno de nós { m} A... é um onjuno

Leia mais

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3

Matrizes 2. Notação de uma matriz 2 Matriz Quadrada 2 Matriz Diagonal 2 Matriz linha 2 Matriz coluna 2 Matrizes iguais 2. Matriz Transposta 3 //, :: Mrizes Defiição Noção de u riz Mriz Qudrd Mriz Digol Mriz lih Mriz colu Mrizes iguis Eercício Mriz Trspos Proprieddes d riz rspos Mriz Opos Mriz Nul Mriz ideidde ou Mriz uidde dição de Mrizes Eercício

Leia mais

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009 PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e

Leia mais

Torção. Tensões de Cisalhamento

Torção. Tensões de Cisalhamento orção O esuo ese cpíulo será iviio em us pres: 1) orção e brrs circulres ) orção e brrs não circulres. OÇÃO E BS CICULES Sej um brr circulr com iâmero e comprimeno., solici por um momeno e orção, como

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES INTRODUÇÃO... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... PROPRIEDADES DOS DETERMINANTES... 8 REGRA DE CHIÓ... MENOR COMPLEMENTAR... COFATOR...

Leia mais

MATEMÁTICA II - Engenharias/Itatiba. 1 o Semestre de 2009 Prof. Maurício Fabbri RELAÇÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO.

MATEMÁTICA II - Engenharias/Itatiba. 1 o Semestre de 2009 Prof. Maurício Fabbri RELAÇÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO. MTEMÁTIC II - Engenhris/Ii o Semesre de 09 Prof. Muríio Fri 04-9 Série de Exeríios RELÇÕES TRIGONOMÉTRICS NO TRIÂNGULO RETÂNGULO sen = os = n = se = os os e = sen sen n = os o n = n ÂNGULOS NOTÁVEIS grus

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS CÁLCULO IFEENCIAL E INTEGAL II INTEGAIS MÚLTIPLAS A ierenç prinipl entre Integrl eini F ) F ) e s Integris Múltipls resie no to e que, em lugr e omeçrmos om um prtição o intervlo [, ], suiviimos um região

Leia mais

O T E O R E M A F U N D A M E N TA L D O C Á L C U L O. Prof. Benito Frazão Pires

O T E O R E M A F U N D A M E N TA L D O C Á L C U L O. Prof. Benito Frazão Pires 4 O T E O R E M A F U N D A M E N TA L D O C Á L C U L O Prof. Benio Frzão Pires Conforme foi viso n Aul, se f : [, b] R for conínu, enão inegrl b f() eisirá e será igul à áre líqui (conbilizno o sinl)

Leia mais

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b =

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b = LIS GERL DE MRIZES OPERÇÕES E DEERMINNES - GBRIO Dds s mtries [ ij ] tl que j ij i e [ ij ] B tl que ij j i, determine: c Solução Não é necessário construir tods s mtries Bst identificr os elementos indicdos

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álger iner e Geometri nlti º Folh de poio o estudo Sumário: ü Operções lgris om mtrizes: dição de mtrizes multiplição de um eslr por um mtriz e multiplição de mtrizes. ü Crtersti de um mtriz. Eerios resolvidos.

Leia mais

4/10/2015. Prof. Marcio R. Loos. Bombeamento de cargas. FEM ε. Como podemos criar uma corrente elétrica num resistor?

4/10/2015. Prof. Marcio R. Loos. Bombeamento de cargas. FEM ε. Como podemos criar uma corrente elétrica num resistor? 4//5 Físi Gerl III Aul Teóri (Cp. 9): ) Forç elemoriz ) Cálulo orrene em um iruio e um mlh: Méoo Energi e Méoo o Poenil ) esisênis em série 4) Ciruios om mis e um mlh 5) esisênis em prlelo 6) Ciruios C:

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica SCOLA POLITÉCNICA DA UNIVSIDAD D SÃO PAULO Deprmeno de ngenhri Mecânic PM-50MCÂNICA DOS SÓLIDOS II Profs.: Celso P. Pesce e. mos Jr. Prov /0/0 Durção: 00 minuos Quesão (5,0 ponos): A figur io ilusr um

Leia mais

TÓPICOS. Matriz. Matriz nula. Matriz quadrada: Diagonais principal e secundária. Traço. Matriz diagonal. Matriz escalar. Matriz identidade.

TÓPICOS. Matriz. Matriz nula. Matriz quadrada: Diagonais principal e secundária. Traço. Matriz diagonal. Matriz escalar. Matriz identidade. Note bem: leitur destes pontmentos não dispens de modo lgum leitur tent d bibliogrfi principl d cdeir TÓPICOS Mtriz. AULA Chm-se tenção pr importânci do trblho pessol relizr pelo luno resolvendo os problems

Leia mais

1 a. Lista de Exercícios

1 a. Lista de Exercícios Úlim ulição 7/8/ ÁREA FACULDADE DE CIÊNCIA E TECNOLOGIA Engenhri de Produção Engenhri Eléric e Engenhri de Compução Disciplin: Álger Liner Professor(: D / / Aluno(: Turm Lis de Eercícios O início d eori

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}.

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}. Mrzes Mrz rel Defnção Sem m e n dos números neros Um mrz rel de ordem m n é um conuno de mn números res, dsrbuídos em m lnhs e n coluns, formndo um bel que se ndc em gerl por 9 Eemplo: A mrz A é um mrz

Leia mais

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS

EQUAÇÕES E INEQUAÇÕES POLINOMIAIS EQUAÇÕES E INEQUAÇÕES POLINOMIAIS Um dos grndes problems de mtemátic n ntiguidde er resolução de equções polinomiis. Encontrr um fórmul ou um método pr resolver tis equções er um grnde desfio. E ind hoje

Leia mais

Simulado 7: matrizes, determ. e sistemas lineares

Simulado 7: matrizes, determ. e sistemas lineares Simulo 7 Mtrizes, eterminntes e sistems lineres. b... e 6. 7. 8.. 0. b.. e. Simulo 8 Cirunferêni / Projeções / Áres. b 6. e 7. 8.. 0. Simulo Análise ombintóri / Probbilie / Esttísti. e.. e.. b... e.....

Leia mais

MATRIZES E DETERMINANTES

MATRIZES E DETERMINANTES Professor: Cssio Kiechloski Mello Disciplin: Mtemátic luno: N Turm: Dt: MTRIZES E DETERMINNTES MTRIZES: Em quse todos os jornis e revists é possível encontrr tbels informtivs. N Mtemátic chmremos ests

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único

UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliografia: Curso de Matemática Volume Único ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA DETERMINANTES PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: Bibliogrfi: Curso de Mtemátic Volume Único Autores: Binchini&Pccol Ed. Modern Mtemátic

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9 setor 07 070409 070409-SP Aul 5 FUNÇÃO (COMPOSIÇÃO DE FUNÇÕES) FUNÇÃO COMPOSTA Sej f um função de A em B e sej g um função de B em C. Chm-se função compost de g com f função h definid de A em C, tl que

Leia mais

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R.

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R. GGE ESPONDE 7 ATEÁTICA Prov Disursiv. Sej um mtriz rel. Defin um função n qul element mtriz se eslo pr posição seguinte no sentio horário, sej, se,impli que ( ) f. Enontre tos s mtrizes simétris reis n

Leia mais

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA Universidde Federl de Viços DEPARTAMENTO DE MATEMÁTICA MAT - Cálculo Dif e In I PRIMEIRA LISTAA Memáic básic Professors: Gbriel e Crin Simplifique: ) b ) 9 c ) d ) ( 9) e ) 79 f ) g ) ) ) i j ) Verddeiro

Leia mais

Exercícios. setor Aula 25

Exercícios. setor Aula 25 setor 08 080409 080409-SP Aul 5 PROGRESSÃO ARITMÉTICA. Determinr o número de múltiplos de 7 que estão compreendidos entre 00 e 000. r 7 00 7 PA 05 30 4 n 994 00 98 98 + 7 05 n + (n ) r 994 05 + (n ) 7

Leia mais

Cinemática de uma Partícula Cap. 12

Cinemática de uma Partícula Cap. 12 MECÂNIC - DINÂMIC Cinemáti e um Prtíul Cp. Objetios Introuzir os oneitos e posição, eslomento, eloie e elerção Estur o moimento e um ponto mteril o longo e um ret e representr grfimente esse moimento Inestigr

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2

MATRIZES. 1) (CEFET) Se A, B e C são matrizes do tipo 2x3, 3x1 e 1x4, respectivamente, então o produto A.B.C. (a) é matriz do tipo 4 x 2 MATRIZES ) (CEFET) Se A, B e C são mtrizes do tipo, e 4, respectivmente, então o produto A.B.C () é mtriz do tipo 4 () é mtriz do tipo 4 (c) é mtriz do tipo 4 (d) é mtriz do tipo 4 (e) não é definido )

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais:

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais: Apênice A - Mtemátic Básic A.. Trigonometri A... Relções no triângulo qulquer A Mtemátic Básic C A α c β B γ Figur A. - Triângulo qulquer Leis Funmentis: c sen = sen = sen c A- Lei os cossenos: = + c -

Leia mais

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia. ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

Física A Superintensivo

Física A Superintensivo Físic A Superinensivo Exercícios ) B ). Correo.. Incorreo. o movimeno uniforme, velocidde é consne. 4. Incorreo. 8. Incorreo. A velocidde pode ser negiv. 6. Incorre. Somene velocidde é consne. 3) 6. Incorre.

Leia mais

Lista de Exercícios Vetores Mecânica da Partícula

Lista de Exercícios Vetores Mecânica da Partícula List de Eeríios Vetores Meâni d Prtíul 01) Ddos os vetores e, ujos módulos vlem, respetivmente, 6 e 8, determine grfimente o vetor som e lule o seu módulo notções 0) Ddos os vetores, e, represente grfimente:

Leia mais

Matemática B Superintensivo

Matemática B Superintensivo GRITO Mtemátic Superintensivo Eercícios 0) 4 m M, m 0 m N tg 0 = b = b = b = = cos 0 = 4 = = 4. =.,7 =,4 MN =, +,4 + MN =,9 m tg 60 = = =.. = h = + = 0 m 04) 0) D O vlor de n figur bio é: (Errt) 4 sen

Leia mais

Física A Semi-Extensivo V. 2

Física A Semi-Extensivo V. 2 Físic A Semi-Exensio V. Exercícios ) C q = 6 ) A q = 3) A + q = 3 s b) Eixo x (MRU) x = x + D = q D =. 3 + + D = 4 3 m c) Eixo y (MRUV) No eixo y x = x y +. y h =.,8 =. =,4 s No eixo x x = x + D = D =

Leia mais

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T

1 ÁLGEBRA MATRICIAL 1.1 TIPOS ESPECIAIS DE MATRIZES. Teorema. Sejam A uma matriz k x m e B uma matriz m x n. Então (AB) T = B T A T ÁLGEBRA MATRICIAL Teorem Sejm A um mtriz k x m e B um mtriz m x n Então (AB) T = B T A T Demonstrção Pr isso precismos d definição de mtriz trnspost Definição Mtriz trnspost (AB) T = (AB) ji i j = A jh

Leia mais

"Bem-vindos ao melhor ano de suas vidas #2018"

Bem-vindos ao melhor ano de suas vidas #2018 COLÉGIO SHALOM Ensino Fundmentl 8ª no ( ) 65 Profº: Wesle d Silv Mot Disciplin: Mtemátic Aluno ():. No. Trblho de recuperção Dt: 17 /12/ 2018 "Bem-vindos o melhor no de sus vids #2018" 1) Sobre s proprieddes

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOTAS DE AULA Geomeri Alíi e Álger Lier Espços Veoriis Professor: Luiz Fero Nues Dr 8/Sem_ Geomeri Alíi e Álger Lier ii Íie 5 Espços Veoriis 5 Defiição e Espços Veoriis 5 Suespços Veoriis 5 Suespços Geros

Leia mais

MATEMÁTICA. Questões de 01 a 12

MATEMÁTICA. Questões de 01 a 12 GRUPO TIPO A MAT. MATEMÁTICA Questões e. Consiere seqüênci e funções f sen, f sen, n fn sen,... e s áres gráficos no intervlo,. A, A, A,..., f sen,..., A n,..., efinis pelos respectivos Um luno e Cálculo,

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA

UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA UNIVERSIDADE FEDERAL DA BAHIA DEPARTAMENTO DE MATEMÁTICA MAT - ALGEBRA LINEAR I-A PROF.: GLÓRIA MÁRCIA LISTA DE EXERCÍCIOS ) Sejm A, B e C mtries inversíveis de mesm ordem, encontre epressão d mtri X,

Leia mais

y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y

y 5z Grupo A 47. alternativa A O denominador da fração é D = 46. a) O sistema dado é determinado se, e somente se: b) Para m = 0, temos: = 2 x y Grupo A 4. lterntiv A O denomindor d frção é D = 4 7 = ( 0 ) = 4. 46. ) O sistem ddo é determindo se, e somente se: m 0 m 9m 0 9 m b) Pr m, temos: x + y = x = y x + y z = 7 y z = x y + z = 4 4y + z = x

Leia mais

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares

+ = x + 3y = x 1. x + 2y z = Sistemas de equações Lineares Sisms d quçõs Linrs Equção Linr Tod qução do ipo:.. n n Ond:,,., n são os ofiins;,,, n são s inógnis; é o rmo indpndn. E.: d - Equção Linr homogên qundo o rmo indpndn é nulo ( ) - Um qução linr não prsn

Leia mais

por 04- Calcule o valor das somas algébricas abaixo. Não esqueça de simplificar as respostas. + + x 3x x

por 04- Calcule o valor das somas algébricas abaixo. Não esqueça de simplificar as respostas. + + x 3x x PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - ÁLGEBRA - 8º ANO - ENSINO FUNDAMENTAL 0- Se A e B 8 0 6, qul o vlor de A : B? 0- Qul é o resuldo d divisão de 5 6 por 7? 0- Simplifique s frções lgébrics

Leia mais

Curvas Planas. Sumário COMPUTAÇÃO GRÁFICA E INTERFACES. Introdução. Introdução. Carlos Carreto

Curvas Planas. Sumário COMPUTAÇÃO GRÁFICA E INTERFACES. Introdução. Introdução. Carlos Carreto Sumáro COMUTAÇÃO GRÁFICA E INTERFACES Curvs lns Crlos Crreo Inroução Curvs prmérs Curv Bèzer Curv Herme Curv B-Splne Curv Cmull-Rom Curso e Engenhr Informá Ano levo /4 Esol Superor e Tenolog e Gesão Gur

Leia mais

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON

MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON MATRIZES, DETERMINANTES E SISTEMAS LINEARES PROF. JORGE WILSON PROFJWPS@GMAIL.COM MATRIZES Definição e Notção... 11 21 m1 12... 22 m2............ 1n.. 2n. mn Chmmos de Mtriz todo conjunto de vlores, dispostos

Leia mais

, onde i é a linha e j é a coluna que o elemento ocupa na matriz.

, onde i é a linha e j é a coluna que o elemento ocupa na matriz. SÉRE: 2 AULA - MATRZES NOTA: FEVERERO Jneiro/Fevereiro 6 1 O PERÍODO PROF A ALESSANDRA MATTOS Muits vezes pr designr com clrez certs situções, é necessário um grupo ordendo de número de linhs(i) e coluns

Leia mais

Sólidos semelhantes. Segmentos proporcionais Área Volume

Sólidos semelhantes. Segmentos proporcionais Área Volume Sólios semelntes Segmentos proporcionis Áre olume Sólios semelntes Consiere um pirâmie cuj se é um polígono qulquer: Se seccionrmos ess pirâmie por um plno prlelo à se, iiiremos pirâmie em ois outros sólios:

Leia mais

Capítulo 4. Matrizes e Sistemas de Equações Lineares

Capítulo 4. Matrizes e Sistemas de Equações Lineares ------------- Resumos ds uls teórics ------------------Cp 4------------------------------ Cpítulo 4. Mtrizes e Sistems de Equções Lineres Conceitos Geris sobre Mtrizes Definição Sejm m e n dois inteiros,

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES DETERMINANTES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - APES DETERMINANTES Prof Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr iêncis

Leia mais

B é uma matriz 2 x2;

B é uma matriz 2 x2; MTRIZES e DETERMINNTES Defiição: Mriz m é um bel de m, úmeros reis disposos em m lihs (fils horizois) e colus (fils vericis) Eemplos: é um mriz ; B é um mriz ; Como podemos or os eemplos e respecivmee,

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e

Leia mais

3.18 EXERCÍCIOS pg. 112

3.18 EXERCÍCIOS pg. 112 89 8 EXERCÍCIOS pg Investigue continuidde nos pontos indicdos sen, 0 em 0 0, 0 sen 0 0 0 Portnto não é contínu em 0 b em 0 0 0 0 0 0 0 0 0 0 0 0 0 Portnto é contínu em 0 8, em, c 8 Portnto, unção é contínu

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Aula. Transformações lineares hlcs

Aula. Transformações lineares hlcs UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE Aul Álger Liner Trnsformções lineres hls Resumo Trnsformções lineres Definição Núleo Imgem Definição Relção entre espços vetoriis Preservção e operções* Aplição

Leia mais

< 9 0 < f(2) 1 < 18 1 < f(2) < 19

< 9 0 < f(2) 1 < 18 1 < f(2) < 19 Resolução do Eme Mtemátic A código 6 ª fse 08.. (B) 0 P = C 6 ( )6 ( ).. (B) Como f é contínu em [0; ] e diferenciável em ]0; [, pelo teorem de Lgrnge, eiste c ]0; [tl que f() f(0) = f (c). 0 Como 0

Leia mais

Platão Comenta Prova Específica de Matemática UEM julho de 2009 Gabarito 1

Platão Comenta Prova Específica de Matemática UEM julho de 2009 Gabarito 1 Pltão Coment Prov Específic de Mtemátic UEM julho de Grito QUESTÃO: GRITO: ) Corret q 6 6 6 6 6. q 6 6 6 6 8 ) Corret q n com *. n n, q > e ) Incorret. n. n ( ). n S n n n. n n. n 6 8) Corret Como < então.

Leia mais

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem.

4 π. 8 π Considere a função real f, definida por f(x) = 2 x e duas circunferência C 1 e C 2, centradas na origem. EFOMM 2010 1. Anlise s firmtivs bixo. I - Sej K o conjunto dos qudriláteros plnos, seus subconjuntos são: P = {x K / x possui ldos opostos prlelos}; L = {x K / x possui 4 ldos congruentes}; R = {x K /

Leia mais

CURSO DE MATEMÁTICA ÁLGEBRA AULA

CURSO DE MATEMÁTICA ÁLGEBRA AULA CURSO DE MATEMÁTICA ÁLGEBRA AULA 7 POLINÔMIOS & EQUAÇÕES POLINOMIAIS PROF. MARCELO RENATO Outuro/8 mrcelorento.com RESUMO TEÓRICO Prof. Mrcelo Rento. SOMA DOS COEFICIENTES DE UM POLINÔMIO Pr clculr som

Leia mais

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x).

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x). Eensivo V. Eercícios ) D y = log ( + ) Pr = : y = log ( + ) y = log y = Noe que o gráfico pss pel origem. Porno, únic lerniv possível é D. ) M + = log B B M + = log B B M + = log + log B B Como M = log

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

Assíntotas verticais. lim f lim lim. x x x. x 2 x 2. e e e e e. lim lim

Assíntotas verticais. lim f lim lim. x x x. x 2 x 2. e e e e e. lim lim 1. 1.1. Assínos vericis 0 0 1 ) lim f lim lim 4 6 1 i 6 1 1 6 14 i) é riz dos polinómios e 4 6 1. Uilizndo regr de Ruffini pr os decompor, conclui-se que: 1 e que 4 6 1 1 6 e e e e e lim f lim 0 e e 1

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

6. ÁLGEBRA LINEAR MATRIZES

6. ÁLGEBRA LINEAR MATRIZES MATRIZES. ÁLGEBRA LINEAR Definição Digonl Principl Mtriz Unidde Mtriz Trnspost Iguldde entre Mtrizes Mtriz Nul Um mtriz m n um tbel de números reis dispostos em m linhs e n coluns. Sempre que m for igul

Leia mais

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson

ALGEBRA LINEAR AUTOVALORES E AUTOVETORES. Prof. Ademilson LGEBR LINER UTOVLORES E UTOVETORES Prof. demilson utovlores e utovetores utovlores e utovetores são conceitos importntes de mtemátic, com plicções prátics em áres diversificds como mecânic quântic, processmento

Leia mais

FÍSICA. Resoluções. 1 a Série Ensino Médio. Após a inversão dos movimentos, os módulos das velocidades foram trocados.

FÍSICA. Resoluções. 1 a Série Ensino Médio. Após a inversão dos movimentos, os módulos das velocidades foram trocados. LIMÍD DE FÍSIC Resoluções 01 0 E 03 D r o sistem vetoril cito n questão, tem-se o seguinte: + + c S c Inverteno qulquer um os vetores, tem-se seguinte situção: S S vetor som o inverter qulquer um os vetores,

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 1º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tem II Introdução o Cálulo Diferenil II Tref nº 1 do plno de trlho nº 7 Pr levr o est tref pode usr su luldor ou o sketh fmilis.gsp

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

Retomada dos conceitos

Retomada dos conceitos etom os conceitos rofessor: s resoluções estes exercícios estão isponíveis no lno e uls este móulo. onsulte tmbém o nco e uestões e incentive os lunos usr o imulor e Testes. 1 N esc figur, os egrus istm

Leia mais

Matrizes e Determinantes

Matrizes e Determinantes Págin de - // - : PROFESSOR: EQUIPE DE MTEMÁTIC NCO DE QUESTÕES - MTEMÁTIC - ª SÉRIE - ENSINO MÉDIO - PRTE =============================================================================================

Leia mais

ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico)

ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico) ESCOAMENTOS ARIÁEIS EM PRESSÃO (Choque idráulico Méodo de Allievi 8-5-3 Méodo de Allievi 1 8-5-3 Méodo de Allievi Choque idráulico Equções Dierenciis: Equilíbrio Dinâmico Conservção d Mss riáveis dependenes:

Leia mais

CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES

CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES CAPÍTULO 5 - ESTUDO DA VARIAÇÃO DAS FUNÇÕES 5.- Teorems Fundmentis do Cálculo Diferencil Os teorems de Rolle, de Lgrnge, de Cuch e regr de L Hospitl são os qutro teorems fundmentis do cálculo diferencil

Leia mais

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os.

Lista 3 - Resolução. 1. Verifique se os produtos abaixo estão bem definidos e, em caso afirmativo, calcule-os. GN7 Introução à Álgr Linr Prof n Mri Luz List - Rsolução Vrifiqu s os proutos ixo stão m finios, m so firmtivo, lul-os ) [ / ] / ) / [ / ] ) ) Solução ) orm primir mtriz é x sgun é x, logo o prouto stá

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

Resolução Numérica de Sistemas Lineares Parte I

Resolução Numérica de Sistemas Lineares Parte I Cálculo Numérico Resolução Numéric de Sistems ineres Prte I Prof. Jorge Cvlcnti jorge.cvlcnti@univsf.edu.br MATERIA ADAPTADO DOS SIDES DA DISCIPINA CÁCUO NUMÉRICO DA UFCG - www.dsc.ufcg.edu.br/~cnum/ Sistems

Leia mais

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det

Definição 1 O determinante de uma matriz quadrada A de ordem 2 é por definição a aplicação. det 5 DETERMINANTES 5 Definição e Proprieddes Definição O erminnte de um mtriz qudrd A de ordem é por definição plicção ( ) : M IR IR A Eemplo : 5 A ( A ) ( ) ( ) 5 7 5 Definição O erminnte de um mtriz qudrd

Leia mais

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME Prof.(s): Judson Sntos - Lucino Sntos y 0) Sbendo que (,,, ) estão em progressão ritmétic nest ordem y stisfendo s condições de eistênci dos ritmos. Então o vlor d epressão y é igul : ) b) y 0) Sej,, 4,,

Leia mais

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) = List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (

Leia mais

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2.

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2. Mtemátic Aotno-se os vlores log = 0,30 e log 3 = 0,48, riz equção x = 60 vle proximmente: ), b),8 c) 4 ),4 e),67 x = 60 log x = log 60 x. log = log (. 3. ) x = x = log + log 3 + log log 0 log + log 3 +

Leia mais

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437

MATEMÁTICA PARA REFLETIR! EXERCÍCIOS EXERCÍCIOS COMPLEMENTARES OPERAÇÕES COM MATRIZES PARA REFLETIR!...437 ÍNICE MATEMÁTICA... PARA REFLETIR!... EXERCÍCIOS... EXERCÍCIOS COMPLEMENTARES... OPERAÇÕES COM MATRIZES... PARA REFLETIR!...7 EXERCÍCIOS E APLICAÇÃO...8 EXERCÍCIOS COMPLEMENTARES...8...9 PARA REFLETIR!...

Leia mais

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor.

Prof. Weber Campos Copyri'ght. Curso Agora eu Passo - Todos os direitos reservados ao autor. AEP FISCAL Rciocínio Lógico - MATRIZES E DETERMINANTES - SISTEMAS LINEARES Prof. Weer Cmpos weercmpos@gmil.com Copyri'ght. Curso Agor eu Psso - Todos os direitos reservdos o utor. Rciocínio Lógico EXERCÍCIOS

Leia mais

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11

RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA 3 o ANO DO ENSINO MÉDIO DATA: 19/03/11 RESOLUÇÃO DA AVALIAÇÃO DE MATEMÁTICA o ANO DO ENSINO MÉDIO DATA: 9// PROFESSORES: CARIBE E MANUEL O slário bruto mensl de um vendedor é constituído de um prte fi igul R$., mis um comissão de % sobre o

Leia mais

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos Sumário Conjuntos Neulosos - Introução rino Joquim e O Cruz NCE e IM UFRJ rino@ne.ufrj.r Se voê tem um mrtelo tuo irá preer um prego triuío Dinísio e gpunt (3 C) Conjuntos Clássios Função e Inlusão em

Leia mais

FUNÇÃO DO 2º GRAU OU QUADRÁTICA

FUNÇÃO DO 2º GRAU OU QUADRÁTICA FUNÇÃO DO º GRAU OU QUADRÁTICA - Definição É tod função do tipo f() = + + c, com *, e c. c y Eemplos,, c números e coeficient termo vr vr iável iável es independen reis indepemdem dependente de te ou te

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x

FUNÇÕES. Mottola. 1) Se f(x) = 6 2x. é igual a (a) 1 (b) 2 (c) 3 (d) 4 (e) 5. 2) (UNIFOR) O gráfico abaixo. 0 x FUNÇÕES ) Se f() = 6, então f ( 5) f ( 5) é igul () (b) (c) 3 (d) 4 (e) 5 ) (UNIFOR) O gráfico bio 0 () não represent um função. (b) represent um função bijetor. (c) represent um função não injetor. (d)

Leia mais

Revisão Vetores e Matrizes

Revisão Vetores e Matrizes Revisão Vetores e trizes Vetores Vetores no R n R n {(x,..., x n ) tl que x,..., x n R} com s definições usuis de dição e multilicção Adição (x,..., x n ) (y,..., y n ) (x y,..., x n y n ) Vetores ultilicção

Leia mais