c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule:

Tamanho: px
Começar a partir da página:

Download "c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule:"

Transcrição

1 Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe Definição Clule pel efinição os seguintes ritmos: ) (/8) ) 8 ) 0,5 Clule pel efinição os seguintes ritmos: ) 6 ) 7 (/7) ) 9 (/7) ) (/9) e) 7 8 f) 0,5 8 g) 8 h) 5 5 i) 5 0,008 j) / 8 k) / l) 0,0 0,00 As inições R e R, n esl Rihter, e ois terremotos estão relionos pel fórmul: R R = 0 (M /M ) Em que M e M meem energi lier pelos terremotos so form e ons que se propgm pel rost terrestre Houve ois terremotos: um orresponente R = 8 e outro orresponente R = 6 Clule rzão M /M Clule pel efinição os seguintes ritmos: ) ) 8 ) 7 ) 9 7 e) 5 f) 5 8 ) S = Clule o vlor e S:, , 00 S = ( 9) + ( 8 ) + 0,8 ( 6 ) 8 Clule: ) nti ) nti 6 (/) ) nti ( ) ) nti / ( ) 9 Determine o vlor e n equção pr que y = 8 ( ) y, 0 Sej o número ujo ritmo n se 9 é igul 0,75 Determine o vlor e O ritmo e um número n se 6 é / Clule o ritmo esse número n se / Determine o número ujo ritmo n se é e n se / é 8 Clule o ritmo e no sistem e se Determine se o sistem e ritmos no qul o ritmo e vle 5 Clule o vlor e: Propriees g) 00 0 h) 9 i) 7 5 Determine o onjunto vere equção Clule som S nos seguintes sos: ) S = 00 0,00 +,5 (/9),5 0,6 ) S = ) 5 8 ) 6 Clule o vlor e: ) ) g) ) e) 5 5 h) 7 Clule: 5 8 ) 5 f) 6 ) nti ( ) ) nti ( 5) 8 Se A 5 5, etermine o vlor e A 8 9 wwwhshtgmtemtiomr Págin

2 Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe 9 Determine o vlor e A tl que A A 0 0 Desenvolv, plino s propriees os ritmos (, e são reis positivos): ) ) ) Desenvolv, plino s propriees os ritmos (, e são reis positivos): 5 ) 5 ) ) e) g) h) Se m, etermine m Sej Clule f) ) Desenvolv, plino s propriees os ritmos ( > > > 0): ) ) ( ) 5 ) ) ( ) ( ) 5 5 Qul é epressão ujo esenvolvimento rítmio é +, one, e são reis positivos? 6 Qul é epressão ujo esenvolvimento rítmio é io (, e são reis positivos)? ) + ) ) + ) / / e) / / / f) + / + /6 g) / ( ) 7 Qul é epressão ujo esenvolvimento rítmio é o io ( > > > 0)? ) + ( + ) ( ) ) ( + ) ( ) ) ½ ( ) + ( + ) ) / ( + ) [/ ( + ) ( )] e) [ ( ) ( + ) + ]/5 8 Se = + /, etermine o vlor e 9 Se = e =, oloque em função e e os seguintes ritmos eimis: ) 6 ) ) ) e) 0,5 f) 0 g) 5 h) 5 0 o ph e um solução é efinio por ph = 0 (/[H + ]), em que [H + ] é onentrção e hirogênio em íons-grm por litro e solução Determine o ph e um solução tl que [H + ] =,0 0 8 Seno que = 0,0, etermine o vlor 5 epressão 5 Se = 0,0, lule o vlor epressão Determine rzão entre os ritmos e 6 e num se qulquer wwwhshtgmtemtiomr Págin

3 Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe Se + = p, lule o vlor e (/) + (/) 5 Se ( ) = m e ( + ) = 8, etermine ( ) 6 A som os ritmos e ois números n se 9 é ½ Determine o prouto esses números 7 Se = n e y = 6n, lule y 8 Se-se que m = e m = Clule o vlor e m (6/,7) m 60 9 Seno o (/) = e y 56 =, etermine o vlor e + y 0 Seno que = 0,0000, qunto vle 0 = 08576? Seno 0 0,, etermine o menor número nturl n que verifi relção n > 0 Seno que 0 = e 0 5 =, lule 0 Seno que 0 = e 0 =, lule 6 5 Se =, lule 5 Se 7 =, lule Clule o vlor e 0,0 5 7 Se m = k, etermine o vlor e 8 m 8 Dos 0 = e 0 =, lule Clule o vlor e Se m =, m 0, lule / 5 Determine o vlor e Se =, lule 5 Seno que 7 = e 5 =, lule o vlor e 5 8 (sugestão: 8 = /7) 5 Clule A = Simplifique 56 Simplifique ( ) 57 Demonstre que rzão entre os ritmos e ois números positivos e iferentes e inepene se onsier 58 Se, e são reis positivos om e, prove que: = ( )( + ) 59 Se, e são reis positivos, iferentes e e =, prove que: 60 Se, e são reis positivos, iferentes e e, prove que: ( ) ( ) 6 Se,, e são reis positivos, iferentes e e, prove que: Se e são reis positivos, prove que = 6 Se,, e são reis positivos, e iferentes e, prove que: 6 Se = (), y = () e z = (), prove que: y z wwwhshtgmtemtiomr Págin

4 Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe 65 Se,, e são reis positivos, iferentes e e ois ois istintos, prove equivlêni: 66 Se e são rízes equção p + q = 0 (p > 0 e 0 < q ), emonstre que: q + q + q + q = p 67 Se, e são meis os los e um triângulo retângulo e hipotenus om mei e seno que e +, emonstre que: + + = + 68 Se, e são reis positivos, prove igule: 69 Se 0 z e y 0, prove que z 0 y 70 Se, e são reis positivos, iferentes e, e = =, prove que: ( ) ( ) ( ) 7 Se 0 <, emonstre que: n 8 Sugestão: n( n ) n n 7 Resolv s equções: Potenição Logritmo ) = ) 5 = 7 Resolv s equções: n ) 5 = ) = / ) 7 5 n ) 5 g) 7 = 5 e) 5 = 0,5 f) + = 7 Resolv equção =, om > e > 75 O resimento e ert ultur e téris oeee função X(t) = C e kt, em que X(t) é o número e téris no tempo t 0; C e k são onstntes positivs (e é se o ritmo neperino) Verifino que o número iniil e téris X(0) upli em hors, qunts els se poe esperr no fim e 6 hors? 76 Um sustâni riotiv está em proesso e eimento, e moo que no instnte t quntie eí é A(t) = A(0) e t, em que A(0) ini quntie e sustâni no instnte t = 0 Clule o tempo neessário pr que mete quntie iniil se ei (Consiere ln = 0,69) 77 A lei e eimento o ráium no tempo t 0 é por M(t) = C e kt, em que M(t) é quntie e ráium no tempo t; C e k são onstntes positivs (e é se o ritmo neperino) Se mete quntie primitiv M(0) ei em 600 nos, qul quntie peri em 00 nos? 78 Resolv equção = + 79 Resolv s equções: ) = + ) 7 = + ) 5 = 80 Resolv s equções: ) = + + ) = ) + = + 8 Resolv equção + = 8 8 Resolv s equções: ) = 0 ) = 0 ) 9 + = 0 ) = 0 e) = 0 f) = 9 wwwhshtgmtemtiomr Págin

5 Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe 5 8 Resolv equção + 6 = 9 8 Resolv equção = Resolv equção + =, supono 0 < 86 Resolv o sistem e equções: 6 6 y 87 Resolv s equções: 6 y 0 Equções Logrítmis ) ( + ) = ( + 5) ) (5 6) = ( 5) ) (5 + ) = ( 0) ) / ( 7) = / ( 5 + ) e) ( + + ) = ( + 5) f) / (5 ) = / ( 8) 88 Resolv s equções: ) 5 ( ) = ) / ( + 5) = 0 ) ( ) = 0 ) ( ) = e) / ( 9 + ) = f) ( ) = g) ( + ) = ½ 89 Aumentno um número em 6 unies, seu ritmo n se ument em unies Determine 90 Determine o vlor e pr que 9 Resolv s equções: ) ( ) = ( / ) ( /8 /) = 5/ ) / [ ( )] = 0 ) / { [ ( )]} = 0 ) { [ + ( + )]} = e) [ + ( + )] = 0 f) [ + ( )] = g) [ + ( + (5 + )]} = 9 Resolv equção [ ( 5 + )] = 9 Resolv s equções: ( ) ( 5) ) 7 ) 9 ( ) ) 6 ) 7 ( ) 9 Resolv o sistem e equções: y y 95 Resolv s equções: ) = 0 ) = 0 ) ( ) = 6 ) ( ) = e) + = 5 y f) = wwwhshtgmtemtiomr Págin 5

6 Aulão Esprtno Os 00 e Logritmo 6 Prof Pero Felippe wwwhshtgmtemtiomr Págin 6

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009 PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e

Leia mais

3. LOGARITMO. SISTEMA DE LOGARITMO

3. LOGARITMO. SISTEMA DE LOGARITMO 0. LOGARITMO. SISTEMA DE LOGARITMO.. LOGARITMO ritmo. Agor que já "semos" o que é, podemos formlizr definição de Definição Sejm e números reis positivos, om. Chm-se ritmo de n se, o epoente que stisfz

Leia mais

AULA 07 LOGARITMOS EXERCÍCIOS

AULA 07 LOGARITMOS EXERCÍCIOS FUNÇÃO LOGARÍTMICA Itroução Cosieremos os seguites prolems: A que epoete se eve elevr o úmero pr se oter? Pelo euio, temos: = = = Esse vlor eotro pr o epoete eomi-se ritmo o úmero se e se represet por:

Leia mais

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R.

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R. GGE ESPONDE 7 ATEÁTICA Prov Disursiv. Sej um mtriz rel. Defin um função n qul element mtriz se eslo pr posição seguinte no sentio horário, sej, se,impli que ( ) f. Enontre tos s mtrizes simétris reis n

Leia mais

TÓPICOS DE MATEMÁTICA

TÓPICOS DE MATEMÁTICA INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE COIMBRA SOLICITADORIA E ADMINISTRAÇÃO TÓPICOS DE MATEMÁTICA CÁLCULO EM R I.Revisões Cálulo om frções Reore que, pr, Not:...3.4 R e, R \ {0}: + + pois

Leia mais

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Aul Clui Mzz Dis Snr Mr C. Mlt Introução o Conceito e Derivs Noção: Velocie Méi Um utomóvel é irigio trvés e um estr cie A pr cie B. A istânci s percorri pelo crro epene o tempo gsto

Leia mais

Simulado 7: matrizes, determ. e sistemas lineares

Simulado 7: matrizes, determ. e sistemas lineares Simulo 7 Mtrizes, eterminntes e sistems lineres. b... e 6. 7. 8.. 0. b.. e. Simulo 8 Cirunferêni / Projeções / Áres. b 6. e 7. 8.. 0. Simulo Análise ombintóri / Probbilie / Esttísti. e.. e.. b... e.....

Leia mais

e b ij = , se i = j i 2 + j 2 i 3 j 3 b ij =

e b ij = , se i = j i 2 + j 2 i 3 j 3 b ij = Universie Feerl e Ouro Preto List e GAAL/MTM730 Professor: Antônio Mros Silv Oservção: Muitos os exeríios ixos form retiros s lists o professor Wenerson 0 Revej os exemplos feitos em sl e ul Sejm ij e

Leia mais

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) = List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (

Leia mais

Uma situação muito comum de função exponencial é aquela em que uma determinada grandeza, que pra um instante t = 0 ela apresenta uma medida y y0

Uma situação muito comum de função exponencial é aquela em que uma determinada grandeza, que pra um instante t = 0 ela apresenta uma medida y y0 FUNÇÃO EXPONENCIAL REPRESENTAÇÃO Atenção y y x x y y : bse x Um situção muito comum de função exponencil é quel em que um determind grndez, que pr um instnte t = el present um medid y y, prtir deste instnte,

Leia mais

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão

1a) QUESTÃO: ciclos 2a) QUESTÃO: estado inicial indefinidamente travar 4a) QUESTÃO: Anel 1ª) Questão 1 ) QUSTÃO: (3, pontos) Pr máquin e esto efini pel su tel e fluo io, pee-se: y\ 1 1 ) nontre um tel e fluo mínim; / /- /- / ) onstru um tel e eitção livre e /- /1 / /- orris ríti (rir ilos quno neessário);

Leia mais

Sólidos semelhantes. Segmentos proporcionais Área Volume

Sólidos semelhantes. Segmentos proporcionais Área Volume Sólios semelntes Segmentos proporcionis Áre olume Sólios semelntes Consiere um pirâmie cuj se é um polígono qulquer: Se seccionrmos ess pirâmie por um plno prlelo à se, iiiremos pirâmie em ois outros sólios:

Leia mais

PROCESSO SELETIVO TURMA DE 2014 FASE 1 PROVA DE FÍSICA E SEU ENSINO

PROCESSO SELETIVO TURMA DE 2014 FASE 1 PROVA DE FÍSICA E SEU ENSINO PROCEO ELEIVO URMA DE 4 FAE PROVA DE FÍICA E EU ENINO Cro professor, r professor est prov tem prtes; primeir prte é ojetiv, onstituí por 4 questões e múltipl esolh, um vleno,5 pontos; segun prte, om vlor

Leia mais

log = logc log 2 x = a https://ueedgartito.wordpress.com P2 logc Logaritmos Logaritmos Logaritmos Logaritmos Logaritmos Matemática Básica

log = logc log 2 x = a https://ueedgartito.wordpress.com P2 logc Logaritmos Logaritmos Logaritmos Logaritmos Logaritmos Matemática Básica Mtemáti Bái Unidde 8 Função Logrítmi RANILDO LOPES Slide diponívei no noo SITE: http://ueedgrtito.wordpre.om Logritmndo Be do ritmo Logritmo Condição de Eitêni > > Logritmo Logritmo Logritmo Logritmndo

Leia mais

MATEMÁTICA. Questões de 01 a 12

MATEMÁTICA. Questões de 01 a 12 GRUPO TIPO A MAT. MATEMÁTICA Questões e. Consiere seqüênci e funções f sen, f sen, n fn sen,... e s áres gráficos no intervlo,. A, A, A,..., f sen,..., A n,..., efinis pelos respectivos Um luno e Cálculo,

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

1. Associe cada igualdade a uma das afirmações escrevendo o símbolo romano correspondente.

1. Associe cada igualdade a uma das afirmações escrevendo o símbolo romano correspondente. COLÉGIO MCHDO DE SSIS Disipli MTEMÁTIC Professor TLI RETZLFF Turm 8 o ( ) ( )B ( )C Dt / / Pupilo ssoie igule um s firmções esreveo o símolo romo orrespoete I ( + ) = + + II ( ) = + III ( + ) ( ) = ) O

Leia mais

Cinemática de uma Partícula Cap. 12

Cinemática de uma Partícula Cap. 12 MECÂNIC - DINÂMIC Cinemáti e um Prtíul Cp. Objetios Introuzir os oneitos e posição, eslomento, eloie e elerção Estur o moimento e um ponto mteril o longo e um ret e representr grfimente esse moimento Inestigr

Leia mais

MÓDULO XIII GRANDEZAS PROPORCIONAIS

MÓDULO XIII GRANDEZAS PROPORCIONAIS MÓDULO XIII 1. Rzão GRANDEZAS PROPORCIONAIS A rzão entre ois números e 0, ness orem, é o quoiente. O número é hmo e nteeente ou primeiro termo e o número é hmo e onseqüente ou seguno termo. Eemplo: O número

Leia mais

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos Sumário Conjuntos Neulosos - Introução rino Joquim e O Cruz NCE e IM UFRJ rino@ne.ufrj.r Se voê tem um mrtelo tuo irá preer um prego triuío Dinísio e gpunt (3 C) Conjuntos Clássios Função e Inlusão em

Leia mais

Teoria VII - Tópicos de Informática

Teoria VII - Tópicos de Informática INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Cmpins Limeir Jundií Teori VII - Tópicos de Informátic 1 Fórmuls Especiis no Excel 2 Função Exponencil 3 Função Logrítmic Unip 2006 - Teori VII 1 1- FÓRMULAS

Leia mais

Aula. Transformações lineares hlcs

Aula. Transformações lineares hlcs UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE Aul Álger Liner Trnsformções lineres hls Resumo Trnsformções lineres Definição Núleo Imgem Definição Relção entre espços vetoriis Preservção e operções* Aplição

Leia mais

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais:

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais: Apênice A - Mtemátic Básic A.. Trigonometri A... Relções no triângulo qulquer A Mtemátic Básic C A α c β B γ Figur A. - Triângulo qulquer Leis Funmentis: c sen = sen = sen c A- Lei os cossenos: = + c -

Leia mais

2.1. Integrais Duplos (definição de integral duplo)

2.1. Integrais Duplos (definição de integral duplo) Análise Mtemáti II- no letivo 6/7.. Integris uplos (efinição e integrl uplo) Pr melhor ompreener efinição e integrl uplo vmos omeçr por olor o seguinte esfio: Tene eterminr o volume o sólio que está im

Leia mais

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo 57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,

Leia mais

EXERCÍCIOS RESOLVIDOS MATEMÁTICA II

EXERCÍCIOS RESOLVIDOS MATEMÁTICA II Vestibulr1 A melhor jud o vestibulndo n Internet Acesse Agor! www.vestibulr1.com.br EXERCÍCIOS RESOLVIDOS MATEMÁTICA II 01) Um certo tipo de vírus tem diâmetro de 0,010 - mm. Admit que um colôni desses

Leia mais

Dosagem de concreto. Prof. M.Sc. Ricardo Ferreira

Dosagem de concreto. Prof. M.Sc. Ricardo Ferreira Dosgem de onreto Prof. M.S. Rirdo Ferreir Regressão liner simples Método dos mínimos qudrdos Prof. M.S. Rirdo Ferreir Fonte: Drio Dfio Regressão liner simples Método dos mínimos qudrdos 3/3 Dd um onjunto

Leia mais

Física Teórica II. 2ª Lista 2º semestre de 2015 ALUNO TURMA PROF. NOTA:

Física Teórica II. 2ª Lista 2º semestre de 2015 ALUNO TURMA PROF. NOTA: Físic Teóric 2ª List 2º semestre e 2015 LUNO TURM PROF NOT: 01) O fio mostro n figur consiste e ois seguimentos com iâmetros iferentes, ms são feitos o mesmo metl corrente no seguimento 1 é 1 ) Compre

Leia mais

Simulado EFOMM - Matemática

Simulado EFOMM - Matemática Simuldo EFOMM - Mtemátic 1. Sejm X, Y, Z, W subconjuntos de N tis que: 1. (X Y ) Z = {1,,, },. Y = {5, 6}, Z Y =,. W (X Z) = {7, 8},. X W Z = {, }. Então o conjunto [X (Z W)] [W (Y Z)] é igul (A) {1,,,,

Leia mais

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia. ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts

Leia mais

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A?

Após encontrar os determinantes de A. B e de B. A, podemos dizer que det A. B = det B. A? PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - MATEMÁTICA - ª SÉRIE - ENSINO MÉDIO ============================================================================================= Determinntes - O vlor

Leia mais

obtendo 2x x Classifique como Verdadeiro (V) ou Falso (F) cada uma das seguintes afirmações: é um número racional.

obtendo 2x x Classifique como Verdadeiro (V) ou Falso (F) cada uma das seguintes afirmações: é um número racional. UFJF ICE Dertmento de Mtemáti CÁLCULO I - LISTA DE EXERCÍCIOS Nº 1 1- Sejm e números reis ositivos tis ue

Leia mais

Medidas de Associação.

Medidas de Associação. Meis e Assoição. O álulo e meis propris frequêni e um oenç é bse pr omprção e populções, e, onsequentemente, pr ientifição e eterminntes oenç. Pr fzer isto e mneir mis efiz e informtiv, s us frequênis

Leia mais

CURSO DE MATEMÁTICA ÁLGEBRA AULA

CURSO DE MATEMÁTICA ÁLGEBRA AULA CURSO DE MATEMÁTICA ÁLGEBRA AULA 7 POLINÔMIOS & EQUAÇÕES POLINOMIAIS PROF. MARCELO RENATO Outuro/8 mrcelorento.com RESUMO TEÓRICO Prof. Mrcelo Rento. SOMA DOS COEFICIENTES DE UM POLINÔMIO Pr clculr som

Leia mais

PV nrt V. (isocórico) P V. Resumo e Exemplos Resolvidos Processos Termodinâmicos - Física Prof. Dr. Cláudio S.

PV nrt V. (isocórico) P V. Resumo e Exemplos Resolvidos Processos Termodinâmicos - Física Prof. Dr. Cláudio S. Resumo e Exemplos Resolvios roessos Termoinâmios - Físi ro. Dr. láuio S. Srtori Lei termoinâmi: U W roessos termoinâmios omuns 2 Lei Termoinâmi: uno se inluem toos os sistems que tomm prte num proesso,

Leia mais

Análise de Algoritmos Gabarito da Primeira Prova

Análise de Algoritmos Gabarito da Primeira Prova Análise e Algoritmos Gbrito Primeir Prov Tópios: Funmentos e nálise e lgoritmos e lgoritmos pr orenção Instituto e Ciênis Exts, Universie e Brsíli 22 e bril e 2009 Prof. Muriio Ayl-Rinón Funmentos: relções

Leia mais

UNICAMP ª fase - Provas Q e X

UNICAMP ª fase - Provas Q e X UNICAMP 2014 1ª fse - Provs Q e X Questão 25 N reequção e lguns estáios e futeol, por ont e um titue eológi oerente, milhres e ssentos serão prouzios prtir e grrfs PET. Pr ssento serão neessáris er e 100

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álger iner e Geometri nlti º Folh de poio o estudo Sumário: ü Operções lgris om mtrizes: dição de mtrizes multiplição de um eslr por um mtriz e multiplição de mtrizes. ü Crtersti de um mtriz. Eerios resolvidos.

Leia mais

COLÉGIO OBJETIVO JÚNIOR

COLÉGIO OBJETIVO JÚNIOR COLÉGIO OJETIVO JÚNIOR NOME: N. o : DT: / /0 FOLHETO DE MTEMÁTIC (V.C. E R.V.) 9. o NO Este folheto é um roteiro pr você recuperr o conteúdo trblhdo em 0. Como ele vi servir de bse pr você estudr pr s

Leia mais

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff

x n NOTA Tipo de Avaliação: Material de Apoio Disciplina: Matemática Turma: Aulão + Professor (a): Jefferson Cruz Data: 24/05/2014 DICAS do Jeff NOTA Tipo de Avlição: Mteril de Apoio Disciplin: Mtemátic Turm: Aulão + Professor (): Jefferson Cruz Dt: 24/05/2014 DICAS do Jeff Olhr s lterntivs ntes de resolver s questões, principlmente em questões

Leia mais

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2.

Matemática. 2 log 2 + log 3 + log 5 log 5 ( ) 10 2 log 2 + log 3 + log. 10 log. 2 log 2 + log 3 + log 10 log 2 log 10 log 2. Mtemátic Aotno-se os vlores log = 0,30 e log 3 = 0,48, riz equção x = 60 vle proximmente: ), b),8 c) 4 ),4 e),67 x = 60 log x = log 60 x. log = log (. 3. ) x = x = log + log 3 + log log 0 log + log 3 +

Leia mais

Retomada dos conceitos

Retomada dos conceitos etom os conceitos rofessor: s resoluções estes exercícios estão isponíveis no lno e uls este móulo. onsulte tmbém o nco e uestões e incentive os lunos usr o imulor e Testes. 1 N esc figur, os egrus istm

Leia mais

LISTA 100 EXERCÍCIOS COMPLEMENTARES

LISTA 100 EXERCÍCIOS COMPLEMENTARES LISTA 00 EXERCÍCIOS COMPLEMETARES LOGARITMOS: Definição e Proprieddes PROF.: GILSO DUARTE Questão 0 Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proim de log 46 é 0),0

Leia mais

CÁLCULO INTEGRAL. e escreve-se

CÁLCULO INTEGRAL. e escreve-se Primitivs CÁLCULO INTEGRAL Prolem: Dd derivd de um função descorir função inicil. Definição: Chm-se primitiv de um função f, definid num intervlo ] [ à função F tl que F = f e escreve-se,, F = P f ou F

Leia mais

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ Li. Ciênis d Computção 2009/10 Exeríios de Teori ds Lingugens Universidde do Minho Folh 6 2. Autómtos finitos 2.1 Considere o utómto A = (Q,A,δ,i,F) onde Q = {1,2,,4}, A = {,}, i = 1, F = {4} e função

Leia mais

TRIÂNGULO 1 - CONCEITO 2 - CLASSIFICAÇÃO. acutângulo 2º) Quanto aos ângulos retângulo obtusângulo. Sejam, não colineares, os pontos A, B, e C A.

TRIÂNGULO 1 - CONCEITO 2 - CLASSIFICAÇÃO. acutângulo 2º) Quanto aos ângulos retângulo obtusângulo. Sejam, não colineares, os pontos A, B, e C A. TRIÂNGULO 1 - ONITO Sejm, não olineres, os pontos,, e utângulo 2º Qunto os ângulos retângulo otusângulo I é utângulo é união dos segmentos, e. m ( = Ldos: m ( = Vérties: m ( = II, e são gudos 2 - LSSIFIÇÃO

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág.

V ( ) 3 ( ) ( ) ( ) ( ) { } { } ( r ) 2. Questões tipo exame Os triângulos [ BC Da figura ao lado são semelhantes, pelo que: BC CC. Pág. António: c ; Diogo: ( ) i e ; Rit: e c Pág Se s firmções dos três migos são verddeirs, firmção do António é verddeir, pelo que proposição c é verddeir e, consequentemente, proposição c é fls Por outro

Leia mais

Universidade Federal de Rio de Janeiro

Universidade Federal de Rio de Janeiro Universidde Federl de Rio de Jneiro Instituto de Mtemátic Deprtmento de Métodos Mtemáticos Prof. Jime E. Muñoz River river@im.ufrj.r ttp//www.im.ufrj.r/ river Grito d Primeir Prov de Cálculo I Rio de Jneiro

Leia mais

x 3 x 3 27 x 4 x 9 3 x 4 3 x 5 3x x 2 AULA 3: EQUAÇÕES E INEQUAÇÕES (1º GRAU E 2º GRAU) (GABARITO) x 1 x 13 x 7 1. Resolver as seguintes equações x 5

x 3 x 3 27 x 4 x 9 3 x 4 3 x 5 3x x 2 AULA 3: EQUAÇÕES E INEQUAÇÕES (1º GRAU E 2º GRAU) (GABARITO) x 1 x 13 x 7 1. Resolver as seguintes equações x 5 AULA : EQUAÇÕE E INEQUAÇÕE (º GRAU E º GRAU) (GABARITO). Resolver s seguintes equções ) e) ) f),, ) g),,,, d) h) i) j) k) l) UNIP - Administrção - Mtemáti ási Profª Ptríi Alves Aul equções e inequções

Leia mais

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O :

ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : ESCOLA DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA LOGARITMOS PROF. CARLINHOS NOME: N O : 1 DEFINIÇÃO LOGARITMOS = os(rzão) + rithmos(números) Sejm e números reis positivos diferentes de zero e 1. Chm-se ritmo

Leia mais

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA

Professor Mauricio Lutz FUNÇÃO LOGARÍTMICA Professor Muriio Lutz LOGARITMO ) Defiição FUNÇÃO LOGARÍTMICA Chm-se ritmo de um úmero N, positivo, um se positiv e diferete de um, todo úmero, devemos elevr pr eotrr o úmero N Ou sej ÎÂ tl que é o epoete

Leia mais

( 3. a) b) c) d) 10 5 e) 10 5

( 3. a) b) c) d) 10 5 e) 10 5 Pré-F 207 Simuldo # 26 de bril de 207 2 Q. (EsS) Em um progressão ritmétic cujo primeiro termo é, 87 e rzão é 0, 004, temos que som dos seus dez primeiros é igul : () 8, 99 () 9, 5674 () 8, 88 (D) 9, 5644

Leia mais

Cálculo Numérico Lista 01

Cálculo Numérico Lista 01 Cálulo Numério List 1 Proessor: Dniel Henrique Silv Ess list brnge erros omputionis, sistems lineres, e zeros e unções, e obre mtéri primeir prov. Instruções geris pr entreg Nem toos os exeríios evem ser

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

MATEMÁTICA Questões de 01 a 04

MATEMÁTICA Questões de 01 a 04 GRUPO TIPO MT. MTEMÁTIC Questões de. Um correi trnsortdor deosit rei num monte de formto cônico reto um t constnte de m /. No monte que se form, rzão entre ltur e o rio d bse ermnece constnte e igul. )

Leia mais

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO

CONCURSO DE SELEÇÃO 2003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO CONCURSO DE SELEÇÃO 003 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO 41100 0$7(0É7,&$ RESOLUÇÃO PELA PROFESSORA MARIA ANTÔNIA CONCEIÇÃO GOUVEIA $ LOXVWUDomR TXH VXEVWLWXL D RULJLQDO GD TXHVWmR H DV GDV UHVROXo}HV

Leia mais

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano)

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano) PARTE I ) Determine s potêncis: ) 4 = b) - = ) Escrev usndo potênci de bse 0: ) 7 bilhões: b) um milionésimo: ) Trnsforme os números ddos em potencições e simplifique epressão: 0000000 00000 5 = 4) Escrev

Leia mais

Professora: Profª Roberta Nara Sodré de Souza

Professora: Profª Roberta Nara Sodré de Souza MINISTÉRIO DA EDUCAÇÃO SECRETARIA DE EDUCAÇÃO PROFISSIONAL E TECNOLÓGICAS INSTITUTO FEDERAL DE EDUCAÇÃO, CIÊNCIA E TECNOLOGIA DE SANTA CATARINA-CAMPUS ITAJAÍ Professor: Profª Robert Nr Sodré de Souz Função

Leia mais

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes: Colégio: Nome: nº Sem limite pr reser Professor(): Série: 1ª EM Turm: Dt: / /2013 Desonto Ortográfio: Not: Bteri de Exeríios Mtemáti II 1 Determine os vlores de x e y, sendo que os triângulos ABC e DEF

Leia mais

Lista de Exercícios Vetores Mecânica da Partícula

Lista de Exercícios Vetores Mecânica da Partícula List de Eeríios Vetores Meâni d Prtíul 01) Ddos os vetores e, ujos módulos vlem, respetivmente, 6 e 8, determine grfimente o vetor som e lule o seu módulo notções 0) Ddos os vetores, e, represente grfimente:

Leia mais

TÓPICOS DE CÁLCULO UNIVERSIDADE CRUZEIRO DO SUL 1º SEMESTRE 2014

TÓPICOS DE CÁLCULO UNIVERSIDADE CRUZEIRO DO SUL 1º SEMESTRE 2014 urso: ENGENHRI Professor Responsável: Ms.rlos Henrique Pontução:,0 (dois) TÓPIOS DE ÁLULO UNIVERSIDDE RUZEIRO DO SUL º SEMESTRE 0 UNIVERSIDDE RUZEIRO DO SUL tividde Pontud Disciplin: TÓPIOS DE ÁLULO Limite

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 1. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA QUESTÃO O gráfico bio eibe o lucro líquido (em milhres de reis) de três pequens empress A, B e

Leia mais

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1;

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1; Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Curso Teste (ii) cso qundo 0 < < 1 EXPONENCIAL E LOGARITMO f() é decrescente e Im = R + 1. FUNÇÃO EXPONENCIAL A função f: R R + definid

Leia mais

Proposta de teste de avaliação

Proposta de teste de avaliação Propost de teste de vlição Mtemátic A. O ANO DE ESOLARIDADE Durção: 90 minutos Dt: derno (é permitido o uso de clculdor) N respost o item de escolh múltipl, selecione opção corret. Escrev, n olh de resposts,

Leia mais

11

11 01 O vlor de 8 6 0,15 é : (A) 8 (B) (C) (E) 6 0 Os números x, y e z são diretmente proporcionis, 9 e 15respectivmente. Sendo que o produto desses números é xyz 960, som será : (A) 5 (B) 8 (C) 6 7 (E) 0

Leia mais

a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível

a x = é solução da equação b = 19. O valor de x + y é: a + b é: Professor Docente I - CONHECIMENTOS ESPECÍFICOS 26. A fração irredutível CONHECIMENTOS ESPECÍFICOS 6. A frção irredutível O vlor de A) 8 B) 7 66 8 9 = 6. + b = é solução d equção b 7. Sejm e ynúmeros reis, tis que + y A) 6 B) 7 78 8 88 = 9. O vlor de + y e 8. Sejm e b números

Leia mais

Conhecendo-se os valores aproximados dos logaritmos decimais, log = 1,114 e log = 1,176, então, o valor de log 10

Conhecendo-se os valores aproximados dos logaritmos decimais, log = 1,114 e log = 1,176, então, o valor de log 10 MATEMÁTICA Considere os conjuntos A e B: A = { 0, 0, 0, 0,0, 0, 0} e B = {00,00,00,00,500,600,700,800,900,000}, e função f : A B, f(x) = x + 00. O conjunto imgem de f é, ) { 0, 0, 0,0,0,0,0}. ) {00,00,500,000}.

Leia mais

Escola Secundária com 3ºCEB de Lousada

Escola Secundária com 3ºCEB de Lousada Esola eunária om ºCEB e Lousaa Fiha e Trabalho e Matemátia o º ano Assunto: oluções a fiha e preparação para o teste interméio. Rifas P( Que a Rita tem e ganhar o prémio) b. P( Que o Anré tem e ganhar

Leia mais

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B.

( 2 5 ) simplificando a fração. Matemática A Extensivo V. 8 GABARITO. Matemática A. Exercícios. (( ) ) trocando a base log 5 01) B 04) B. Mtemátic A Etensivo V. Eercícios 0) B 0) B f() = I. = y = 6 6 = ftorndo 6 = = II. = y = 6 = 6 = pel propriedde N = N = De (I) e (II) podemos firmr que =, então: ) 6 = = 6 ftorndo 6 = = pel propriedde N

Leia mais

PARTE I. LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (8º ano)

PARTE I. LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (8º ano) PARTE I 1) Em 1940 populção brsileir er de 41 milhões de hbitntes. Em 1950 pssou pr 5 milhões. Clcule o umento populcionl em porcentgem ness décd. 6) Considere o heágono composto por dois retângulos e

Leia mais

( ) Logaritmos. Logaritmos. a é a base do logaritmo, b é o logaritmando, x é o logaritmo. Exemplos

( ) Logaritmos. Logaritmos. a é a base do logaritmo, b é o logaritmando, x é o logaritmo. Exemplos UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Lgritms. Cneit de lgritm

Leia mais

GGE RESPONDE IME 2012 MATEMÁTICA 1

GGE RESPONDE IME 2012 MATEMÁTICA 1 0. O segundo, o sétio e o vigésio sétio teros de u Progressão Aritéti () de núeros inteiros, de rzão r, for, nest orde, u Progressão Geoétri (PG), de rzão q, o q e r IN* (nturl diferente de zero). Deterine:

Leia mais

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz

Hewlett-Packard O ESTUDO DO PONTO. Aulas 01 a 05. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Hewlett-Pkrd O ESTUDO DO PONTO Auls 0 05 Elson Rodrigues, Griel Crvlho e Pulo Luiz Sumário INTRODUÇÃO AO PLANO CARTESIANO... Alguns elementos do plno rtesino... Origem... Eios... Qudrntes... Bissetrizes

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS CÁLCULO IFEENCIAL E INTEGAL II INTEGAIS MÚLTIPLAS A ierenç prinipl entre Integrl eini F ) F ) e s Integris Múltipls resie no to e que, em lugr e omeçrmos om um prtição o intervlo [, ], suiviimos um região

Leia mais

Como a Lei de Snell pode ser obtida do Princípio de Fermat?

Como a Lei de Snell pode ser obtida do Princípio de Fermat? Como a Lei e Snell poe ser obtia o Prinípio e Fermat? Maria Fernana Araujo e Resene resene@if.usp.br Instituto e Físia, Universiae e São Paulo, CP 66318, 05315-970 São Paulo SP, Brasil 1 Comentários iniiais

Leia mais

A integral definida. f (x)dx P(x) P(b) P(a)

A integral definida. f (x)dx P(x) P(b) P(a) A integrl definid Prof. Méricles Thdeu Moretti MTM/CFM/UFSC. - INTEGRAL DEFINIDA - CÁLCULO DE ÁREA Já vimos como clculr áre de um tipo em específico de região pr lgums funções no intervlo [, t]. O Segundo

Leia mais

TRIGONOMETRIA. Para graduar uma reta basta escolher dois pontos e associar a eles os números zero e um.

TRIGONOMETRIA. Para graduar uma reta basta escolher dois pontos e associar a eles os números zero e um. TRIGONOMETRIA Pr grdur um ret bst escolher dois ontos e ssocir eles os números zero e um. A B 0 Com isto, ode-se reresentr n ret qulquer número rel. Pr grdur um circunferênci utilizremos o rio igul, onde

Leia mais

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO

RELAÇÕES MÉTRICAS E TRIGONOMETRIA NO TRIÂNGULO RETÂNGULO Mtemáti RELÇÕES MÉTRIS E TRIGONOMETRI NO TRIÂNGULO RETÂNGULO 1. RELÇÕES MÉTRIS Ddo o triângulo retângulo io:. RELÇÕES TRIGONOMÉTRIS Sej o triângulo retângulo io: n m Temos: e são os tetos; é ipotenus;

Leia mais

facebook/ruilima

facebook/ruilima MATEMÁTICA UFPE ( FASE/008) 01. Sej áre totl d superfície de um cubo, e y, o volume do mesmo cubo. Anlise s firmções seguir, considerndo esss informções. 0-0) Se = 5 então y = 7. 1-1) 6y = 3 -) O gráfico

Leia mais

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida

CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeida CÁLCULO I Prof. Eilson Neri Júnior Prof. Anré Almeia Aula n o 0: Derivaas e Orem Superior e Regra a Caeia Objetivos a Aula Definir e eterminar as erivaas e orem superior; Conhecer e aplicar a regra a caeia;

Leia mais

Matemática A - 10 o Ano Ficha de Trabalho

Matemática A - 10 o Ano Ficha de Trabalho Fich de Trlho Álger - Rdicis Mtemátic - 0 o no Fich de Trlho Álger - Rdicis Grupo I. Sejm e dois números nturis diferentes que tis que x =. onclui-se então que x pode ser ddo por qul ds expressões ixo?

Leia mais

Fio de tecido. m laser. = a. = a. Difração de um fio. Difração de uma fenda simples

Fio de tecido. m laser. = a. = a. Difração de um fio. Difração de uma fenda simples Problem 8 Os fbricntes e fios às vezes usm um lser pr monitorr continumente espessur o prouto. O fio intercept luz o lser, prouzino um figur e ifrção preci com e um fen com mesm lrgur que o iâmetro o fio.

Leia mais

FÍSICA. Resoluções. 1 a Série Ensino Médio. Após a inversão dos movimentos, os módulos das velocidades foram trocados.

FÍSICA. Resoluções. 1 a Série Ensino Médio. Após a inversão dos movimentos, os módulos das velocidades foram trocados. LIMÍD DE FÍSIC Resoluções 01 0 E 03 D r o sistem vetoril cito n questão, tem-se o seguinte: + + c S c Inverteno qulquer um os vetores, tem-se seguinte situção: S S vetor som o inverter qulquer um os vetores,

Leia mais

Palavras-chave: Confiabilidade, Estruturas, Redução de Sistemas

Palavras-chave: Confiabilidade, Estruturas, Redução de Sistemas AVALIAÇÃO DA CONFIABILIDADE EM SISTEMAS PELO MÉTODO DA MATRIZ DE CONEXÃO. Miguel A. Reyes Mojen Universi e Oriente, Deprtmento e Meáni y Diseño Ave. e Ls Amris s/n, Sntigo e Cu, Cu. Kti L. Cvl Universie

Leia mais

3 : b.. ( ) é igual a: sen. Exponenciação e Logarítmos - PROF HELANO 15/06/15 < 4. 1) Para que valores reais se verifica a sentença

3 : b.. ( ) é igual a: sen. Exponenciação e Logarítmos - PROF HELANO 15/06/15 < 4. 1) Para que valores reais se verifica a sentença Exponencição e Logrítmos - PRO HELO /06/ ) Pr que vlores reis se verific sentenç x x x x x4 < 4 : ) { x / x } [, ] ) { x / x } ], [ ) Se, e c são reis positivos, então simplificndo ) ) 4 log c log c..

Leia mais

Notas de aulas 1 IFSP Mecânica Técnica

Notas de aulas 1 IFSP Mecânica Técnica Nots de uls 1 IFSP Meâni Téni 1. Revisão de trigonometri. Sistems de uniddes. Algrismos signifitivos. 2. Coneito de vetor. Som de vetores. Deomposição de forçs. 3. Equilírio de um ponto mteril. 4. Digrm

Leia mais

têm, em média 13 anos. Se entrar na sala um rapaz de 23 anos, qual passa a ser a média das idades do grupo? Registree seu raciocínio utilizado.

têm, em média 13 anos. Se entrar na sala um rapaz de 23 anos, qual passa a ser a média das idades do grupo? Registree seu raciocínio utilizado. ÃO FINAL MATEMÁTICA (8º no) PARTE I ) Em 90 populção rsileir er de milhões de hitntes. Em 950 pssou pr 5 milhões. Clcule o umento populcionl em porcentgem ness décd. ) Num microempres há 8 funcionários,

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A Tref nº do plno de trblho nº 9. Determine o vlor de:. log log + e log( ) log 0 + log 0 e log( 0 0) log + log e 7 d. log

Leia mais

Cálculo 1 - Cálculo Integral Teorema Fundamental do Cálculo

Cálculo 1 - Cálculo Integral Teorema Fundamental do Cálculo Cálulo 1 - Cálulo Integrl Teorem Fundmentl do Cálulo Prof. Fbio Silv Botelho November 17, 2017 1 Resultdos Preliminres Theorem 1.1. Sej f : [,b] R um função ontínu em [,b] e derivável em (,b). Suponh que

Leia mais

PROVA G3 FIS /06/2009 FLUIDOS E TERMODINÂMICA

PROVA G3 FIS /06/2009 FLUIDOS E TERMODINÂMICA 1 PROVA G FIS 1041 24/06/2009 FLUIDOS E TERMODINÂMICA GABARITO QUESTÃO VALOR GRAU REVISÃO 1 4,0 2,0,0 TOTAL 10,0 E int = Q W, de int =dq dw = dq - pdv, k = 1,8 x 10 2 J/K = R / N A pv = nrt, RT = Mv 2

Leia mais

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME

Prof.(s): Judson Santos - Luciano Santos 1º S I M U L A D O ITA/IME Prof.(s): Judson Sntos - Lucino Sntos y 0) Sbendo que (,,, ) estão em progressão ritmétic nest ordem y stisfendo s condições de eistênci dos ritmos. Então o vlor d epressão y é igul : ) b) y 0) Sej,, 4,,

Leia mais

Faça no caderno Vá aos plantões

Faça no caderno Vá aos plantões LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (8º no) Fç no cderno Vá os plntões PARTE I ) Em 90 populção rsileir er de milhões de hitntes. Em 950 pssou pr 5 milhões. Clcule o umento populcionl

Leia mais

Fatoração e Produtos Notáveis

Fatoração e Produtos Notáveis Ftorção e Produtos Notáveis 1. (G1 - cftmg 014) Simplificndo epressão 1 4 6 4 5 4 16 48 obtém-se ). b) 4 +. c). d) 4 +.. (G1 - ifce 014) O vlor d epressão: b b ) b. b) b. c) b. d) 4b. e) 6b. é. (Upf 014)

Leia mais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais

FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA. Equações Exponenciais FUNÇÕES EXPONENCIAIS E LOGARÍTMICAS - ITA Equções Epoeciis... Fução Epoecil..4 Logritmos: Proprieddes 6 Fução Logrítmic. Equções Logrítmics...5 Iequções Epoeciis e Logrítmics.8 Equções Epoeciis 0. (ITA/74)

Leia mais

Professora FLORENCE. e) repulsiva k0q / 4d. d) atrativa k0q / 4d. Resposta: [A]

Professora FLORENCE. e) repulsiva k0q / 4d. d) atrativa k0q / 4d. Resposta: [A] . (Ufrgs 0) Assinle lterntiv ue preenche corretmente s lcuns no fim o enuncio ue segue, n orem em ue precem. Três esfers metálics iêntics, A, B e C, são monts em suportes isolntes. A esfer A está positivmente

Leia mais

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2

Matemática. Resolução das atividades complementares. M10 Função logarítmica. 1 Sendo ƒ uma função dada por f(x) 5 log 2 Resolução ds tividdes copleentres Mteátic M0 Função rític p. 7 Sendo ƒ u função dd por f(), clcule o vlor de f(). f() f()??? f() A epressão é igul : ) c) 0 e) b) d)? 0 0 Clcule y, sendo. y y Resolv epressão.

Leia mais

1 Áreas de figuras planas

1 Áreas de figuras planas Nome: n o : Ensino: Médio érie: ª. Turm: Dt: Professor: Mário esumo 1 Áres de figurs plns 1.1 etângulo h. h 1. Qudrdo 1. Prlelogrmo h. h 1.4 Trpézio h B h B 1.5 Losngo d Dd. D 1.6 Triângulos 1.6.1 Triângulo

Leia mais

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Equções do Segundo Gru Professor : Dêner Roh Monster Conursos 1 Equções do segundo gru Ojetivos Definir equções do segundo gru. Resolver equções do segundo gru. Definição Chm-se equção do º

Leia mais