c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule:

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule:"

Transcrição

1 Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe Definição Clule pel efinição os seguintes ritmos: ) (/8) ) 8 ) 0,5 Clule pel efinição os seguintes ritmos: ) 6 ) 7 (/7) ) 9 (/7) ) (/9) e) 7 8 f) 0,5 8 g) 8 h) 5 5 i) 5 0,008 j) / 8 k) / l) 0,0 0,00 As inições R e R, n esl Rihter, e ois terremotos estão relionos pel fórmul: R R = 0 (M /M ) Em que M e M meem energi lier pelos terremotos so form e ons que se propgm pel rost terrestre Houve ois terremotos: um orresponente R = 8 e outro orresponente R = 6 Clule rzão M /M Clule pel efinição os seguintes ritmos: ) ) 8 ) 7 ) 9 7 e) 5 f) 5 8 ) S = Clule o vlor e S:, , 00 S = ( 9) + ( 8 ) + 0,8 ( 6 ) 8 Clule: ) nti ) nti 6 (/) ) nti ( ) ) nti / ( ) 9 Determine o vlor e n equção pr que y = 8 ( ) y, 0 Sej o número ujo ritmo n se 9 é igul 0,75 Determine o vlor e O ritmo e um número n se 6 é / Clule o ritmo esse número n se / Determine o número ujo ritmo n se é e n se / é 8 Clule o ritmo e no sistem e se Determine se o sistem e ritmos no qul o ritmo e vle 5 Clule o vlor e: Propriees g) 00 0 h) 9 i) 7 5 Determine o onjunto vere equção Clule som S nos seguintes sos: ) S = 00 0,00 +,5 (/9),5 0,6 ) S = ) 5 8 ) 6 Clule o vlor e: ) ) g) ) e) 5 5 h) 7 Clule: 5 8 ) 5 f) 6 ) nti ( ) ) nti ( 5) 8 Se A 5 5, etermine o vlor e A 8 9 wwwhshtgmtemtiomr Págin

2 Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe 9 Determine o vlor e A tl que A A 0 0 Desenvolv, plino s propriees os ritmos (, e são reis positivos): ) ) ) Desenvolv, plino s propriees os ritmos (, e são reis positivos): 5 ) 5 ) ) e) g) h) Se m, etermine m Sej Clule f) ) Desenvolv, plino s propriees os ritmos ( > > > 0): ) ) ( ) 5 ) ) ( ) ( ) 5 5 Qul é epressão ujo esenvolvimento rítmio é +, one, e são reis positivos? 6 Qul é epressão ujo esenvolvimento rítmio é io (, e são reis positivos)? ) + ) ) + ) / / e) / / / f) + / + /6 g) / ( ) 7 Qul é epressão ujo esenvolvimento rítmio é o io ( > > > 0)? ) + ( + ) ( ) ) ( + ) ( ) ) ½ ( ) + ( + ) ) / ( + ) [/ ( + ) ( )] e) [ ( ) ( + ) + ]/5 8 Se = + /, etermine o vlor e 9 Se = e =, oloque em função e e os seguintes ritmos eimis: ) 6 ) ) ) e) 0,5 f) 0 g) 5 h) 5 0 o ph e um solução é efinio por ph = 0 (/[H + ]), em que [H + ] é onentrção e hirogênio em íons-grm por litro e solução Determine o ph e um solução tl que [H + ] =,0 0 8 Seno que = 0,0, etermine o vlor 5 epressão 5 Se = 0,0, lule o vlor epressão Determine rzão entre os ritmos e 6 e num se qulquer wwwhshtgmtemtiomr Págin

3 Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe Se + = p, lule o vlor e (/) + (/) 5 Se ( ) = m e ( + ) = 8, etermine ( ) 6 A som os ritmos e ois números n se 9 é ½ Determine o prouto esses números 7 Se = n e y = 6n, lule y 8 Se-se que m = e m = Clule o vlor e m (6/,7) m 60 9 Seno o (/) = e y 56 =, etermine o vlor e + y 0 Seno que = 0,0000, qunto vle 0 = 08576? Seno 0 0,, etermine o menor número nturl n que verifi relção n > 0 Seno que 0 = e 0 5 =, lule 0 Seno que 0 = e 0 =, lule 6 5 Se =, lule 5 Se 7 =, lule Clule o vlor e 0,0 5 7 Se m = k, etermine o vlor e 8 m 8 Dos 0 = e 0 =, lule Clule o vlor e Se m =, m 0, lule / 5 Determine o vlor e Se =, lule 5 Seno que 7 = e 5 =, lule o vlor e 5 8 (sugestão: 8 = /7) 5 Clule A = Simplifique 56 Simplifique ( ) 57 Demonstre que rzão entre os ritmos e ois números positivos e iferentes e inepene se onsier 58 Se, e são reis positivos om e, prove que: = ( )( + ) 59 Se, e são reis positivos, iferentes e e =, prove que: 60 Se, e são reis positivos, iferentes e e, prove que: ( ) ( ) 6 Se,, e são reis positivos, iferentes e e, prove que: Se e são reis positivos, prove que = 6 Se,, e são reis positivos, e iferentes e, prove que: 6 Se = (), y = () e z = (), prove que: y z wwwhshtgmtemtiomr Págin

4 Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe 65 Se,, e são reis positivos, iferentes e e ois ois istintos, prove equivlêni: 66 Se e são rízes equção p + q = 0 (p > 0 e 0 < q ), emonstre que: q + q + q + q = p 67 Se, e são meis os los e um triângulo retângulo e hipotenus om mei e seno que e +, emonstre que: + + = + 68 Se, e são reis positivos, prove igule: 69 Se 0 z e y 0, prove que z 0 y 70 Se, e são reis positivos, iferentes e, e = =, prove que: ( ) ( ) ( ) 7 Se 0 <, emonstre que: n 8 Sugestão: n( n ) n n 7 Resolv s equções: Potenição Logritmo ) = ) 5 = 7 Resolv s equções: n ) 5 = ) = / ) 7 5 n ) 5 g) 7 = 5 e) 5 = 0,5 f) + = 7 Resolv equção =, om > e > 75 O resimento e ert ultur e téris oeee função X(t) = C e kt, em que X(t) é o número e téris no tempo t 0; C e k são onstntes positivs (e é se o ritmo neperino) Verifino que o número iniil e téris X(0) upli em hors, qunts els se poe esperr no fim e 6 hors? 76 Um sustâni riotiv está em proesso e eimento, e moo que no instnte t quntie eí é A(t) = A(0) e t, em que A(0) ini quntie e sustâni no instnte t = 0 Clule o tempo neessário pr que mete quntie iniil se ei (Consiere ln = 0,69) 77 A lei e eimento o ráium no tempo t 0 é por M(t) = C e kt, em que M(t) é quntie e ráium no tempo t; C e k são onstntes positivs (e é se o ritmo neperino) Se mete quntie primitiv M(0) ei em 600 nos, qul quntie peri em 00 nos? 78 Resolv equção = + 79 Resolv s equções: ) = + ) 7 = + ) 5 = 80 Resolv s equções: ) = + + ) = ) + = + 8 Resolv equção + = 8 8 Resolv s equções: ) = 0 ) = 0 ) 9 + = 0 ) = 0 e) = 0 f) = 9 wwwhshtgmtemtiomr Págin

5 Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe 5 8 Resolv equção + 6 = 9 8 Resolv equção = Resolv equção + =, supono 0 < 86 Resolv o sistem e equções: 6 6 y 87 Resolv s equções: 6 y 0 Equções Logrítmis ) ( + ) = ( + 5) ) (5 6) = ( 5) ) (5 + ) = ( 0) ) / ( 7) = / ( 5 + ) e) ( + + ) = ( + 5) f) / (5 ) = / ( 8) 88 Resolv s equções: ) 5 ( ) = ) / ( + 5) = 0 ) ( ) = 0 ) ( ) = e) / ( 9 + ) = f) ( ) = g) ( + ) = ½ 89 Aumentno um número em 6 unies, seu ritmo n se ument em unies Determine 90 Determine o vlor e pr que 9 Resolv s equções: ) ( ) = ( / ) ( /8 /) = 5/ ) / [ ( )] = 0 ) / { [ ( )]} = 0 ) { [ + ( + )]} = e) [ + ( + )] = 0 f) [ + ( )] = g) [ + ( + (5 + )]} = 9 Resolv equção [ ( 5 + )] = 9 Resolv s equções: ( ) ( 5) ) 7 ) 9 ( ) ) 6 ) 7 ( ) 9 Resolv o sistem e equções: y y 95 Resolv s equções: ) = 0 ) = 0 ) ( ) = 6 ) ( ) = e) + = 5 y f) = wwwhshtgmtemtiomr Págin 5

6 Aulão Esprtno Os 00 e Logritmo 6 Prof Pero Felippe wwwhshtgmtemtiomr Págin 6

TRIÂNGULO 1 - CONCEITO 2 - CLASSIFICAÇÃO. acutângulo 2º) Quanto aos ângulos retângulo obtusângulo. Sejam, não colineares, os pontos A, B, e C A.

TRIÂNGULO 1 - CONCEITO 2 - CLASSIFICAÇÃO. acutângulo 2º) Quanto aos ângulos retângulo obtusângulo. Sejam, não colineares, os pontos A, B, e C A. TRIÂNGULO 1 - ONITO Sejm, não olineres, os pontos,, e utângulo 2º Qunto os ângulos retângulo otusângulo I é utângulo é união dos segmentos, e. m ( = Ldos: m ( = Vérties: m ( = II, e são gudos 2 - LSSIFIÇÃO

Leia mais

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2

64 5 y e log 2. 32 5 z, então x 1 y 1 z é igual a: c) 13 e) 64 3. , respectivamente. Admitindo-se que E 1 foi equivalente à milésima parte de E 2 Resolução ds tividdes complementres Mtemátic M Função Logrítmic p. (UFSM-RS) Sejm log, log 6 e log z, então z é igul : ) b) c) e) 6 d) log log 6 6 log z z z z (UFMT) A mgnitude de um terremoto é medid

Leia mais

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1;

f(x) é crescente e Im = R + Ex: 1) 3 > 81 x > 4; 2) 2 x 5 = 16 x = 9; 3) 16 x - 4 2x 1 10 = 2 2x - 1 x = 1; Curso Teste - Eponencil e Logritmos Apostil de Mtemátic - TOP ADP Curso Teste (ii) cso qundo 0 < < 1 EXPONENCIAL E LOGARITMO f() é decrescente e Im = R + 1. FUNÇÃO EXPONENCIAL A função f: R R + definid

Leia mais

1 Áreas de figuras planas

1 Áreas de figuras planas Nome: n o : Ensino: Médio érie: ª. Turm: Dt: Professor: Mário esumo 1 Áres de figurs plns 1.1 etângulo h. h 1. Qudrdo 1. Prlelogrmo h. h 1.4 Trpézio h B h B 1.5 Losngo d Dd. D 1.6 Triângulos 1.6.1 Triângulo

Leia mais

PRÉ-REQUISITOS PARA O CÁLCULO

PRÉ-REQUISITOS PARA O CÁLCULO Veremos qui um breve revisão de oneitos de álgebr neessários pr o estudo do Cálulo. É bom lembrr que voê não pode prender Cálulo sem esses pré-requisitos, priniplmente álgebr, que podemos onsiderr omo

Leia mais

que Q = 10-6 C e d = 0,3m. O meio é o vácuo. É 9.10 9 2

que Q = 10-6 C e d = 0,3m. O meio é o vácuo. É 9.10 9 2 FÍSI - ELETRIIDDE - TRLH E PTENIL S RESPSTS ESTÃ N FINL DS EXERÍIS. 1. Uma carga elétrica puntiforme = 1µ é transportaa e um ponto até um ponto e um nos casos a e b inicaos. mita, em caa caso, 6. Determine

Leia mais

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 2012 1 a Fase RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNESP VESTIBULAR 01 1 Fse Prof. Mri Antôni Gouvei. QUESTÃO 83. Em 010, o Instituto Brsileiro de Geogrfi e Esttístic (IBGE) relizou o último censo populcionl brsileiro, que mostrou

Leia mais

HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 8.ED., LTC, RIO DE JANEIRO, 2008. FÍSICA 1 CAPÍTULO 3 VETORES

HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 8.ED., LTC, RIO DE JANEIRO, 2008. FÍSICA 1 CAPÍTULO 3 VETORES Polems Resolvios e Físi Pof. Aneson Cose Guio Depto. Físi UFES HALLIDAY, RESNICK, WALKER, FUNDAMENTOS DE FÍSICA, 8.ED., LTC, RIO DE JANEIRO, 008. FÍSICA 1 CAPÍTULO 3 VETORES 16. N som A + = C, o veto A

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

5(6,67Ç1&,$(&$3$&,7Æ1&,$

5(6,67Ç1&,$(&$3$&,7Æ1&,$ 59 5(6,67Ç&,$(&$3$&,7Æ&,$ ÃÃ5(6,67Ç&,$Ã(Ã/(,Ã'(Ã+0 No pítulo 6 efinimos ução J σ omo seno um ensie e oente e onução. Multiplino mos os los po um áe S, el fiá: J.S σs (A (8. σs (A (8. Se o mpo elétio fo

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

Estudo dos Logaritmos

Estudo dos Logaritmos Instituto Municipl de Ensino Superior de Ctnduv SP Curso de Licencitur em Mtemátic 3º no Prátic de Ensino d Mtemátic III Prof. M.Sc. Fbricio Edurdo Ferreir fbricio@ffic.br Situção inicil Estudo dos Logritmos

Leia mais

I. NÚMEROS INTEIROS E FRAÇÕES OPERAÇÕES COM:

I. NÚMEROS INTEIROS E FRAÇÕES OPERAÇÕES COM: I. NÚMEROS INTEIROS E FRAÇÕES OPERAÇÕES COM: Relembrano...(números inteiros: soma e subtração) Observe os eeríios resolvios, e a seguir resolva os emais:. + =. + 7 = Obs.: failmente entenemos que essas

Leia mais

Componente Curricular: Professor(a): Turno: Data: Matemática PAULO CEZAR Matutino Aluno(a): Nº do Série: Turma: Lista de Exercícios CONTINUAÇÂO

Componente Curricular: Professor(a): Turno: Data: Matemática PAULO CEZAR Matutino Aluno(a): Nº do Série: Turma: Lista de Exercícios CONTINUAÇÂO Vlor 2,0 omponente urriulr: Professor(): Turno: Dt: Mtemáti PULO EZR Mtutino luno(): Nº do Série: Turm: luno: 9º no Suesso! Pontução EXTR List de Eeríios ONTINUÇÂO List de eeríios do teorem de Tles. Semelhnç

Leia mais

DIFERENÇA DE POTENCIAL. d figura 1

DIFERENÇA DE POTENCIAL. d figura 1 DIFERENÇ DE POTENCIL 1. Trabalho realizao por uma força. Consieremos uma força ue atua sobre um objeto em repouso sobre uma superfície horizontal como mostrao na figura 1. kx Esta força esloca o objeto

Leia mais

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES

FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES FACULDADE DE ADMINISTRAÇÃO E NEGÓCIOS DE SERGIPE CURSO: ADMINISTRAÇÃO/CIÊNCIAS CONTÁBEI /LOGISTICA ASSUNTO: INTRODUÇÃO AO ESTUDO DE FUNÇÕES PROFESSOR: MARCOS AGUIAR MAT. BÁSICA I. FUNÇÕES. DEFINIÇÃO Ddos

Leia mais

EXPERIÊNCIA 3 PONTE DE WHEATSTONE

EXPERIÊNCIA 3 PONTE DE WHEATSTONE EXPEIÊNCIA 3 PONTE DE WHEATSTONE I - OBJETIVO: Utilizr ponte de Whetstone omo instrumento de medid de resistêni de extrem preisão e disutir o oneito de resistêni elétri. II - PATE TEÓICA: INTODUÇÃO: Muits

Leia mais

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é

Trabalhando-se com log 3 = 0,47 e log 2 = 0,30, pode-se concluir que o valor que mais se aproxima de log 146 é Questão 0) Trlhndo-se com log = 0,47 e log = 0,0, pode-se concluir que o vlor que mis se proxim de log 46 é 0),0 0),08 0),9 04),8 0),64 Questão 0) Pr se clculr intensidde luminos L, medid em lumens, um

Leia mais

2.4. Função exponencial e logaritmo. Funções trigonométricas directas e inversas.

2.4. Função exponencial e logaritmo. Funções trigonométricas directas e inversas. Cpítulo II Funções Reis de Vriável Rel.. Função eponencil e logritmo. Funções trigonométrics directs e inverss. Função eponencil A um unção deinid por nome de unção eponencil de bse. ( ), onde, > 0 e,

Leia mais

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij

Matemática. Resolução das atividades complementares. M13 Determinantes. 1 (Unifor-CE) Sejam os determinantes A 5. 2 (UFRJ) Dada a matriz A 5 (a ij Resolução ds tividdes complementres Mtemátic M Determinntes p. (Unifor-CE) Sejm os determinntes A, B e C. Nests condições, é verdde que AB C é igul : ) c) e) b) d) A?? A B?? B C?? C AB C ()? AB C, se i,

Leia mais

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou

POLINÔMIOS. Definição: Um polinômio de grau n é uma função que pode ser escrita na forma. n em que cada a i é um número complexo (ou POLINÔMIOS Definição: Um polinômio de gru n é um função que pode ser escrit n form P() n n i 0... n i em que cd i é um número compleo (ou i 0 rel) tl que n é um número nturl e n 0. Os números i são denomindos

Leia mais

CONJUNTOS NUMÉRICOS Símbolos Matemáticos

CONJUNTOS NUMÉRICOS Símbolos Matemáticos CONJUNTOS NUMÉRICOS Símolos Mtemáticos,,... vriáveis e prâmetros igul A, B,... conjuntos diferente pertence > mior que não pertence < menor que está contido mior ou igul não está contido menor ou igul

Leia mais

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA FUVEST VESTIBULAR 2010 1 a Fase. RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA FUVET VETIBULAR 00 Fse Prof. Mri Antôni Gouvei. Q-7 Um utomóvel, modelo flex, consome litros de gsolin pr percorrer 7km. Qundo se opt pelo uso do álcool, o utomóvel consome 7 litros

Leia mais

RESUMO 02: SEÇÃO TÊ FALSA E VERDADEIRA ARMADURA SIMPLES

RESUMO 02: SEÇÃO TÊ FALSA E VERDADEIRA ARMADURA SIMPLES 0851 CONSTRUÇÕES DE CONCRETO RDO II PROF. IBERÊ 1 / 5 0851 CONSTRUÇÕES DE CONCRETO RDO II RESUO 0: SEÇÃO TÊ FLS E VERDDEIR RDUR SIPLES ES COLBORNTE ação conjunta e lajes e vigas poe ser consieraa meiante

Leia mais

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução

Resolução A primeira frase pode ser equacionada como: QUESTÃO 3. Resolução QUESTÃO 2 QUESTÃO 4. Resolução (9) - www.elitecmpins.com.br O ELITE RESOLVE MATEMÁTICA QUESTÃO Se Améli der R$, Lúci, então mbs ficrão com mesm qunti. Se Mri der um terço do que tem Lúci, então est ficrá com R$, mis do que Améli. Se

Leia mais

4. Inversão de Matrizes e Determinantes

4. Inversão de Matrizes e Determinantes Geometri nlític e Álger Liner 6. Inversão e Mtrizes e Determinntes.. Mtriz Invers Too número rel, não nulo, possui um inverso (multiplictivo), ou sej, existe um número, tl que = =. Este número é único

Leia mais

Professor Sérgio Furgeri. Pilhas. O primeiro a entrar é o último a sair e o último a entrar o primeiro a sair (LIFO Last-In First-Out).

Professor Sérgio Furgeri. Pilhas. O primeiro a entrar é o último a sair e o último a entrar o primeiro a sair (LIFO Last-In First-Out). Pilhs Pilhs Pilh é um tipo e list one tos s operções e inserção e remoção são feits n mesm extremie (Topo). O primeiro entrr é o último sir e o último entrr o primeiro sir (LIFO Lst-In First-Out). Trt-se

Leia mais

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2

LISTA DE EXERCÍCIOS Questões de Vestibulares. e B = 2 LISTA DE EXERCÍCIOS Questões de Vestiulres ) UFBA 9 Considere s mtries A e B Sendo-se que X é um mtri simétri e que AX B, determine -, sendo Y ( ij) X - R) ) UFBA 9 Dds s mtries A d Pode-se firmr: () se

Leia mais

COLÉGIO NAVAL 2016 (1º dia)

COLÉGIO NAVAL 2016 (1º dia) COLÉGIO NAVAL 016 (1º di) MATEMÁTICA PROVA AMARELA Nº 01 PROVA ROSA Nº 0 ( 5 40) 01) Sej S som dos vlores inteiros que stisfzem inequção 10 1 0. Sendo ssim, pode-se firmr que + ) S é um número divisíel

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA UNICAMP-FASE 2. 2014 RESOLUÇÃO: PROFA. MARIA ANTÔNIA C. GOUVEIA RESOLUÇÃO D PROV DE MTEMÁTIC UNICMP-FSE. PROF. MRI NTÔNI C. GOUVEI. é, sem úv, o lmento refero e mutos ulsts. Estm-se que o onsumo áro no Brsl sej e, mlhão e s, seno o Esto e São Pulo resonsável or % esse

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

9 Implementação de Relógio Digital (State Charts)

9 Implementação de Relógio Digital (State Charts) StteFlow toolox 9 Implementção e Digitl (Stte Chrts) Desrever o funionmento e um relógio igitl, om um áre e isply prinipl, e 4 áres mis pequens. O relógio ispõe e: Poe mostrr o tempo num formto e 24 hors

Leia mais

DESAFIOS. π e. π <y < π, satisfazendo seny = 8 x

DESAFIOS. π e. π <y < π, satisfazendo seny = 8 x DESAFIOS ENZO MATEMÁTICA 01-(FUVEST) Sejm x e y dois números reis, com 0

Leia mais

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2.

Reforço Orientado. Matemática Ensino Médio Aula 4 - Potenciação. Nome: série: Turma: t) (0,2) 4. a) 10-2. b) (-2) -2. 2 d) e) (0,1) -2. Reforço Orientdo Mtemátic Ensino Médio Aul - Potencição Nome: série: Turm: Exercícios de sl ) Clcule s potêncis, em cd qudro: r) b) (-) Qudro A s) t) (0,) Qudro B - b) (-) - e) (-,) g) (-) h) e) (0,) -

Leia mais

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é,

Matemática Aplicada. A Mostre que a combinação dos movimentos N e S, em qualquer ordem, é nula, isto é, Mtemátic Aplicd Considere, no espço crtesino idimensionl, os movimentos unitários N, S, L e O definidos seguir, onde (, ) R é um ponto qulquer: N(, ) (, ) S(, ) (, ) L(, ) (, ) O(, ) (, ) Considere ind

Leia mais

Física. Resolução das atividades complementares. F1 Gravitação universal

Física. Resolução das atividades complementares. F1 Gravitação universal esolução s tivies complementres Físic F Grvitção universl p. 7 err possui pens um stélite nturl, Lu. Pesquise pr responer. ) Quis os períoos e rotção e e trnslção Lu em torno err? b) Por que err é possível

Leia mais

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:23. Jason Alfredo Carlson Gallas, professor titular de física teórica,

LISTA 3 - Prof. Jason Gallas, DF UFPB 10 de Junho de 2013, às 17:23. Jason Alfredo Carlson Gallas, professor titular de física teórica, Exercícios Resolvios e Física Básica Jason Alfreo Carlson Gallas, professor titular e física teórica, Doutor em Física pela Universiae Luwig Maximilian e Munique, Alemanha Universiae Feeral a Paraíba (João

Leia mais

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles

Somos o que repetidamente fazemos. A excelência portanto, não é um feito, mas um hábito. Aristóteles c L I S T A DE E X E R C Í C I O S CÁLCULO INTEGRAL Prof. ADRIANO PEDREIRA CATTAI Somos o que repetidmente fzemos. A ecelênci portnto, não é um feito, ms um hábito. Aristóteles Integrl Definid e Cálculo

Leia mais

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas.

1.1) Dividindo segmentos em partes iguais com mediatrizes sucessivas. COLÉGIO PEDRO II U. E. ENGENHO NOVO II Divisão Gráfi de segmentos e Determinção gráfi de epressões lgéris (qurt e tereir proporionl e médi geométri). Prof. Sory Izr Coord. Prof. Jorge Mrelo TURM: luno:

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE 1 DO VESTIBULAR DA UFBA/UFRB-2007 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FASE DO VESTIBULAR DA UFBA/UFRB-7 POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA Questão Sore números reis, é correto firmr: () Se é o mior número de três lgrismos divisível

Leia mais

Gabarito - Matemática Grupo G

Gabarito - Matemática Grupo G 1 QUESTÃO: (1,0 ponto) Avlidor Revisor Um resturnte cobr, no lmoço, té s 16 h, o preço fixo de R$ 1,00 por pesso. Após s 16h, esse vlor ci pr R$ 1,00. Em determindo di, 0 pessos lmoçrm no resturnte, sendo

Leia mais

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO

COLÉGIO MILITAR DE BELO HORIZONTE CONCURSO DE ADMISSÃO 2006 / 2007 PROVA DE MATEMÁTICA 1ª SÉRIE DO ENSINO MÉDIO COLÉGIO MILITA DE BELO HOIZONTE CONCUSO DE ADMISSÃO 6 / 7 POVA DE MATEMÁTICA 1ª SÉIE DO ENSINO MÉDIO CONFEÊNCIA: Chefe d Sucomissão de Mtemátic Chefe d COC Dir Ens CPO / CMBH CONCUSO DE ADMISSÃO À 1ª SÉIE

Leia mais

SOLENÓIDE E INDUTÂNCIA

SOLENÓIDE E INDUTÂNCIA EETROMAGNETSMO 105 1 SOENÓDE E NDUTÂNCA 1.1 - O SOENÓDE Campos magnéticos prouzios por simples conutores ou por uma única espira são bastante fracos para efeitos práticos. Assim, uma forma e se conseguir

Leia mais

Exemplo 1 Dimensionamento ELU Força Cortante

Exemplo 1 Dimensionamento ELU Força Cortante Exemplo 1 Dimensionmento ELU Forç Cortnte 1. Esquem estruturl, geometri, crgs e resistêncis O presente exemplo mostr rotin e imensionmento à orç cortnte sem que sej necessário esenhr treliç resistente

Leia mais

Cinemática e Dinâmica de Engrenagens 2. Engrenagens Cilíndricas de Dentes Retos

Cinemática e Dinâmica de Engrenagens 2. Engrenagens Cilíndricas de Dentes Retos Cinemátic e Dinâmic e Engrengens. Engrengens Cilínrics e Dentes Retos Pulo Flores José Gomes Universie o Minho Escol e Engenhri Guimrães 04 ÍNDICE. Engrengens Cilínrics e Dentes Retos..... Introução.....

Leia mais

Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...).

Há uma equivalência entre grau e radiano: π radianos equivalem a 180 graus (π é uma constante numérica equivalente a 3,14159...). 9. TRIGONOMETRIA 9.1. MEDIDAS DE ÂNGULOS O gru é um medid de ângulo. Um gru, notdo por 1 o, equivle 1/180 de um ângulo rso ou 1/360 de um ângulo correspondente um volt complet em torno de um eixo. Outr

Leia mais

UNIVERSIDADE FEDERAL FLUMINENSE DEPARTAMENTO DE ENGENHARIA CIVIL

UNIVERSIDADE FEDERAL FLUMINENSE DEPARTAMENTO DE ENGENHARIA CIVIL Questões e rovas e Testes (Deformações na Flexão) UNIVERSIDDE FEDERL FLUMINENSE DERTMENTO DE ENGENHRI IVIL RESISTÊNI DOS MTERIIS XI - Engenharia Mecânica rof. amplona 2004-01 e L w (1) 1 a. Questão - ara

Leia mais

Aula 1- Distâncias Astronômicas

Aula 1- Distâncias Astronômicas Aula - Distâncias Astronômicas Área 2, Aula Alexei Machao Müller, Maria e Fátima Oliveira Saraiva & Kepler e Souza Oliveira Filho Ilustração e uma meição e istância a Terra (à ireita) à Lua (à esquera),

Leia mais

MICROECONOMIA TÓPICOS DE RESOLUÇÃO

MICROECONOMIA TÓPICOS DE RESOLUÇÃO MICROECONOMIA TÓICOS DE RESOLUÇÃO 4. Aplições o Moelo e rour e Ofert (Triutção, Controle e reços, reços Não Lineres e Comério Internionl) 4.1) Consiere que o mero gsolin present urvs e prour e ofert s

Leia mais

GABARITO: QUESTÃO PARA SER ANULADA, POIS NÃO HÁ NENHUMA OPÇÃO COM ESSA RESPOSTA.

GABARITO: QUESTÃO PARA SER ANULADA, POIS NÃO HÁ NENHUMA OPÇÃO COM ESSA RESPOSTA. PROVA AMARELA Nº 0 PROVA VERDE Nº 09 Sej x um número rel tl que x + X 9. Um possível vlor de x X é. Sendo ssim, som dos lgrismos será: ) ) c) d) e) x 9 + MMC x + 9x x 9x + 0 x x 9 x x+ MMC x + 9x x 9x

Leia mais

Sônia Pinto de Carvalho

Sônia Pinto de Carvalho s Funções Hiperbólicas Sônia Pinto e Carvalho Introução Quano fiz o curso e Cálculo I fui apresentaa às funções hiperbólicas através e sua efinição eponencial. Lembro-me que, na época, achei muito engraçao

Leia mais

ISEP - LEI - AMATA - 1S. 2009/10 CÁLCULO INTEGRAL EM IR

ISEP - LEI - AMATA - 1S. 2009/10 CÁLCULO INTEGRAL EM IR ISEP - LEI - AMATA - S. 009/0 ÁLULO INTEGRAL EM IR álclo Integral em IR Primitiva No cálclo iferencial a qestão fnamental era: Daa ma fnção f(), como eterminar a sa erivaa f ()? Agora a qestão qe se coloca

Leia mais

HORÁRIO LICENCIATURAS INTEGRADAS TURMA A HORÁRIO SEGUNDA TERÇA QUARTA QUINTA SEXTA

HORÁRIO LICENCIATURAS INTEGRADAS TURMA A HORÁRIO SEGUNDA TERÇA QUARTA QUINTA SEXTA HORÁRO LCENCATURAS NTEGRADAS TURMA A HORÁRO SEGUNDA TERÇA QUARTA QUNTA SEXTA HORÁRO LCENCATURAS NTEGRADAS TURMA B HORÁRO SEGUNDA TERÇA QUARTA QUNTA SEXTA HORÁRO LCENCATURAS NTEGRADAS TURMA C HORÁRO SEGUNDA

Leia mais

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos

3. Cálculo integral em IR 3.1. Integral Indefinido 3.1.1. Definição, Propriedades e Exemplos 3. Cálculo integrl em IR 3.. Integrl Indefinido 3... Definição, Proprieddes e Exemplos A noção de integrl indefinido prece ssocid à de derivd de um função como se pode verificr prtir d su definição: Definição

Leia mais

Trigonometria - Primeira Parte

Trigonometria - Primeira Parte Cpítulo 7 Trigonometri - Primeir Prte 7 Introdução Triângulo é um polígono om ângulos internos, logo ldos Podemos lssiá-los de dus mneirs: qunto os tmnhos dos ldos: equilátero - ldos de mesmo omprimento,

Leia mais

I e II assemelham-se porque cada um explora com exclusividade a forma de linguagem que o caracteriza, a visual e a verbal, respectivamente.

I e II assemelham-se porque cada um explora com exclusividade a forma de linguagem que o caracteriza, a visual e a verbal, respectivamente. LÍNGUA PORTUGUESA. Leia atentamente a história em quarinhos e o poema abaixo transcritos. TEXTO I.. ranquia. Os Passageiros aultos poerão transportar sem o pagamento e qualquer taxa aicional até vinte

Leia mais

ANEXO II MODELO DE PROPOSTA

ANEXO II MODELO DE PROPOSTA Plnih01 ANEXO II MODELO DE PROPOSTA Lot Itm Dsrição Uni 1 2 3 4 5 Imprssão CARTAZ: Formto A4, 21x29,7 m, Ppl rilo, 120 g/m² Nº ors: 4/0 ors. Qunti Rgistrr: 6.000 Imprssão CARTAZ: Formto A4, 21x29,7 m Ppl

Leia mais

2 A trigonometria no triângulo retângulo

2 A trigonometria no triângulo retângulo 16 A trigonometri no triângulo retângulo A trigonometri foi inventd á mis de dois mil nos. El onsiste, essenilmente, em ssoir d ângulo, definido omo união de um pr de semirrets de mesm origem, não ontids

Leia mais

MATERIAL DE APOIO DE FÍSICA III ELETROMAGNETISMO 1

MATERIAL DE APOIO DE FÍSICA III ELETROMAGNETISMO 1 CAPÍTULO I: Crg Elétric MATERIAL DE APOIO DE FÍSICA III ELETROMAGNETISMO 1 ELETROMAGNETISMO CAPÍTULO I CARGA ELÉTRICA Os exercícios seguir form extríos os livros recomenos no curso (Ver Referêncis Bibliográfics

Leia mais

Sistemas Lineares Exercício de Fixação

Sistemas Lineares Exercício de Fixação Sistems Lineres Eercício de Fição Por: Griel Gutierre P Sores Instituto Federl de Educção, Ciênci e Tecnologi Prí Disciplin: Mtemátic Professor: Amrósio Elis Aluno: Mtrícul: Curso: Série: Turno: Sistems

Leia mais

Valoração de Grafos. Fluxo em Grafos. Notas. Teoria dos Grafos - BCC 204, Fluxo em Grafos. Notas. Exemplos. Fluxo em Grafos. Notas.

Valoração de Grafos. Fluxo em Grafos. Notas. Teoria dos Grafos - BCC 204, Fluxo em Grafos. Notas. Exemplos. Fluxo em Grafos. Notas. Teori o Grfo - BCC 204 Fluxo em Grfo Hrolo Gmini Sno Univerie Feerl e Ouro Preo - UFOP 19 e ril e 2011 1 / 19 Vlorção e Grfo Exemplo vlore eáio: iâni roovi que lig ie e ie é e 70 kilômero vlore inâmio:

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FUVEST 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA.

RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FUVEST 2016 - FASE 1. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. 6 ) RESOLUÇÃO DA PROVA DE MATEMÁTICA DA FUVEST 06 - FASE. POR PROFA. MARIA ANTÔNIA CONCEICÃO GOUVEIA. 0 De 869 té hoje, ocorrerm s seguintes munçs e moe no Brsil: () em 94, foi crio o cruzeiro, c cruzeiro

Leia mais

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M.

Módulo de Leis dos Senos e dos Cossenos. Leis dos Senos e dos Cossenos. 1 a série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 série E.M. Módulo de Leis dos Senos e dos Cossenos Leis dos Senos e dos Cossenos. 1 Eercícios Introdutórios Eercício 10. Três ilhs

Leia mais

Módulo III Carga Elétrica, Força e Campo Elétrico

Módulo III Carga Elétrica, Força e Campo Elétrico Móulo III Clauia Regina Campos e Carvalho Móulo III Carga létrica, orça e Campo létrico Carga létrica: Denomina-se carga elétrica a proprieae inerente a eterminaas partículas elementares, que proporciona

Leia mais

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL

COMPENSAÇÃO ANGULAR E REMOÇÃO DA COMPONENTE DE SEQÜÊNCIA ZERO NA PROTEÇÃO DIFERENCIAL SHWETZER ENGNEERNG LORTORES, OMERL LTD OMPENSÇÃO NGULR E REMOÇÃO D OMPONENTE DE SEQÜÊN ZERO N PROTEÇÃO DFERENL RFEL RDOSO ntrodução O prinípio d proteção diferenil é de que som ds orrentes que entrm n

Leia mais

MÓDULO II POTENCIAÇÃO RADICIAÇÃO

MÓDULO II POTENCIAÇÃO RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO MÓDULO II POTENCIAÇÃO E RADICIAÇÃO O ódulo II é oposto por eeríios evolvedo poteição e rdiição Estos dividido-o e dus prtes pr elhor opreesão ª PARTE: POTENCIAÇÃO DEFINIÇÃO

Leia mais

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos:

a.cosx 1) (ITA) Se P(x) é um polinômio do 5º grau que satisfaz as condições 1 = P(1) = P(2) = P(3) = P(4) = P(5) e P(6) = 0, então temos: ) (ITA) Se P(x) é um poliômio do 5º gru que stisfz s codições = P() = P() = P() = P(4) = P(5) e P(6) = 0, etão temos: ) P(0) = 4 b) P(0) = c) P(0) = 9 d) P(0) = N.D.A. ) (UFC) Sej P(x) um poliômio de gru,

Leia mais

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C.

1 As grandezas A, B e C são tais que A é diretamente proporcional a B e inversamente proporcional a C. As grndezs A, B e C são tis que A é diretmente proporcionl B e inversmente proporcionl C. Qundo B = 00 e C = 4 tem-se A = 5. Qul será o vlor de A qundo tivermos B = 0 e C = 5? B AC Temos, pelo enuncido,

Leia mais

REVISÃO ENEM-VEST 2014 MEDICINA VESPERTINO

REVISÃO ENEM-VEST 2014 MEDICINA VESPERTINO AULA 01 FUNÇÃO DO 1º GRAU Professor Mrcelo Rento 1) (UP 014) Um empres de tái cobr R$,00 bndeird e R$,00 por km roddo e outr empres cobr R$ 3,00 por km roddo e não cobr bndeird. As dus trifs podem ser

Leia mais

Leis de Newton. 1.1 Sistemas de inércia

Leis de Newton. 1.1 Sistemas de inércia Capítulo Leis e Newton. Sistemas e inércia Supomos a existência e sistemas e referência, os sistemas e inércia, nos quais as leis e Newton são válias. Um sistema e inércia é um sistema em relação ao qual

Leia mais

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação

Faculdade de saúde Pública. Universidade de São Paulo HEP-5705. Epidemiologia I. Estimando Risco e Associação 1 Fuldde de súde Públi Universidde de São Pulo HEP-5705 Epidemiologi I Estimndo Riso e Assoição 1. De 2.872 indivíduos que reeberm rdioterpi n infâni em deorrêni de presentrem o timo umentdo, 24 desenvolverm

Leia mais

Exame Nacional de 2006 1. a chamada

Exame Nacional de 2006 1. a chamada 1. Muitos os estuntes que usm mochils trnsportm irimente peso mis pr su ie. 1.1. Pr evitr lesões n colun verterl, o peso e um mochil e o o mteril que se trnsport entro el não evem ultrpssr 10% o peso o

Leia mais

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário.

Uma roda gigante tem 10m de raio e possui 12 assentos, igualmente espaçados, e gira no sentido horário. Questão PROVA FINAL DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - OUTUBRO DE. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA Um rod

Leia mais

5 Medição de distâncias e áreas na planta topográfica

5 Medição de distâncias e áreas na planta topográfica António Pestana Elementos e Topografia v1.0 Junho e 006 5 Meição e istâncias e áreas na planta topográfica 5.1 Meição e istâncias na planta topográfica Como as plantas topográficas são projecções horizontais,

Leia mais

CURSO DE MATEMÁTICA BÁSICA

CURSO DE MATEMÁTICA BÁSICA [Digite teto] CURSO DE MATEMÁTICA BÁSICA BELO HORIZONTE MG [Digite teto] CONJUNTOS NÚMERICOS. Conjunto dos números nturis Ν é o conjunto de todos os números contáveis. N { 0,,,,,, K}. Conjunto dos números

Leia mais

Simbolicamente, para. e 1. a tem-se

Simbolicamente, para. e 1. a tem-se . Logritmos Inicilmente vmos trtr dos ritmos, um ferrment crid pr uilir no desenvolvimento de cálculos e que o longo do tempo mostrou-se um modelo dequdo pr vários fenômenos ns ciêncis em gerl. Os ritmos

Leia mais

Capítulo III. Circuitos Resistivos

Capítulo III. Circuitos Resistivos Cpítulo III Ciruitos esistivos. Itrodução Neste pítulo serão estudds s leis de Kirhhoff, utilizdo-se de iruitos resistivos que são mis filmete lisdos. O estudo desss leis é plido em seguid s deduções de

Leia mais

Matemática D Extensivo V. 6

Matemática D Extensivo V. 6 Mtemátic D Extensivo V. 6 Exercícios 0) ) cm Por definição temos que digonl D vle: D = D = cm. b) 6 cm² A áre d lterl é dd pel som ds áres dos qutro ldos que compõe: =. ² =. ( cm)² = 6 cm² c) 96 cm² O

Leia mais

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada

{ 2 3k > 0. Num triângulo, a medida de um lado é diminuída de 15% e a medida da altura relativa a esse lado é aumentada MATEMÁTICA b Sbe-se que o qudrdo de um número nturl k é mior do que o seu triplo e que o quíntuplo desse número k é mior do que o seu qudrdo. Dess form, k k vle: ) 0 b) c) 6 d) 0 e) 8 k k k < 0 ou k >

Leia mais

Laboratório de Sistemas e Sinais Equações Diferenciais

Laboratório de Sistemas e Sinais Equações Diferenciais Laboratório e Sitema e Sinai Equaçõe Diferenciai Luí Cala e Oliveira Abril 2009 O objectivo ete trabalho e laboratório é o e realizar experiência com moelo e itema em tempo contínuo ecrito por equaçõe

Leia mais

Geometria Plana 04 Prof. Valdir

Geometria Plana 04 Prof. Valdir pé-vestiul e ensino médio QUILÁTS TÁVIS 1. efinição É o polígono que possui quto ldos. o nosso estudo, vmos onside pens os qudiláteos onveos. e i Sendo:,,, véties do qudiláteo; i 1, i, i 3, i 4 ângulos

Leia mais

Conceitos de Gestão de Estoques Análise Probabilística

Conceitos de Gestão de Estoques Análise Probabilística Conceitos e Gestão e Estoques Análise Probabilística Prof. Ruy Alexanre Generoso CONCEITOS BÁSICOS DE ESTOQUE Estoques: acúmulo e recursos materiais em um sistema e transformação Fase 1 estoque Fase 2

Leia mais

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL

Professor Mauricio Lutz FUNÇÃO EXPONENCIAL Professor Muricio Lutz REVISÃO SOBRE POTENCIAÇÃO ) Expoete iteiro positivo FUNÇÃO EPONENCIAL Se é u uero rel e é iteiro, positivo, diferete de zero e ior que u, expressão represet o produto de ftores,

Leia mais

Desvio do comportamento ideal com aumento da concentração de soluto

Desvio do comportamento ideal com aumento da concentração de soluto Soluções reis: tividdes Nenhum solução rel é idel Desvio do comportmento idel com umento d concentrção de soluto O termo tividde ( J ) descreve o comportmento de um solução fstd d condição idel. Descreve

Leia mais

Vestibular Comentado - UVA/2011.1

Vestibular Comentado - UVA/2011.1 estiulr Comentdo - UA/0. Conecimentos Específicos MATEMÁTICA Comentários: Profs. Dewne, Mrcos Aurélio, Elino Bezerr. 0. Sejm A e B conjuntos. Dds s sentençs ( I ) A ( A B ) = A ( II ) A = A, somente qundo

Leia mais

Intervalo Encapsulador para Probabilidades Reais de Variáveis Aleatórias Contínuas Unidimensionais

Intervalo Encapsulador para Probabilidades Reais de Variáveis Aleatórias Contínuas Unidimensionais Intervlo Enpsulor pr Proilies Reis e Vriáveis Aletóris Contínus Uniimensionis Mri s Grçs os Sntos Doutoro em Mtemáti Computionl UFPE Ru Proº Luiz Freire s/n Cie Universitári 50740-540 Reie Pe E-mil: tgl60@yhooomr

Leia mais

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b]

, então ela é integrável em [ a, b] Interpretação geométrica: seja contínua e positiva em um intervalo [ a, b] Interl Deinid Se é um unção de, então su interl deinid é um interl restrit à vlores em um intervlo especíico, dimos, O resultdo é um número que depende pens de e, e não de Vejmos deinição: Deinição: Sej

Leia mais

ONDAS ELÁSTICAS E ELECTROMAGNÉTICAS EM DOMÍNIOS EXTERIORES : PROPRIEDADES ASSINTÓTICAS

ONDAS ELÁSTICAS E ELECTROMAGNÉTICAS EM DOMÍNIOS EXTERIORES : PROPRIEDADES ASSINTÓTICAS ONDAS ELÁSTICAS E ELECTROMAGNÉTICAS EM DOMÍNIOS EXTERIORES : PROPRIEDADES ASSINTÓTICAS por MARCIO VIOLANTE FERREIRA IM-UFRJ 5 ONDAS ELÁSTICAS E ELECTROMAGNÉTICAS EM DOMÍNIOS EXTERIORES: PROPRIEDADES ASSINTÓTICAS

Leia mais

Resumos do VII Congresso Brasileiro de Agroecologia Fortaleza/CE 12 a 16/12/2011

Resumos do VII Congresso Brasileiro de Agroecologia Fortaleza/CE 12 a 16/12/2011 10642 - Proução agroecológica e muas e pepino com substratos alternativos Prouction agroecological of cucumis changes with alternative substrates MARTINS, Williane Maria e Oliveira 1 ; MARTINS, Wilton

Leia mais

OBI2015 Caderno de Soluções

OBI2015 Caderno de Soluções SOCIEDADE BRASILEIRA DE COMPUTAÇÃO OLIMPÍADA BRASILEIRA DE INFORMÁTICA OBI2015 Cerno e Soluções Molie Iniição Nível 1, Fse 1 8 e mio e 2015 A PROVA TEM DURAÇÃO DE 2 HORAS Promoção: Apoio: v1.0 Olimpí Brsileir

Leia mais

Cálculo Diferencial e Integral - Notas de Aula. Márcia Federson e Gabriela Planas

Cálculo Diferencial e Integral - Notas de Aula. Márcia Federson e Gabriela Planas Cálculo Diferencil e Integrl - Nots de Aul Márci Federson e Gbriel Plns de mrço de 03 Sumário Os Números Reis. Os Números Rcionis................................ Os Números Reis.................................

Leia mais

Revisão para o Vestibular do Instituto Militar de Engenharia www.rumoaoita.com & Sistema Elite de Ensino

Revisão para o Vestibular do Instituto Militar de Engenharia www.rumoaoita.com & Sistema Elite de Ensino Revisão pr o Vestibulr do Istituto Militr de Egehri wwwrumooitcom Sistem Elite de Esio CÔNICAS (IME-8/8) Determie equção de um círculo que tgeci hipérbole potos em que est hipérbole é ecotrd pel ret os

Leia mais

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9

EQUAÇÃO DO 2 GRAU ( ) Matemática. a, b são os coeficientes respectivamente de e x ; c é o termo independente. Exemplo: x é uma equação do 2 grau = 9 EQUAÇÃO DO GRAU DEFINIÇÃO Ddos, b, c R com 0, chmmos equção do gru tod equção que pode ser colocd n form + bx + c, onde :, b são os coeficientes respectivmente de e x ; c é o termo independente x x x é

Leia mais

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos?

Calculando volumes. Para pensar. Para construir um cubo cuja aresta seja o dobro de a, de quantos cubos de aresta a precisaremos? A UA UL LA 58 Clculndo volumes Pr pensr l Considere um cubo de rest : Pr construir um cubo cuj rest sej o dobro de, de quntos cubos de rest precisremos? l Pegue um cix de fósforos e um cix de sptos. Considerndo

Leia mais

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO

INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA LISTA 2 RADICIAÇÃO INSTITUTO DE APLICAÇÃO FERNANDO RODRIGUES DA SILVEIRA Professores: Griel Brião / Mrcello Amdeo Aluo(: Turm: ESTUDO DOS RADICAIS LISTA RADICIAÇÃO Deomi-se riz de ídice de um úmero rel, o úmero rel tl que

Leia mais

a) 330 m/s b) 333 m/s c) 336 m/s d) 340 m/s e) 345 m/s

a) 330 m/s b) 333 m/s c) 336 m/s d) 340 m/s e) 345 m/s Física Lista e Exercícios Nível ITA 1. Qual os conjuntos a seguir contém somente granezas cujas meias estão corretamente expressas em "uniaes SI" (Sistema Internacional e Uniaes)? a) vinte graus Celsius,

Leia mais

EDITORIAL MODULO - WLADIMIR

EDITORIAL MODULO - WLADIMIR 1. Um os granes problemas ambientais ecorrentes o aumento a proução inustrial munial é o aumento a poluição atmosférica. A fumaça, resultante a queima e combustíveis fósseis como carvão ou óleo, carrega

Leia mais

O atrito de rolamento.

O atrito de rolamento. engengens. Obseve-se que s foçs de tito de olmento epesentds n figu (F e f ) têm sentidos opostos. (Sugeimos que voê, ntes de possegui, poue i um modelo que pemit expli s foçs de tito de olmento). "Rffiniet

Leia mais

Matemática Fascículo 03 Álvaro Zimmermann Aranha

Matemática Fascículo 03 Álvaro Zimmermann Aranha Mtemátic Fscículo 03 Álvro Zimmerm Arh Ídice Progressão Aritmétic e Geométric Resumo Teórico... Exercícios...3 Dics...4 Resoluções...5 Progressão Aritmétic e Geométric Resumo teórico Progressão Aritmétic

Leia mais