ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico)

Tamanho: px
Começar a partir da página:

Download "ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico)"

Transcrição

1 ESCOAMENTOS ARIÁEIS EM PRESSÃO (Choque idráulico Méodo de Allievi Méodo de Allievi 1

2 8-5-3 Méodo de Allievi Choque idráulico Equções Dierenciis: Equilíbrio Dinâmico Conservção d Mss riáveis dependenes: ( [ou U U (] ( [ou p p (] 1 DS g S S λ sen θ S g S S

3 Choque idráulico Resolver o problem signiic conhecer o compormeno de: ( [ou U U (] e ( [ou p p (] em unção ds vriáveis independenes e inegrr s equções dierenciis endo em con s condições roneir roneirs s dus eremiddes d condu: e L condições roneir conhecer o compormeno ds vriáveis e ou um relção enre ess Méodo de Allievi 3

4 Condições roneir conhecer o compormeno ds vriáveis e/ou ou ( ou ( pr e/ou L conhecer um relção enre s vriáveis e ϕ ( pr e/ou L Méodo de Allievi 4

5 Condu grvíic álvul L Condu elevóri L Bomb B L Bomb B Méodo de Allievi 5

6 Méodos numéricos de inegrção: méodo de Allievi méodo ds dierençs inis méodo ds crcerísics méodo dos elemenos inios Os méodos numéricos crcerizmse pel deerminção de e num conjuno discreo de secções e insnes emporis Méodo de Allievi 6

7 Méodo de Allievi Inroduzindo lgums simpliicções dmiir condu horizonl θ o desprezr s perds de crg λ desprezr os ermos convecivos: S e obém-se um versão mis simples ds equções dierenciis equilíbrio dinâmico 1 S S g conservção d mss (ou eq. con. g S Méodo de Allievi 7

8 Mnipulndo dequdmene ess equções dierenciis dmiindo que e são unções d clsse C obêm-se novs equções dierenciis de ª ordem 1 S S que são do ipo ds equções ds cords vibrnes Méodo de Allievi 8

9 8-5-3 Méodo de Allievi 9 Ess equções dierenciis êm como inegrl gerl s Equções de Allievi equivlenes [ ] ( ( ( ( ( ( gs gs ( (

10 onde s unções ( e ( êm s dimensões de um lur (de colun de águ; são inerpreds como onds de pressão indeormáveis R ou B : válvul B: bomb elevóri R: reservório Méodo de Allievi 1

11 Admiir que o observdor se desloc o longo d condu lendo sempre o mesmo vlor de ( ( Conclusão: consne consne d d d d o observdor em que se deslocr com um velocidde igul à celeridde ( no senido posiivo ie de ou B pr R R d d ou B : válvul B: bomb elevóri R: reservório Méodo de Allievi 11

12 Admiir que o observdor se desloc o longo d condu lendo sempre o mesmo vlor de ( ( Conclusão: o observdor em que se deslocr com um velocidde igul à celeridde ( no senido negivo ie de R pr ou B consne consne d d d d R d d ou B : válvul B: bomb elevóri R: reservório Méodo de Allievi 1

13 unção (: ( vlor de n secção d condu no insne igul o vlor de n secção ( ou B no insne em que priu de ou B R ou B : válvul B: bomb elevóri R: reservório o quociene / é o empo que ond demor percorrer disânci enre origem ( e secção Méodo de Allievi 13

14 unção (: ( vlor de n secção d condu no insne igul o vlor de n secção ( ou B no insne em que cheg ou B R ou B : válvul B: bomb elevóri R: reservório o quociene / é o empo que ond demor percorrer disânci enre secção e origem ( Méodo de Allievi 14

15 8-5-3 Méodo de Allievi 15 Sisem de equções (4: No: s equções em l são s Condições roneir Incógnis (4:?? ( ( gs? (? (? (? ( Comenário: pr deerminr os vlores de ( e ( é necessário clculr os vlores de ( e (

16 Condição roneir no Reservório crg hidráulic é consne no reservório ( L logo pelo que ( L L ( L L L L sendo es epressão válid pr qulquer insne pode subrir-se mesm qunidde os rgumenos ds unções e L ( Méodo de Allievi 16

17 endo em con deinição de se (µ µ L (µ: empo que um ond demor percorrer condu nos dois senidos id e vol obém-se Condição roneir no Reservório ( ( µ Comenário: n secção o vlor d ond que cheg é simérico do vlor d ond que priu um se (µ nes R ou B Méodo de Allievi 17

18 Condição roneir n álvul (condus grvíics CS g ( Z válvul ou B Z válvul B CS g CS B ou T T Méodo de Allievi 18

19 Sisem de equções n secção d válvul ( com roc de sinl n ª equção pr se rblhr com em senido oposo dmiindo que Z R ( ( ( gs ( [ ( ( ] ( ( µ ( B( ( Méodo de Allievi 19

20 Reormulndo o sisem de equções obêm-se 4 epressões que permiem resolver o problem n secção d válvul: b c d ( ( ( ( [ ( ] ( ( ( µ ( gs B [ B( ] gs ( ( B gs gs ( Méodo de Allievi

21 B B i preencher bel de cordo com seguine sequênci: B( colun epressão c colun 3 epressão d colun 4 epressão b colun 5 epressão colun 6 endo em con que ( ( endendo à equção c pr µ Méodo de Allievi 1

ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico)

ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico) ESOMENTOS VIÁVEIS EM ESSÃO (hoque idráulico) Méodo das aracerísicas -6-3 Méodo das aracerísicas -6-3 Méodo das aracerísicas hoque idráulico Equações Diferenciais: Equilíbrio Dinâmico onservação da Massa

Leia mais

3. Equações diferenciais parciais 32

3. Equações diferenciais parciais 32 . Eqções diferenciis prciis.. Definição de eqção diferencil prcil Definição: Chm-se eqção diferencil prcil m eqção qe coném m o mis fnções desconhecids de ds o mis vriáveis e s ss derivds prciis em relção

Leia mais

Física A Superintensivo

Física A Superintensivo Físic A Superinensivo Exercícios ) B ). Correo.. Incorreo. o movimeno uniforme, velocidde é consne. 4. Incorreo. 8. Incorreo. A velocidde pode ser negiv. 6. Incorre. Somene velocidde é consne. 3) 6. Incorre.

Leia mais

8 GABARITO 1 1 O DIA PASES 1 a ETAPA TRIÊNIO FÍSICA QUESTÕES DE 11 A 20

8 GABARITO 1 1 O DIA PASES 1 a ETAPA TRIÊNIO FÍSICA QUESTÕES DE 11 A 20 8 GABARITO 1 1 O DIA PASES 1 ETAPA TRIÊNIO 24-26 FÍSICA QUESTÕES DE 11 A 2 11. As experiêncis de Glileu esbelecerm s crcerísics fundmenis do moimeno de um corpo solo ericlmene n usênci de rio com o r.

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO Departamento de Engenharia Mecânica SCOLA POLITÉCNICA DA UNIVSIDAD D SÃO PAULO Deprmeno de ngenhri Mecânic PM-50MCÂNICA DOS SÓLIDOS II Profs.: Celso P. Pesce e. mos Jr. Prov /0/0 Durção: 00 minuos Quesão (5,0 ponos): A figur io ilusr um

Leia mais

Capítulo 2 Movimento Retilíneo

Capítulo 2 Movimento Retilíneo Cpíulo Moimeno Reilíneo. Deslocmeno, empo e elocidde médi Eemplo: Descreer o moimeno de um crro que nd em linh re Anes de mis nd, emos que: - Modelr o crro como um prícul - Definir um referencil: eio oriendo

Leia mais

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA Universidde Federl de Viços DEPARTAMENTO DE MATEMÁTICA MAT - Cálculo Dif e In I PRIMEIRA LISTAA Memáic básic Professors: Gbriel e Crin Simplifique: ) b ) 9 c ) d ) ( 9) e ) 79 f ) g ) ) ) i j ) Verddeiro

Leia mais

Assíntotas verticais. lim f lim lim. x x x. x 2 x 2. e e e e e. lim lim

Assíntotas verticais. lim f lim lim. x x x. x 2 x 2. e e e e e. lim lim 1. 1.1. Assínos vericis 0 0 1 ) lim f lim lim 4 6 1 i 6 1 1 6 14 i) é riz dos polinómios e 4 6 1. Uilizndo regr de Ruffini pr os decompor, conclui-se que: 1 e que 4 6 1 1 6 e e e e e lim f lim 0 e e 1

Leia mais

Matrizes Resolução de sistemas de equações lineares por eliminação Gauss e Gauss-Jordan

Matrizes Resolução de sistemas de equações lineares por eliminação Gauss e Gauss-Jordan No epliciv grdeço os professores João lves José Lís Fchd mrino Lere Roger Picken e Pedro Snos qe me fclrm mvelmene eercícios d s ori e recolhs de emes d cdeir. revemene (ind ese no) serão crescends solções

Leia mais

por 04- Calcule o valor das somas algébricas abaixo. Não esqueça de simplificar as respostas. + + x 3x x

por 04- Calcule o valor das somas algébricas abaixo. Não esqueça de simplificar as respostas. + + x 3x x PROFESSOR: EQUIPE DE MATEMÁTICA BANCO DE QUESTÕES - ÁLGEBRA - 8º ANO - ENSINO FUNDAMENTAL 0- Se A e B 8 0 6, qul o vlor de A : B? 0- Qul é o resuldo d divisão de 5 6 por 7? 0- Simplifique s frções lgébrics

Leia mais

O T E O R E M A F U N D A M E N TA L D O C Á L C U L O. Prof. Benito Frazão Pires

O T E O R E M A F U N D A M E N TA L D O C Á L C U L O. Prof. Benito Frazão Pires 4 O T E O R E M A F U N D A M E N TA L D O C Á L C U L O Prof. Benio Frzão Pires Conforme foi viso n Aul, se f : [, b] R for conínu, enão inegrl b f() eisirá e será igul à áre líqui (conbilizno o sinl)

Leia mais

6 Cálculo Integral (Soluções)

6 Cálculo Integral (Soluções) 6 Cálculo Inegrl (Soluções). () Sej d {,..., n } um decomposição de [, ]. Podemos ssumir que d (cso conrário, om-se d d {}, e em-se S d ( f ) S d ( f ), s d ( f ) s d ( f )). Sej k, pr lgum k {,..., n

Leia mais

Física I FEP111 ( )

Física I FEP111 ( ) Físic I FEP 4345) º Semesre de 3 Insiuo de Físic Uniersidde de São Pulo Professor: Vldir Guimrães E-mil: ldirg@if.usp.br Fone: 39.74 4 e 5 de goso Moimeno Unidimensionl Noção cienífic Vmos conencionr escreer

Leia mais

Lista de Exercícios 4 Cinemática

Lista de Exercícios 4 Cinemática Lis de Eercícios 4 Cinemáic. Fís1 633303 04/1 G.1 E.4 p. 14 IF UFRJ 2004/1 Físic 1 IFA (prof. Mr) 1. Um objeo em elocidde ~ ± consne. No insne ± = 0, o eor posição do objeo é ~r ±. Escre equção que descree

Leia mais

Adriano Pedreira Cattai. Universidade Federal da Bahia UFBA Semestre

Adriano Pedreira Cattai.   Universidade Federal da Bahia UFBA Semestre Cálculo II A, MAT Adrino Pedreir Ci hp://www.lunospgm.uf.r/drinoci/ Universidde Federl d Bhi UFBA Semesre 6. Inrodução No Teorem Fundmenl do Cálculo TFC, os ies de inegrção, e em, são números reis e f

Leia mais

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO. Departamento de Engenharia Mecânica PME MECÂNIC B ª Pov 3/5/6 Dução minuos (Não é pemiido o uso de clculdos). B C D 3 ª Quesão (3,5 ponos) fiu mos um disco homoêneo, de mss m e io, que i livemene em ono de seu ceno fixo com velocidde nul

Leia mais

Torção. Tensões de Cisalhamento

Torção. Tensões de Cisalhamento orção O esuo ese cpíulo será iviio em us pres: 1) orção e brrs circulres ) orção e brrs não circulres. OÇÃO E BS CICULES Sej um brr circulr com iâmero e comprimeno., solici por um momeno e orção, como

Leia mais

CAPÍTULO EXERCÍCIOS pg. 127

CAPÍTULO EXERCÍCIOS pg. 127 CAPÍTULO. EXERCÍCIOS pg.. Deerinr equção d re ngene às seguines curvs, nos ponos indicdos. Esboçr o gráico e cd cso..,,, ; R.. As igurs que segue osr s res ngenes pr os ponos e. Coo o vlor de é genérico

Leia mais

Matemática para Economia Les 201

Matemática para Economia Les 201 Mtemátic pr Economi Les uls 8_9 Integris Márci znh Ferrz Dis de Mores _//6 Integris s operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição operção invers d dierencição

Leia mais

coeficiente de atrito entre o móvel e o plano: µ = 2 3 ; inclinação do plano: θ = 45º. figura 1

coeficiente de atrito entre o móvel e o plano: µ = 2 3 ; inclinação do plano: θ = 45º. figura 1 wwwfisicexecombr É ddo um plno áspero inclindo de 45º em relção o horizone, do qul AB é um re de mior declie Um corpo é irdo no senido scendene, enr em repouso em B reornndo o pono A Admiindo-se que o

Leia mais

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace

Eletromagnetismo I. Eletromagnetismo I - Eletrostática. Equação de Laplace (Capítulo 6 Páginas 119 a 123) Eq. de Laplace Eletromgnetismo I Prof. Dniel Orquiz Eletromgnetismo I Prof. Dniel Orquiz de Crvlo Equção de Lplce (Cpítulo 6 Págins 119 123) Eq. de Lplce Solução numéric d Eq. de Lplce Eletromgnetismo I 2 Prof. Dniel

Leia mais

MODELOS DE EQUILÍBRIO DE FLUXO EM REDES. Prof. Sérgio Mayerle Depto. Eng. Produção e Sistemas UFSC/CTC

MODELOS DE EQUILÍBRIO DE FLUXO EM REDES. Prof. Sérgio Mayerle Depto. Eng. Produção e Sistemas UFSC/CTC MODELOS DE EQUILÍBRIO DE FLUXO EM REDES Pro. Sérgio Myerle Depo. Eng. Produção e Sisems UFSC/CTC Deinição Bási A rede é deinid por um gro ( N A onde: { } N...n G é um onjuno de nós { m} A... é um onjuno

Leia mais

5. 5. RESPOSTA A UMA UMA ACÇÃO DINÂMICA QUALQUER

5. 5. RESPOSTA A UMA UMA ACÇÃO DINÂMICA QUALQUER 5. 5. RESPOSTA A UMA UMA ACÇÃO DINÂMICA QUALQUER Em mios csos cção inâmic não é hrmónic. Veremos qe respos poe ser obi em ermos e m inegrl, qe nos csos em qe cção é simples, poe ser clclo nliicmene e qe

Leia mais

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4 A eori ds mrizes em cd vez mis plicções em áres como Economi, Engenhris, Memáic, Físic, enre ours. Vejmos um exemplo de mriz: A bel seguir represen s nos de rês lunos do primeiro semesre de um curso: Físic

Leia mais

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i

Integral. (1) Queremos calcular o valor médio da temperatura ao longo do dia. O valor. a i Integrl Noção de Integrl. Integrl é o nálogo pr unções d noção de som. Ddos n números 1, 2,..., n, podemos tomr su som 1 + 2 +... + n = i. O integrl de = té = b dum unção contínu é um mneir de somr todos

Leia mais

A Previsão com o Método de Winter 1

A Previsão com o Método de Winter 1 A Previsão com o Méodo de Winer. Inrodução O méodo de Winer é um méodo de morecimeno exponencil que lev em con os componenes de szonlidde d série de ddos observdos. O méodo se bsei principlmene no modelo

Leia mais

ÁLGEBRA LINEAR - 1. MATRIZES

ÁLGEBRA LINEAR - 1. MATRIZES ÁLGEBRA LINEAR - 1. MATRIZES 1. Conceios Básicos Definição: Chmmos de mriz um el de elemenos disposos em linhs e coluns. Por exemplo, o recolhermos os ddos populção, áre e disânci d cpil referenes à quros

Leia mais

ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico)

ESCOAMENTOS VARIÁVEIS EM PRESSÃO (Choque Hidráulico) ECOAMENTO VARIÁVEI EM PREÃO (Choque Hidráulico) Equações Fundamentais 26-5-2003 Equações Fundamentais 1 Escoamentos variáveis em pressão: regime gradualmente variado (ou quase-permanente) ou regime rapidamente

Leia mais

Lista de Exercícios Funções Exponenciais

Lista de Exercícios Funções Exponenciais Lis de Eercícios Funções Eponenciis Eercícios Resolvidos Os eercícios form seleciondos visndo presenr écnics de soluções diferencids ) Resolv s equções: [ ] ) ( ) b) c) ( ) 6 ) Clcule s rízes: 8 ) 96 b)

Leia mais

Conversão de Energia I

Conversão de Energia I Deprtmento de Engenhri Elétric Conversão de Energi I Aul 5.2 Máquins de Corrente Contínu Prof. Clodomiro Unsihuy Vil Bibliogrfi FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: com Introdução

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prov Escrit de MATEMÁTICA A - o Ano 0 - Fse Propost de resolução GRUPO I. Como comissão deve ter etmente mulheres, num totl de pessos, será constituíd por um único homem. Logo, como eistem 6 homens no

Leia mais

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof.

CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS. Prof. CENTRO DE CIÊNCIAS E TECNOLOGIA AGROALIMENTAR UNIDADE ACADÊMICA DE TECNOLOGIA DE ALIMENTOS DISCIPLINA: FÍSICA I INFORMAÇÕES GERAIS Prof. Bruno Fris Arquivo em nexo Conteúdo Progrmático Biliogrfi HALLIDAY,

Leia mais

MECÂNICA MOVIMENTOS MOVIMENTO UNIFORME AULA 2. S t 1- INTRODUÇÃO

MECÂNICA MOVIMENTOS MOVIMENTO UNIFORME AULA 2. S t 1- INTRODUÇÃO UL MECÂIC MOIMETO 1 ITRODUÇÃO Esudremos seguir os movimenos uniforme e uniformemene vrido. eremos sus denições, equções, represenções grács e plicções. Fremos o esudo de cd movimeno seprdmene. MOIMETO

Leia mais

Usando qualquer um dos métodos de primitivação indicados anteriormente, determine uma primitiva de cada uma das seguintes funções. e x e 2x + 2e x + 1

Usando qualquer um dos métodos de primitivação indicados anteriormente, determine uma primitiva de cada uma das seguintes funções. e x e 2x + 2e x + 1 Instituto Superior Técnico Deprtmento de Mtemátic Secção de Álgebr e Análise CÁLCULO DIFERENCIAL E INTEGRAL I LEIC-ALAMEDA o SEM. 7/8 6 FICHA DE EXERCÍCIOS I. Treino Complementr de Primitivs. CÁLCULO INTEGRAL

Leia mais

1. Cinemática. Cinemática Escalar FIQUE LIGADO FIQUE LIGADO

1. Cinemática. Cinemática Escalar FIQUE LIGADO FIQUE LIGADO 1. Cinemáic É o cmpo d físic que esud os movimenos relizdos pelos corpos. Cinemáic Esclr Pono Meril É um corpo cujs dimensões podem ser desprezds, levndo-se em con um referencil. Ex.: Um pesso no desero.

Leia mais

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO

EEL-001 CIRCUITOS ELÉTRICOS ENGENHARIA DA COMPUTAÇÃO EE00 CCUTOS EÉTCOS 008 UNFE,VFS, ev. BDB EE00 CCUTOS EÉTCOS ENGENH D COMPUTÇÃO CPÍTUO TEOEMS P CCUTOS NTODUÇÃO Nese cpíulo serão orddos os principis eorems que permiem oer um circuio equivlene prir de

Leia mais

Formulário Equações de Maxwell:

Formulário Equações de Maxwell: 3 Prov Eletromgnetismo I Diurno Formulário Equções de Mxwell: D ρ, E B B 0, H J + D Condições de contorno: D σ l, E 0 B 0, H K l ˆn Equção d continuidde: ρ + J 0 Meios lineres e meios condutores: D ɛ E,

Leia mais

Conversão de Energia II

Conversão de Energia II Deprtnto de Engenhri Elétric Aul 2.3 Máquins Rottivs Prof. João Américo Vilel Bibliogrfi FITZGERALD, A. E., KINGSLEY Jr. C. E UMANS, S. D. Máquins Elétrics: com Introdução à Eletrônic De Potênci. 7ª Edição,

Leia mais

Introdução. Séries Temporais. Nuno Fidalgo. Metodologia clássica popular para a previsão a curto prazo.

Introdução. Séries Temporais. Nuno Fidalgo. Metodologia clássica popular para a previsão a curto prazo. Séries Temporis Nuno Fidlgo Inrodução Meodologi clássic populr pr previsão curo przo. 6000 5000 Consumos de gás em Lisbo Previsão dos fuuros vlores d série emporl com bse nos vlores pssdos d própri vriável

Leia mais

Resolução do exercício proposto na experiência da associação em paralelo das bombas hidráulicas

Resolução do exercício proposto na experiência da associação em paralelo das bombas hidráulicas Resolução do exercício proposto n experiênci d ssocição em prlelo ds bombs hidráulics. equção d CCI pr ssocição em prlelo, onde tudo o que or considerdo deve ser devidmente justiicdo. ( γ Q ) + entrm γ

Leia mais

Figura 3.17: circuito do multivibrador astável com integrador. -20V 0s 100us 200us 300us 400us 500us V(C8: 1) V(U9B: OUT) Ti me

Figura 3.17: circuito do multivibrador astável com integrador. -20V 0s 100us 200us 300us 400us 500us V(C8: 1) V(U9B: OUT) Ti me ... Mulivirdor Asável com Inegrdor Análise gráfic: Figur.7: circuio do mulivirdor sável com inegrdor. - - s us us us 4us 5us (8: (U9B: OU i me Figur.8: Gráfico ds ensões de síd principl (qudrd e do inegrdor

Leia mais

MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - ax b, sabendo que:

MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO 1º GRAU - ax b, sabendo que: MATEMÁTICA PROFº ADRIANO PAULO LISTA DE FUNÇÃO POLINOMIAL DO º GRAU - Dd unção = +, determine Dd unção = +, determine tl que = Escrev unção im, sendo que: = e - = - - = e = c = e - = - A ret, gráico de

Leia mais

Profª Cristiane Guedes DERIVADA. Cristianeguedes.pro.br/cefet

Profª Cristiane Guedes DERIVADA. Cristianeguedes.pro.br/cefet Proª Cristine Guedes 1 DERIVADA Cristineguedes.pro.br/ceet Ret Tngente Como determinr inclinção d ret tngente curv y no ponto P,? 0 0 Proª Cristine Guedes Pr responder ess pergunt considermos um ponto

Leia mais

Lista de Exercícios de Física II - Gabarito,

Lista de Exercícios de Física II - Gabarito, List de Exercícios de Físic II - Gbrito, 2015-1 Murício Hippert 18 de bril de 2015 1 Questões pr P1 Questão 1. Se o bloco sequer encost no líquido, leitur n blnç corresponde o peso do líquido e cord sustent

Leia mais

Aula de solução de problemas: cinemática em 1 e 2 dimensões

Aula de solução de problemas: cinemática em 1 e 2 dimensões Aul de solução de problems: cinemátic em 1 e dimensões Crlos Mciel O. Bstos, Edurdo R. Azevedo FCM 01 - Físic Gerl pr Químicos 1. Velocidde instntâne 1 A posição de um corpo oscil pendurdo por um mol é

Leia mais

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ

( ) 2. Eletromagnetismo I Prof. Dr. Cláudio S. Sartori - CAPÍTULO VIII Exercícios 1 ˆ ˆ ( ) Idl a R. Chamando de: x y du. tg θ Elromgnismo Prof. Dr. Cláudio S. Srori - CPÍTUO V Ercícios Emplo Cálculo do cmpo mgnéico d um fio d comprimno prcorrido por um corrn léric num pono P(,,. dl - r + + r dl d P(,, r r + + ( ( r r + + r r

Leia mais

Análise de secções transversais de vigas mistas

Análise de secções transversais de vigas mistas Análise de secções trnsversis de vigs mists Análise plástic clsse 1 e 2 Análise elástic qulquer tipo de clsse Análise plástic Hipóteses de cálculo (gerl) Consider-se que existe intercção totl entre os

Leia mais

2 Formulação do Problema

2 Formulação do Problema 30 Formulação do roblema.1. Dedução da Equação de Movimeno de uma iga sobre Fundação Elásica. Seja a porção de viga infinia de seção ransversal consane mosrada na Figura.1 apoiada sobre uma base elásica

Leia mais

4.2. Veio Cilíndrico de Secção Circular

4.2. Veio Cilíndrico de Secção Circular Cpíulo IV Torção de Peçs Lineres 1 CPÍTULO IV TORÇÃO DE PEÇS LINERES.1. Inrodução. sorção ou rnsmissão de esforços de orção: o Veios ou árvores de rnsmissão o Brrs de orção; ols; Esruurs uulres (veículos

Leia mais

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x).

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x). Eensivo V. Eercícios ) D y = log ( + ) Pr = : y = log ( + ) y = log y = Noe que o gráfico pss pel origem. Porno, únic lerniv possível é D. ) M + = log B B M + = log B B M + = log + log B B Como M = log

Leia mais

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por:

FUNÇÕES EM IR n. . O conjunto D é o domínio de f. O contradomínio de f consiste em todos os números. a função de domínio D dada por: FUNÇÕES EM IR n Deinição: Sej D um conjunto de pres ordendos de números reis Um unção de dus vriáveis é um correspondênci que ssoci cd pr em D ectmente um número rel denotdo por O conjunto D é o domínio

Leia mais

Programação Baseada em Modelos Exercícios Recomendados Bibliografia Recomendada

Programação Baseada em Modelos Exercícios Recomendados Bibliografia Recomendada SEM317 Aul 9 Plnejmeno de Trjeóris em Mnipuldores Robóicos Pro. Dr. Mrcelo Becker SEM - EESC - USP Sumário d Aul Inrodução Progrmção Explíci Espço ds Juns Espço Cresino Observções Progrmção Bsed em Modelos

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008

Escola Politécnica FGE GABARITO DA P2 15 de maio de 2008 P Físic Escol Politécnic - 008 FGE 03 - GABARTO DA P 5 de mio de 008 Questão Um cpcitor com plcs prlels de áre A, é preenchido com dielétricos com constntes dielétrics κ e κ, conforme mostr figur. σ σ

Leia mais

Exemplos relativos à Dinâmica (sem rolamento)

Exemplos relativos à Dinâmica (sem rolamento) Exeplos reltivos à Dinâic (se rolento) A resultnte ds forçs que ctu no corpo é iul o produto d ss pel celerção por ele dquirid: totl Cd corpo deve ser trtdo individulente, escrevendo u equção vectoril

Leia mais

Noção intuitiva de limite

Noção intuitiva de limite Noção intuitiv de ite Qundo se proim de 1, y se proim de 3, isto é: 3 y + 1 1,5 4 1,3 3,6 1,1 3, 1,05 3,1 1,0 3,04 1,01 3,0 De um modo gerl: Eemplo de um ite básico Qundo tende um vlor determindo, o ite

Leia mais

a outro tanque de altura H (ambos os tanques abertos à pressão atmosférica p

a outro tanque de altura H (ambos os tanques abertos à pressão atmosférica p ABORATÓRIO E AIAÇÕES E MEÂNIA OS FUIOS (ME 33) NOÇÕES E MEÂNIA OS FUIOS (ME 333) Gbrito Terceir rov - 05. (3 ontos) No sistem d figur, bomb deve elevr águ de um tnque grnde com ltur H outro tnque de ltur

Leia mais

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA.. b) a circunferência x y z

INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA.. b) a circunferência x y z INSTITTO DE MATEMÁTICA DA FBA DEPARTAMENTO DE MATEMÁTICA A LISTA DE CÁLCLO IV SEMESTRE 00. (Função vetoril de um vriável, curv em R n. Integrl dupl e plicções) ) Determine um função vetoril F: I R R tl

Leia mais

1 Introdução ao estudo dos movimentos. 2 Movimento Uniformemente Variado. 3 Aceleração Escalar. 4 Gráfico a X t. 5 Classificação

1 Introdução ao estudo dos movimentos. 2 Movimento Uniformemente Variado. 3 Aceleração Escalar. 4 Gráfico a X t. 5 Classificação 1 Introdução o estudo dos movimentos Movimento Uniformemente Vrido 3 Acelerção Esclr 4 Gráfico X t 5 Clssificção 6 Equção d Velocidde 7 Gráfico v X t 8 Equção d Velocidde Médi (MUV) 9 Função Horári dos

Leia mais

Métodos de Modelagem Numérica

Métodos de Modelagem Numérica Disciplina: Méodos de Modelagem Numérica Enilson Palmeira Cavalcani enilson@dca.ucg.edu.br Universidade Federal de Campina Grande Cenro de Tecnologia e Recursos Naurais Unidade Acadêmica de Ciências Amoséricas

Leia mais

MATEMÁTICA II - Engenharias/Itatiba. 1 o Semestre de 2009 Prof. Maurício Fabbri RELAÇÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO.

MATEMÁTICA II - Engenharias/Itatiba. 1 o Semestre de 2009 Prof. Maurício Fabbri RELAÇÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO. MTEMÁTIC II - Engenhris/Ii o Semesre de 09 Prof. Muríio Fri 04-9 Série de Exeríios RELÇÕES TRIGONOMÉTRICS NO TRIÂNGULO RETÂNGULO sen = os = n = se = os os e = sen sen n = os o n = n ÂNGULOS NOTÁVEIS grus

Leia mais

Máquinas Eléctricas I Transformadores 14-11-2002. Transformadores

Máquinas Eléctricas I Transformadores 14-11-2002. Transformadores Máquins Elécrics Trnsformdores 4-- Trnsformdores Os rnsformdores são máquins elécrics esáics que elevm ou bixm um deermind ensão lernd.. rincípio de funcionmeno O funcionmeno do rnsformdor bsei-se nos

Leia mais

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}.

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}. Mrzes Mrz rel Defnção Sem m e n dos números neros Um mrz rel de ordem m n é um conuno de mn números res, dsrbuídos em m lnhs e n coluns, formndo um bel que se ndc em gerl por 9 Eemplo: A mrz A é um mrz

Leia mais

Teorema de Green no Plano

Teorema de Green no Plano Instituto Superior Técnico eprtmento de Mtemátic Secção de Álgebr e Análise Prof. Gbriel Pires Teorem de Green no Plno O teorem de Green permite relcionr o integrl de linh o longo de um curv fechd com

Leia mais

Módulo e Equação Modular (valor absoluto)?

Módulo e Equação Modular (valor absoluto)? Mtemátic Básic Unidde 6 Função Modulr RANILDO LOES Slides disponíveis no nosso SITE: https://ueedgrtito.wordpress.com Módulo e Equção Modulr (vlor bsoluto)? - - - - R uniddes uniddes Definição, se, se

Leia mais

FENÔMENOS DE TRANSPORTE EMPUXO. Prof. Miguel Toledo del Pino, Dr. DEFINIÇÃO

FENÔMENOS DE TRANSPORTE EMPUXO. Prof. Miguel Toledo del Pino, Dr. DEFINIÇÃO FENÔMENOS DE TRANSPORTE EMPUXO Prof. Miguel Toledo del Pino, Dr. DEFINIÇÃO É o esforço exercido por um líquido sobre um determind superfície (pln ou curv). E = γ. h C. A E : Empuxo ( N ou kgf ) : Peso

Leia mais

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA

Trigonometria FÓRMULAS PARA AJUDÁ-LO EM TRIGONOMETRIA Trigonometri é o estudo dos triângulos, que contêm ângulos, clro. Conheç lgums regrs especiis pr ângulos e váris outrs funções, definições e trnslções importntes. Senos e cossenos são dus funções trigonométrics

Leia mais

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b =

LISTA GERAL DE MATRIZES OPERAÇÕES E DETERMINANTES - GABARITO. b = LIS GERL DE MRIZES OPERÇÕES E DEERMINNES - GBRIO Dds s mtries [ ij ] tl que j ij i e [ ij ] B tl que ij j i, determine: c Solução Não é necessário construir tods s mtries Bst identificr os elementos indicdos

Leia mais

4,00 m. E, h, ν uniformes. Figura 1 Figura 2

4,00 m. E, h, ν uniformes. Figura 1 Figura 2 Ee de nálise de Estruturs I icencitur e Engenhri iil Responsáel: Prof. J.. eieir de reits 3 de Jneiro de ª Époc º Seestre Obserções: urção de h3in (º este) ou 3 hors (Ee). onsult pens do forulário e de

Leia mais

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo

Matemática para Economia Les 201. Aulas 28_29 Integrais Luiz Fernando Satolo Mtemátic pr Economi Les 0 Auls 8_9 Integris Luiz Fernndo Stolo Integris As operções inverss n mtemátic: dição e sutrção multiplicção e divisão potencição e rdicição A operção invers d diferencição é integrção

Leia mais

FFI 112: Física Matemática I. Material Didático # Funções de Bessel. Gabriela Arthuzo

FFI 112: Física Matemática I. Material Didático # Funções de Bessel. Gabriela Arthuzo FFI : Físic Mtemátic I Mteril Didático # 9... 7-6-4 Funções de Bessel Gbriel Arthuzo. Epressão gerl A função: g, t = e t t é chmd função gertriz ds funções de Bessel. Vmos epndi-l em um série de Lurent

Leia mais

Física A Semi-Extensivo V. 2

Física A Semi-Extensivo V. 2 Físic A Semi-Exensio V. Exercícios ) C q = 6 ) A q = 3) A + q = 3 s b) Eixo x (MRU) x = x + D = q D =. 3 + + D = 4 3 m c) Eixo y (MRUV) No eixo y x = x y +. y h =.,8 =. =,4 s No eixo x x = x + D = D =

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 3 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere n um número nturl.

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 2

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 2 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Colocm-se qutro cubos de

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 4 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo MATEMÁTICA 0 Considere s funções f e

Leia mais

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido.

CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS. : Variáveis e parâmetros. : Conjuntos. : Pertence. : Não pertence. : Está contido. : Não está contido. CONJUNTOS NUMÉRICOS NOTAÇÕES BÁSICAS,,... A, B,... ~ > < : Vriáveis e prâmetros : Conjuntos : Pertence : Não pertence : Está contido : Não está contido : Contém : Não contém : Existe : Não existe : Existe

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

CAPÍTULO 4 BASE E DIMENSÃO

CAPÍTULO 4 BASE E DIMENSÃO Lui Frncisco d Cru Deprmeno de Memáic Unesp/Buru CAPÍTULO BASE E DIMENSÃO Inrodução Em muis plicções não é ineressne rblhr com um espço veoril ineiro ms com um pre dese espço ou sej um subespço que sej

Leia mais

Física III Escola Politécnica GABARITO DA P2 16 de maio de 2013

Física III Escola Politécnica GABARITO DA P2 16 de maio de 2013 Físic III - 4320301 Escol Politécnic - 2013 GABARITO DA P2 16 de mio de 2013 Questão 1 Considere dois eletrodos esféricos concêntricos de rios e b, conforme figur. O meio resistivo entre os eletrodos é

Leia mais

Diferenciação Numérica

Diferenciação Numérica Cpítulo 6: Dierencição e Integrção Numéric Dierencição Numéric Em muits circunstâncis, torn-se diícil oter vlores de derivds de um unção: derivds que não são de ácil otenção; Eemplo clculr ª derivd: e

Leia mais

1. Completa as frases A, B, C e D utilizando as palavras-chave seguintes:

1. Completa as frases A, B, C e D utilizando as palavras-chave seguintes: Fich e Trblho Moieno e forçs. COECÇÃO Escol Básic e Secunári Gonçles Zrco Ciêncis Físico-Quíics, 9º no Ano lecio / 7 Noe: n.º luno: Tur: 1. Cople s frses A, B, C e D uilizno s plrs-che seguines: ecoril

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes -4-6 -8 - - -4-6 -8 - - Frequec Hz Hmmig iser Chebshev Fculdde de Egehri Sisems Lieres e Ivries Power Specrl Desi Ev B F CS CS B F CS Groud Revolue Bod Revolue Bod Power/frequec db/hz Sie Wve Joi Acuor

Leia mais

Técnicas de Análise de Circuitos

Técnicas de Análise de Circuitos Coordendori de utomção Industril Técnics de nálise de Circuitos Eletricidde Gerl Serr 0/005 LIST DE FIGURS Figur - Definição de nó, mlh e rmo...3 Figur LKC...4 Figur 3 Exemplo d LKC...5 Figur 4 plicção

Leia mais

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9

é: y y x y 31 2 d) 18 e) O algarismo das unidades de é igual a: a) 1 b) 3 c) 5 d) 7 e) 9 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: - n = b - n- = - n+ n n c d - n = -- n e - n- = -- n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : b c d 7 e 0. O vlor de 6

Leia mais

é: 31 2 d) 18 e) 512 y y x y

é: 31 2 d) 18 e) 512 y y x y 0. Dentre s firmtivs bio, ssinle quel que NÃO é verddeir pr todo nturl n: ) -) n = b) -) n- = -) n+ n n c) ) ) d) -) n = --) n e) -) n- = --) n 07. O lgrismo ds uniddes de 00. 7 00. 00 é igul : ) b) c)

Leia mais

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1.

Formas Quadráticas. FUNÇÕES QUADRÁTICAS: denominação de uma função especial, definida genericamente por: 1 2 n ij i j i,j 1. Forms Qudrátics FUNÇÕES QUADRÁTICAS: denominção de um função especil, definid genericmente por: Q x,x,...,x x x x... x x x x x... x 1 n 11 1 1 1 1n 1 n 3 3 nn n ou Qx,x,...,x 1 n ij i j i,j1 i j n x x

Leia mais

5. Análise de Curto-Circuito ou Faltas. 5.3 Curto-Circuitos Assimétricos

5. Análise de Curto-Circuito ou Faltas. 5.3 Curto-Circuitos Assimétricos Sistems Elétricos de Potênci 5. Análise de Curto-Circuito ou Flts 5. Curto-Circuitos Assimétricos Proessor: Dr. Rphel Augusto de Souz Benedito E-mil:rphelbenedito@utpr.edu.br disponível em: http://pginpessol.utpr.edu.br/rphelbenedito

Leia mais

Física. , penetra numa lâmina de vidro. e sua velocidade é reduzida para v vidro = 3

Física. , penetra numa lâmina de vidro. e sua velocidade é reduzida para v vidro = 3 Questão 6 Um torre de ço, usd pr trnsmissão de televisão, tem ltur de 50 m qundo tempertur mbiente é de 40 0 C. Considere que o ço dilt-se, linermente, em médi, n proporção de /00.000, pr cd vrição de

Leia mais

Prof. Ms. Aldo Vieira Aluno:

Prof. Ms. Aldo Vieira Aluno: Prof. Ms. Aldo Vieir Aluno: Fich 1 Chmmos de mtriz, tod tbel numéric com m linhs e n coluns. Neste cso, dizemos que mtriz é do tipo m x n (onde lemos m por n ) ou que su ordem é m x n. Devemos representr

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

Teste Intermédio Matemática A. 11.º Ano de Escolaridade. Resolução (Versão 1) RESOLUÇÃO GRUPO I. Duração do Teste: 90 minutos

Teste Intermédio Matemática A. 11.º Ano de Escolaridade. Resolução (Versão 1) RESOLUÇÃO GRUPO I. Duração do Teste: 90 minutos Teste Intermédio Mtemátic A Resolução (Versão ) Durção do Teste: 90 minutos.0.0.º Ano de Escolridde RESOLUÇÃO GRUPO I. Respost (C) O vlor máimo d unção objetivo de um problem de progrmção liner é tingido

Leia mais

Revisão: Lei da Inércia 1ª Lei de Newton

Revisão: Lei da Inércia 1ª Lei de Newton 3-9-16 Sumário Uidde I MECÂNICA 1- d prícul Moimeos sob ção de um forç resule cose - Segud lei de Newo (referecil fio e referecil ligdo à prícul). - As compoees d forç. - Trjeóri cosoe s orieções d forç

Leia mais

Hewlett-Packard PORCENTAGEM. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos

Hewlett-Packard PORCENTAGEM. Aulas 01 a 04. Elson Rodrigues, Gabriel Carvalho e Paulo Luiz Ramos Hewlett-Pckrd PORCENTAGEM Auls 01 04 Elson Rodrigues, Gbriel Crvlho e Pulo Luiz Rmos Sumário PORCENTAGEM... 1 COMPARANDO VALORES - Inspirção... 1 Porcentgem Definição:... 1... 1 UM VALOR PERCENTUAL DE

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

de derivada é, dada a derivada, vamos encontrar ou determinar uma

de derivada é, dada a derivada, vamos encontrar ou determinar uma Módulo Cálculo Inegrl Função primiiv - de derivd é, dd derivd, vmos enconrr ou deerminr um derivção e s derivds de váris funções, esudds no Cpíulo 5, pr deerminr s primiivs. O que cmos Nes unidde, pssremos

Leia mais

FÍSICA MODERNA I AULA 15

FÍSICA MODERNA I AULA 15 Universidde de São Pulo Instituto de Físic FÍSIC MODRN I U 5 Pro. Márci de lmeid Rizzutto Pelletron sl 0 rizzutto@i.us.br o. Semestre de 05 Monitor: Gbriel M. de Souz Sntos Págin do curso: htt:discilins.sto.us.brcourseview.h?id=55

Leia mais

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A.

Objetivo. Conhecer a técnica de integração chamada substituição trigonométrica. e pelo eixo Ox. f(x) dx = A. MÓDULO - AULA Aul Técnics de Integrção Substituição Trigonométric Objetivo Conhecer técnic de integrção chmd substituição trigonométric. Introdução Você prendeu, no Cálculo I, que integrl de um função

Leia mais

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 1

Prova 3 Matemática QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. QUESTÕES OBJETIVAS GABARITO 1 Prov Mtemátic QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. UEM Comissão Centrl do Vestibulr Unificdo GABARITO MATEMÁTICA 0 Considere equção

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais