A Previsão com o Método de Winter 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "A Previsão com o Método de Winter 1"

Transcrição

1 A Previsão com o Méodo de Winer. Inrodução O méodo de Winer é um méodo de morecimeno exponencil que lev em con os componenes de szonlidde d série de ddos observdos. O méodo se bsei principlmene no modelo muliplicivo szonl de Winer, que se escreve: = (β + β ). Sn + ε, onde: Sn é o componene ou for szonl muliplicivo. d szonlidde. O for szonl é definido de form que = Sn =, onde é o comprimeno Esse modelo descreve usulmene séries em que mpliude szonl e endênci são dependenes. Assim, se o nível médio d série (β + β ) umen, mpliude do pdrão szonl mbém umen (Figur ). Um our bordgem é do modelo szonl diivo, no qul: = β + β + Sn + ε, que é proprido qundo mpliude do pdrão szonl for clrmene independene do nível médio d série (Figur ). O méodo de Winer é composo de 4 eps: obenção dos vlores iniciis dos componenes do modelo ulizção dos componenes do modelo gerção de vlores morecidos ou previsões por período obenção dos erros de previsão e cálculo d medid de precisão do méodo. (Referênci: Bowermn/O Connell(987), Times Series Forecsing Unified Conceps nd Compuer Implemenion, Duxbury Press, pág 7).

2 Vends de refrigernes Ddos de vends (cixs) empo em meses Série observd Figur Série em que há indicção que mpliude szonl e endênci são dependenes. 6 Série emporl d série C C períodos de empo Figur Série em que há indicção que mpliude do pdrão szonl independe d endênci

3 . Os Vlores Iniciis dos Componenes do Modelo O modelo se bsei n definição de vlores iniciis de β, β e Sn, ou sej (), b () e Sn () is que: β o (), que é medid do componene do nível médio d série β b (), que permie ober o componene d endênci d série Sn Sn (), que permie ober o componene d szonlidde por período ou esção szonl d série. Assim, b () = m (m ) permie ober um medid inicil de endênci, onde: m nível médio d série ssocido o meio do úlimo período szonl. nível médio d série ssocido o meio do primeiro período szonl m número de períodos szonis comprimeno d szonlidde Sej o exemplo de vends de refrigernes cujos ddos são presendos n Tbel. Como no exemplo são obidos vlores referenes 3 nos de informções mensis com períodos szonis de comprimeno de meses, m é o ulimo vlor exrído d série correspondene de médis móveis de mnho =, sendo m = 3 (Tbel ) e é o primeiro vlor. 3

4 Tbel Vends de refrigernes (cenens de cixs) em um período de 3 nos (36 meses). Ano mês vends y Ano mês vends y (jneiro) Tbel Médis móveis de mnho em 3 períodos de meses (cenens de cixs) vends M.M() 447,83... vends M.M() ,83... vends M.M() ,583 M.M() médis móveis de mnho Conforme os vlores ds médis móveis, b () = 677,58 447,8 (3 ) b () = 9,57. 4

5 O componene do nível médio d série no início do primeiro período szonl é obido por: o () = b() Nesse cálculo, deve ser observdo que, pr obenção de o (), subri-se b() de pr reornr o início do º período. Com os ddos do exemplo de vends de refrigernes pode-se ober: o () = 447,8. 9,57 o () = 39,4. O componene de szonlidde é obido pr cd período ou esção szonl por: Sn () = sn, pr =,...,, sn = onde sn = é o índice de jusmeno, que permie normlizção desse componene szonl de form que = () Sn m =, e sn = S + k, pr =,...,, m k= e sn é o índice szonl médio pr cd esção szonl (por exemplo, jn, fev,..., dez). Enreno, é preciso ober os vlores de S, que correspondem esimivs iniciis dos fores szonis de cd esção. Esss esimivs são obids por: S = ou j S = +. i j b() 5

6 onde: i = se i = se + i = 3 se + 3,... de form que esimiv do nível médio d série é obid por: + = i [ j]b (). j Figur 3 Esimivs iniciis dos componenes szonis Ou sej, pr ober-se j (Figur 3) som-se ou subri-se endênci o nível médio d série no i-ésimo período szonl ( i ), sendo i =, ou 3, no exemplo considerdo. Embor esej ssocido um período vrindo enre e o ol de observções, j é obido por período szonl, sendo que posição reliv j permie dizer quns esções à frene ou neriores o meio do período szonl i o qul perence ess observção se enconr. Conforme se esej em jneiro, fevereiro,..., dezembro, no exemplo considerdo, j =,...,. Ess vrição de j se repee pr cd período szonl i. Sej como exemplo s esimivs iniciis de bril: 6

7 4 bril do no, = 4 S4 = =,688 + j b() 6 bril do no, = 6 S6 = =,684 + j b() 8 bril do no 3, = 8 S8 = =, j b() Em consequênci, o componene szonl médio sn é obido por sn m = S + k k=, o que vi permiir clculr o vlor normlizdo Sn (), =,...,. Ou sej, o for szonl médio d esção bril é sn 4 =, 68 (observndo-se em su obenção que = 4 e m = 3), 3. A Previsão com Bse n Aulizção dos Vlores dos Componenes do Modelo Suponh-se que se conheç, em um período (T) (Figur 4), os componenes o (T-); b (T-) de um periodo nerior (T ) e se conheç os fores szonis Sn (T- ) de um período szonl nerior. Com ulizção desses vlores pode-se ober s esimivs de o (T), b (T) e Sn (T) pr o período (T) em referênci, onde: (T) esimiv do nível médio d série ulizd b (T) esimiv do componene de endênci ulizd Sn T (T) esimiv do for szonl ulizdo 7

8 Figur 4 Dess form, deszonlizção de (T) = α + ( α)[ (T ) + b (T ) ] Sn (T ) T onde α. esimiv do nível médio prir dos vlores dos componenes em (T-) Pr obenção de (T) é fei ponderção de: Sn T (T ) esimiv do nível médio pel deszonlizção de, e [ (T-) + b (T-)] esimiv do nível médio prir dos vlores dos componenes em (T-). D mesm mneir, b (T) = [ (T) (T )] + ( β) b (T ), β onde β. Pr obenção de b (T) é fei ponderção de dois ermos: (T) (T ) diferenç enre esimiv do nível médio nos períodos (T-) e (T), o que permie er um esimiv d endênci b (T). 8

9 b (T ) esimiv d endênci em (T-). O componene de szonlidde ulizdo é obido por: Sn T (T) = γ + ( γ)sn T (T ), (T) onde γ. Pr obenção de Sn T (T) é obid ponderção de: (T) esimiv do for szonl com ddos observdos Sn T (T-) esimiv do for szonl esções neriores Assim, no exemplo de vends de refrigernes, considerdos já obidos vlores iniciis dos componenes: () = 39,4, b () = 9,57 e Sn () =,484, e onde deve ser observdo que: Sn (), Sn 3 (),..., Sn () são suposos mbém já clculdos, rbirndo-se α =,, β =,5 e γ =,5, previsão de jneiro do no corresponde o primeiro vlor d série morecid, clculd com o modelo de Winer: Ŷ () = [ () + b().]sn() Assim, Ŷ () = [39,4+ 9,57],484= 93, 63 e o respecivo erro d previsão - Ŷ () = - 4,63. Em seguid, fz-se ulizção dos vlores dos componenes pr esse período ou sej, obém-se: (), b (), Sn () Assim, () = α + ( α)[ () + b ()] = 398,6 Sn () () = β[ () ()] + (- β) b () = 9,8 b Sn () = γ + (- γ)sn() =,4836, () (T-) inicil onde deve ser observdo que Sn T (T ) é equivlene Sn T () pr T =,...,. 9

10 Usndo esss esimivs iniciis feis no período (jneiro do no ), em fevereiro do no er-se-á segund esimiv de vlores previsos com bse no período de empo nerior ou sej: bse d previsão Ŷ () = [ () + b().]sn () = [398,6 + 9,8]. [,5847] = 38,7 Período em quesão Como = 9, o erro de previsão é - Ŷ () = - 9,7. Novs ulizções dos componenes são obids por: () = α + ( α)[ () + b Sn () b () = β[ () ()] + (- β) b() Sn () = γ + (- γ)sn () () ()] Com esss ulizções obém-se Ŷ 3 () = [ o () + b (). ] Sn 3 (). A melhor combinção de α, β e γ depende d vlição d medid de precisão. 36 No exemplo, ess medid é obid por: ( Ŷ ( )). A escolh de α =,, β = =,6 e γ =,6 resul de um vlição desse ipo, prir de 5 combinções vrindo α, β e γ enre,5 e,5 com incremenos de,5. Assim, previsão de vlores fuuros de T+τ pode ser obid por: Ŷ + (T) = [ (T) + b (T).τ]Sn + (T + τ ), onde Sn T+τ (T + τ - ) corresponde o T τ úlimo vlor conhecido pr esção considerd. T τ 4. Exemplo do Amorecimeno com o Méodo de Winer (Uilizndo o Modelo Muliplicivo). N Tbel 3 presen-se vlores pr previsão de período à frene pr previsão d demnd de refrigerne, correspondene os vlores gerdos pelo modelo muliplicivo de morecimeno do méodo de Winer.

11 Tbel 3 - () b () y mm() ()=39,4 b ()=9,57 Sn (-) Sn() ŷ ( ) εˆ ,6 9,8,484, ,63-4, , 8,8,5847, ,7-9, , 8,83,6,6 48,7, ,8 8,7,69,699 9,6 -, ,67 9,3,5859,5867 5,88 8, ,83 439,94 8,85,9965, ,5-9, ,47 447,97 8,73,484, , -6, ,6 8,8,697, ,5 3, , ,87 8,63,9869,986 95,8 -, , ,87 8,69,897,899 6,68, ,33 8,65,74,73 486, -, ,47 485,96 7,9,5946,5934 9,94-4, , ,99 8,,4836,484 38,85 5, ,97 54,77 8,3,5838, ,35, ,667 56,4 8,8,6,63 38,99, ,667 57,8 9,,699,694 36,84 7, ,8 9,3,5867, ,68 -, , ,56 9,44,9957, ,48 3, , ,6 9,53,4837,484 86,39 4, ,67 567, 9,5,693, , -, 5 58, ,33 9,63,986, , 6, ,75 587,5 9,67,899,9 757,, , ,6 9,84,73,77 6,8 5, ,5 6,37,36,5934,594 36,7, ,97 6,5,8,484,4839 3,95 -, ,,68,5839, ,7 9, , ,47 9,89,63,6 388,75-5, ,75 647,64 9,64,694,69 448,97-5, ,75 653,35 9,5,5865, ,5 -, ,583 66,36 9,4,9966, ,8 -, ,43 9,,484, ,35 7, ,5 9,8,693,693 54, -, ,3 9,4,9864, , 5, ,53 9,39,9,9 95,3 -, ,64 9,35,77,76 76,38 -, ,47,,594, ,7 3,9 MSE = 54,38 5. Generlizção do Méodo de Winer Algums modificções devem ser feis no méodo de Winer pr o cso de: ) série de ddos observdos sem prene endênci (modelo sem endênci).

12 ) série de ddos observdos presenndo um pdrão szonl consne ou sej, sem evidêncis de que su mpliude sej lerd pelo componene de endênci de série (modelo diivo de Winer). Assim, no primeiro cso, o modelo de Winer é: = (β o ) x Sn + ε As ulizções dos componenes do modelo devem ser obids por: o (T) = α Sn T + ( - α) o(t ) (T ) Sn T (T) = γ + ( - γ) Sn T (T ) (T) o A esimiv inicil do componene do nível médio de série o () é obid pel médi dos vlores observdos em m nos de observções. Por ouro ldo, esimiv inicil Sn () é obid de form similr à do méodo do modelo muliplicivo, com exceção pr o cálculo de S que é feio de cordo com: S = o () A previsão fei no período T pr T+τ é obid por: Ŷ T+ τ (T) (T)Sn = o T+ τ (T + τ ) No segundo cso, o méodo deve levr em con o cráer diivo d szonlidde. Assim, o modelo diivo escreve-se: = (βo + β ) + Sn + ε Nesse cso, ulizção dos componenes do modelo é obid por: o (T + ) = α [ T+ Sn T+ (T + - )] + ( - α) [ o (T) + b (T)] b (T + ) = β [ o (T + ) o (T)] + ( - β) b (T) Sn T+ (T + ) = γ [ T+ o (T+)] + ( - γ) Sn T+ (T + ) A previsão no período T pr T+τ é obid por:

13 Ŷ (T) = T+ τ o (T) + b (T) τ + Sn T+τ (T + τ - ) As esimivs iniciis o (), b () e Sn (), pr =,..., podem ser obids como s esimivs de mínimos qudrdos ordinários do seguine modelo de regressão: = β + β + β s xsi, + β s xs, + β s xs, β s x s + ε 3 3 ( ) ( ),, onde s vriáveis x, são vriáveis do ipo dummy, ssumindo o vlor ou zero s i conforme se enh informção de do período szonl s i, i=,,..., (-), ou não (é ssumido que no período szonl não há vrição szonl em relção o nível d série). 3

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial

Séries temporais Modelos de suavização exponencial. Séries de temporais Modelos de suavização exponencial Programa de Pós-graduação em Engenharia de Produção Análise de séries de empo: modelos de suavização exponencial Profa. Dra. Liane Werner Séries emporais A maioria dos méodos de previsão se baseiam na

Leia mais

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA

Universidade Federal de Viçosa DEPARTAMENTO DE MATEMÁTICA MAT Cálculo Dif. e Int. I PRIMEIRA LISTAA Universidde Federl de Viços DEPARTAMENTO DE MATEMÁTICA MAT - Cálculo Dif e In I PRIMEIRA LISTAA Memáic básic Professors: Gbriel e Crin Simplifique: ) b ) 9 c ) d ) ( 9) e ) 79 f ) g ) ) ) i j ) Verddeiro

Leia mais

Análise de séries de tempo: modelos de decomposição

Análise de séries de tempo: modelos de decomposição Análise de séries de empo: modelos de decomposição Profa. Dra. Liane Werner Séries de emporais - Inrodução Uma série emporal é qualquer conjuno de observações ordenadas no empo. Dados adminisraivos, econômicos,

Leia mais

Figura 3.17: circuito do multivibrador astável com integrador. -20V 0s 100us 200us 300us 400us 500us V(C8: 1) V(U9B: OUT) Ti me

Figura 3.17: circuito do multivibrador astável com integrador. -20V 0s 100us 200us 300us 400us 500us V(C8: 1) V(U9B: OUT) Ti me ... Mulivirdor Asável com Inegrdor Análise gráfic: Figur.7: circuio do mulivirdor sável com inegrdor. - - s us us us 4us 5us (8: (U9B: OU i me Figur.8: Gráfico ds ensões de síd principl (qudrd e do inegrdor

Leia mais

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4

MATRIZES. Neste caso, temos uma matriz de ordem 3x4 (lê-se três por quatro ), ou seja, 3 linhas e 4 A eori ds mrizes em cd vez mis plicções em áres como Economi, Engenhris, Memáic, Físic, enre ours. Vejmos um exemplo de mriz: A bel seguir represen s nos de rês lunos do primeiro semesre de um curso: Físic

Leia mais

Teoria VII - Tópicos de Informática

Teoria VII - Tópicos de Informática INSTITUTO DE CIÊNCIAS EXATAS E TECNOLOGIA ICET Cmpins Limeir Jundií Teori VII - Tópicos de Informátic 1 Fórmuls Especiis no Excel 2 Função Exponencil 3 Função Logrítmic Unip 2006 - Teori VII 1 1- FÓRMULAS

Leia mais

Aprendizagem de Máquina

Aprendizagem de Máquina prendizgem de Máquin prendizdo por reforço Inrodução. O prendizdo por reforço é um écnic que possibili prendizgem prir d inerção com o mbiene. (hp://www.cs.ulber.c/~suon/book/he-book.hml) inerção com o

Leia mais

4.2. Veio Cilíndrico de Secção Circular

4.2. Veio Cilíndrico de Secção Circular Cpíulo IV Torção de Peçs Lineres 1 CPÍTULO IV TORÇÃO DE PEÇS LINERES.1. Inrodução. sorção ou rnsmissão de esforços de orção: o Veios ou árvores de rnsmissão o Brrs de orção; ols; Esruurs uulres (veículos

Leia mais

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES

Universidade Federal do Rio Grande FURG. Instituto de Matemática, Estatística e Física IMEF Edital 15 - CAPES MATRIZES Universidde Federl do Rio Grnde FURG Instituto de Mtemátic, Esttístic e Físic IMEF Editl - CAPES MATRIZES Prof. Antônio Murício Medeiros Alves Profª Denise Mri Vrell Mrtinez Mtemátic Básic pr Ciêncis Sociis

Leia mais

CAPÍTULO 4 BASE E DIMENSÃO

CAPÍTULO 4 BASE E DIMENSÃO Lui Frncisco d Cru Deprmeno de Memáic Unesp/Buru CAPÍTULO BASE E DIMENSÃO Inrodução Em muis plicções não é ineressne rblhr com um espço veoril ineiro ms com um pre dese espço ou sej um subespço que sej

Leia mais

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes

Universidade Federal de Pelotas Vetores e Álgebra Linear Prof a : Msc. Merhy Heli Rodrigues Determinantes Universidde Federl de Pelots Vetores e Álgebr Liner Prof : Msc. Merhy Heli Rodrigues Determinntes Determinntes Definição: Determinnte é um número ssocido um mtriz qudrd.. Determinnte de primeir ordem Dd

Leia mais

Bhaskara e sua turma Cícero Thiago B. Magalh~aes

Bhaskara e sua turma Cícero Thiago B. Magalh~aes 1 Equções de Segundo Gru Bhskr e su turm Cícero Thigo B Mglh~es Um equção do segundo gru é um equção do tipo x + bx + c = 0, em que, b e c são números reis ddos, com 0 Dd um equção do segundo gru como

Leia mais

Máquinas Eléctricas I Transformadores 14-11-2002. Transformadores

Máquinas Eléctricas I Transformadores 14-11-2002. Transformadores Máquins Elécrics Trnsformdores 4-- Trnsformdores Os rnsformdores são máquins elécrics esáics que elevm ou bixm um deermind ensão lernd.. rincípio de funcionmeno O funcionmeno do rnsformdor bsei-se nos

Leia mais

Material envolvendo estudo de matrizes e determinantes

Material envolvendo estudo de matrizes e determinantes E. E. E. M. ÁREA DE CONHECIMENTO DE MATEMÁTICA E SUAS TECNOLOGIAS PROFESSORA ALEXANDRA MARIA º TRIMESTRE/ SÉRIE º ANO NOME: Nº TURMA: Mteril envolvendo estudo de mtrizes e determinntes INSTRUÇÕES:. Este

Leia mais

SERVIÇO PÚBLICO FEDERAL Ministério da Educação

SERVIÇO PÚBLICO FEDERAL Ministério da Educação SERVIÇO PÚBLICO FEDERAL Ministério d Educção Universidde Federl do Rio Grnde Universidde Abert do Brsil Administrção Bchreldo Mtemátic pr Ciêncis Sociis Aplicds I Rodrigo Brbos Sores . Mtrizes:.. Introdução:

Leia mais

MODELOS DE EQUILÍBRIO DE FLUXO EM REDES. Prof. Sérgio Mayerle Depto. Eng. Produção e Sistemas UFSC/CTC

MODELOS DE EQUILÍBRIO DE FLUXO EM REDES. Prof. Sérgio Mayerle Depto. Eng. Produção e Sistemas UFSC/CTC MODELOS DE EQUILÍBRIO DE FLUXO EM REDES Pro. Sérgio Myerle Depo. Eng. Produção e Sisems UFSC/CTC Deinição Bási A rede é deinid por um gro ( N A onde: { } N...n G é um onjuno de nós { m} A... é um onjuno

Leia mais

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO

ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO Físic Gerl I EF, ESI, MAT, FQ, Q, BQ, OCE, EAm Protocolos ds Auls Prátics 003 / 004 ROTAÇÃO DE CORPOS SOBRE UM PLANO INCLINADO. Resumo Corpos de diferentes forms deslocm-se, sem deslizr, o longo de um

Leia mais

3 Teoria dos Conjuntos Fuzzy

3 Teoria dos Conjuntos Fuzzy 0 Teori dos Conjuntos Fuzzy presentm-se qui lguns conceitos d teori de conjuntos fuzzy que serão necessários pr o desenvolvimento e compreensão do modelo proposto (cpítulo 5). teori de conjuntos fuzzy

Leia mais

1 Distribuições Contínuas de Probabilidade

1 Distribuições Contínuas de Probabilidade Distribuições Contínus de Probbilidde São distribuições de vriáveis letóris contínus. Um vriável letóri contínu tom um numero infinito não numerável de vlores (intervlos de números reis), os quis podem

Leia mais

o Seu pé direito na medicina

o Seu pé direito na medicina o Seu pé direito n medicin UNIFESP //006 MATEMÁTIA 0 Entre os primeiros mil números inteiros positivos, quntos são divisíveis pelos números,, 4 e 5? 60 b) 0 c) 0 d) 6 e) 5 Se o número é divisível por,,

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Fernanda Aranzate)

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Fernanda Aranzate) 11 PC Smpio Alex Amrl Rfel Jesus Mt.Semn (Fernnd Arnzte) Este conteúdo pertence o Descomplic. Está vedd cópi ou reprodução não utorizd previmente e por escrito. Todos os direitos reservdos. CRONOGRAMA

Leia mais

Processos Estocásticos. Variáveis Aleatórias Multidimensionais. Variáveis Aleatórias Multidimensionais. Variáveis Aleatórias Multidimensionais

Processos Estocásticos. Variáveis Aleatórias Multidimensionais. Variáveis Aleatórias Multidimensionais. Variáveis Aleatórias Multidimensionais Processos Estocásticos Luiz Affonso Guedes Sumário Probbilidde Vriáveis Aletóris Funções de Um Vriável Aletóri Funções de Váris Vriáveis Aletóris Momentos e Esttístic Condicionl Teorem do Limite Centrl

Leia mais

2 Patamar de Carga de Energia

2 Patamar de Carga de Energia 2 Ptmr de Crg de Energi 2.1 Definição Um série de rg de energi normlmente enontr-se em um bse temporl, ou sej, d unidde dess bse tem-se um informção d série. Considerndo um bse horári ou semi-horári, d

Leia mais

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos

Matrizes. Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Márcia A.F. Dias de Moraes. Matrizes Conceitos Básicos Mtemátic pr Economists LES uls e Mtrizes Ching Cpítulos e Usos em economi Mtrizes ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Márci.F. Dis de Mores Álgebr Mtricil Conceitos Básicos

Leia mais

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS

UNITAU APOSTILA. SUCESSÃO, PA e PG PROF. CARLINHOS ESCOLA DE APLICAÇÃO DR. ALFREDO JOSÉ BALBI UNITAU APOSTILA SUCESSÃO, PA e PG PROF. CARLINHOS NOME DO ALUNO: Nº TURMA: blog.portlpositivo.com.br/cpitcr 1 SUCESSÃO OU SEQUENCIA NUMÉRICA Sucessão ou seqüênci

Leia mais

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA

UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA UNIVERSIDADE FEDERAL DE PERNAMBUCO CCEN DEPARTAMENTO DE MATEMÁTICA EXAME DE QUALIFICAÇÃO PARA O MESTRADO EM MATEMÁTICA PRIMEIRO SEMESTRE DE 2015 13 de Fevereiro de 2015 Prte I Álgebr Liner 1 Questão: Sejm

Leia mais

MODELAGEM MATEMÁTICA DE SISTEMAS DINÂMICOS

MODELAGEM MATEMÁTICA DE SISTEMAS DINÂMICOS Projeo Reenge - Eng. Eléric Aposil de Sisems de Conrole I IV- &$3Ì78/,9 MODELAGEM MATEMÁTICA DE SISTEMAS DINÂMICOS 4.- INTRODUÇÃO Inicilmene é necessário que se defin o que é sisem, sisem dinâmico e sisem

Leia mais

1 Assinale a alternativa verdadeira: a) < <

1 Assinale a alternativa verdadeira: a) < < MATEMÁTICA Assinle lterntiv verddeir: ) 6 < 7 6 < 6 b) 7 6 < 6 < 6 c) 7 6 < 6 < 6 d) 6 < 6 < 7 6 e) 6 < 7 6 < 6 Pr * {} temos: ) *, * + e + * + ) + > + + > ) Ds equções (I) e (II) result 7 6 < ( 6 )

Leia mais

Índice TEMA TEMA TEMA TEMA TEMA

Índice TEMA TEMA TEMA TEMA TEMA Índice Resolução de roblems envolvendo triângulos retângulos Teori. Rzões trigonométrics de um ângulo gudo 8 Teori. A clculdor gráfic e s rzões trigonométrics 0 Teori. Resolução de roblems usndo rzões

Leia mais

Taxa de Equilíbrio da Previdência Social Brasileira Segundo um Sistema Nacional

Taxa de Equilíbrio da Previdência Social Brasileira Segundo um Sistema Nacional Tx de Equilíbrio d Previdênci Socil Brsileir Segundo um Sisem Ncionl Crlos Spínol Ribeiro Plvrs-chve: Previdênci Socil; Populção; Reforms Previdenciáris; Sisems Nocionis de Conribuição Definid Resumo Nesse

Leia mais

MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO

MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO SECRETARIA DE POLÍTICA AGRÍCOLA DEPARTAMENTO DE GESTÃO DE RISCO RURAL PORTARIA Nº 193, DE 8 DE JUNHO DE 2011 O DIRETOR DO DEPARTAMENTO DE GESTÃO DE RISCO

Leia mais

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição

ESTATÍSTICA APLICADA. 1 Introdução à Estatística. 1.1 Definição ESTATÍSTICA APLICADA 1 Introdução à Esttístic 1.1 Definição Esttístic é um áre do conhecimento que trduz ftos prtir de nálise de ddos numéricos. Surgiu d necessidde de mnipulr os ddos coletdos, com o objetivo

Leia mais

Introdução ao estudo de equações diferenciais

Introdução ao estudo de equações diferenciais MTDI I - 2007/08 - Introdução o estudo de equções diferenciis 63 Introdução o estudo de equções diferenciis Existe um grnde vriedde de situções ns quis se desej determinr um quntidde vriável prtir de um

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I 1. A função objetivo é o lucro e é dd por L(x, y) = 30x + 50y. Restrições: x 0

Leia mais

1. Conceito de logaritmo

1. Conceito de logaritmo UNIVERSIDADE DO ESTADO DE MATO GROSSO CAMPUS UNIVERSITÁRIO DE SINOP FACULDADE DE CIÊNCIAS EXATAS E TECNOLÓGICAS CURSO DE ENGENHARIA CIVIL DISCIPLINA: FUNDAMENTOS DE MATEMÁTICA Logritmos Prof.: Rogério

Leia mais

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo

Matemática para Economistas LES 201. Aulas 5 e 6 Matrizes Chiang Capítulos 4 e 5. Luiz Fernando Satolo Mtemátic pr Economists LES Auls 5 e Mtrizes Ching Cpítulos e 5 Luiz Fernndo Stolo Mtrizes Usos em economi ) Resolução sistems lineres ) Econometri ) Mtriz Insumo Produto Álgebr Mtricil Conceitos Básicos

Leia mais

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017

Potencial Elétrico. Evandro Bastos dos Santos. 14 de Março de 2017 Potencil Elétrico Evndro Bstos dos Sntos 14 de Mrço de 2017 1 Energi Potencil Elétric Vmos começr fzendo um nlogi mecânic. Pr um corpo cindo em um cmpo grvitcionl g, prtir de um ltur h i té um ltur h f,

Leia mais

12 Integral Indefinida

12 Integral Indefinida Inegral Indefinida Em muios problemas, a derivada de uma função é conhecida e o objeivo é enconrar a própria função. Por eemplo, se a aa de crescimeno de uma deerminada população é conhecida, pode-se desejar

Leia mais

Relações em triângulos retângulos semelhantes

Relações em triângulos retângulos semelhantes Observe figur o ldo. Um escd com seis degrus está poid em num muro de m de ltur. distânci entre dois degrus vizinhos é 40 cm. Logo o comprimento d escd é 80 m. distânci d bse d escd () à bse do muro ()

Leia mais

Matrizes Resolução de sistemas de equações lineares por eliminação Gauss e Gauss-Jordan

Matrizes Resolução de sistemas de equações lineares por eliminação Gauss e Gauss-Jordan No epliciv grdeço os professores João lves José Lís Fchd mrino Lere Roger Picken e Pedro Snos qe me fclrm mvelmene eercícios d s ori e recolhs de emes d cdeir. revemene (ind ese no) serão crescends solções

Leia mais

Recordando produtos notáveis

Recordando produtos notáveis Recordndo produtos notáveis A UUL AL A Desde ul 3 estmos usndo letrs pr representr números desconhecidos. Hoje você sbe, por exemplo, que solução d equção 2x + 3 = 19 é x = 8, ou sej, o número 8 é o único

Leia mais

INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO APLICAÇÃO A PERFIS SOLDADOS

INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO APLICAÇÃO A PERFIS SOLDADOS INSTABILIDADE DE CHAPAS INSTABILIDADE DE CHAPAS MÉTODO DAS LARGURAS EFETIVAS APLICAÇÃO A PERFIS FORMADOS A FRIO FLAMBAGEM POR FLEXÃO FLAMBAGEM POR TORÇÃO FLAMBAGEM POR FLEXO-TORÇÃO FLAMBAGEM LATERAL FLAMBAGEM

Leia mais

Resolução Numérica de Sistemas Lineares Parte II

Resolução Numérica de Sistemas Lineares Parte II Cálculo Numérico Resolução Numéric de Sistems Lieres Prte II Prof Jorge Cvlcti jorgecvlcti@uivsfedubr MATERIAL ADAPTADO DOS SLIDES DA DISCIPLINA CÁLCULO NUMÉRICO DA UFCG - wwwdscufcgedubr/~cum/ Sistems

Leia mais

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA UNIVERSIDADE FEDERAL DE UBERLÂNDIA FACULDADE DE ENGENHARIA MECÂNICA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA MODELAGEM RIDIMENSIONAL DE PROBLEMAS INVERSOS EM CONDUÇÃO DE CALOR: APLICAÇÃO EM PROCESSOS

Leia mais

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) =

a) 3 ( 2) = d) 4 + ( 3) = g) = b) 4 5 = e) 2 5 = h) = c) = f) = i) = List Mtemátic -) Efetue s dições e subtrções: ) ( ) = d) + ( ) = g) + 7 = b) = e) = h) + = c) 7 + = f) + = i) 7 = ) Efetue s multiplicções e divisões: ).( ) = d).( ) = g) ( ) = b).( 7) = e).( 6) = h) (

Leia mais

Área entre curvas e a Integral definida

Área entre curvas e a Integral definida Universidde de Brsíli Deprtmento de Mtemátic Cálculo Áre entre curvs e Integrl definid Sej S região do plno delimitd pels curvs y = f(x) e y = g(x) e s rets verticis x = e x = b, onde f e g são funções

Leia mais

CPV 82% de aprovação na ESPM em 2011

CPV 82% de aprovação na ESPM em 2011 CPV 8% de provção n ESPM em 0 Prov Resolvid ESPM Prov E 0/julho/0 MATEMÁTICA. Considerndo-se que x = 97, y = 907 e z =. xy, o vlor d expressão x + y z é: ) 679 b) 58 c) 7 d) 98 e) 77. Se três empds mis

Leia mais

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS

DECivil Secção de Mecânica Estrutural e Estruturas MECÂNICA I ENUNCIADOS DE PROBLEMAS Eivil Secção de Mecânic Estruturl e Estruturs MEÂNI I ENUNIOS E ROLEMS Fevereiro de 2010 ÍTULO 3 ROLEM 3.1 onsidere plc em form de L, que fz prte d fundção em ensoleirmento gerl de um edifício, e que está

Leia mais

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I

PROPOSTA DE RESOLUÇÃO DA PROVA DE MATEMÁTICA B DO ENSINO SECUNDÁRIO (CÓDIGO DA PROVA 735) 1ª FASE 23 DE JUNHO 2015 GRUPO I Associção de Professores de Mtemátic Contctos: Ru Dr. João Couto, n.º 27-A 1500-236 Lisbo Tel.: +351 21 716 36 90 / 21 711 03 77 Fx: +351 21 716 64 24 http://www.pm.pt emil: gerl@pm.pt PROPOSTA DE RESOLUÇÃO

Leia mais

Vestibular UFRGS 2013 Resolução da Prova de Matemática

Vestibular UFRGS 2013 Resolução da Prova de Matemática Vestibulr UFRG 0 Resolução d Prov de Mtemátic 6. Alterntiv (C) 00 bilhões 00. ( 000 000 000) 00 000 000 000 0 7. Alterntiv (B) Qundo multiplicmos dois números com o lgrismo ds uniddes igul 4, o lgrismo

Leia mais

Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais

Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indústria de Óleos Vegetais XI SIMPEP - Bauru, SP, Brasil, 8 a 1 de novembro de 24 Modelagem e Previsão do Índice de Saponificação do Óleo de Soja da Giovelli & Cia Indúsria de Óleos Vegeais Regiane Klidzio (URI) gep@urisan.che.br

Leia mais

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA

RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 2016 FASE 2. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA RESOLUÇÃO DA PROVA DE MATEMÁTICA VESTIBULAR DA UNICAMP 6 FASE. POR PROFA. MARIA ANTÔNIA CONCEIÇÃO GOUVEIA. O gráfico de brrs bixo exibe distribuição d idde de um grupo de pessos. ) Mostre que, nesse grupo,

Leia mais

Dosagem de concreto. Prof. M.Sc. Ricardo Ferreira

Dosagem de concreto. Prof. M.Sc. Ricardo Ferreira Dosgem de onreto Prof. M.S. Rirdo Ferreir Regressão liner simples Método dos mínimos qudrdos Prof. M.S. Rirdo Ferreir Fonte: Drio Dfio Regressão liner simples Método dos mínimos qudrdos 3/3 Dd um onjunto

Leia mais

Funções Exponenciais e Logaritmicas Chiang, cap. 10. Matemática Aplicada à Economia LES 201. Aulas 19 e 20. Márcia A.F.

Funções Exponenciais e Logaritmicas Chiang, cap. 10. Matemática Aplicada à Economia LES 201. Aulas 19 e 20. Márcia A.F. Meáic Aplicd à Econoi LES Auls e Funções eponenciis e logríics Márci A.F. Dis de Mores Funções Eponenciis e Logriics Ching, cp. Funções eponenciis e logríics váris plicções e econoi : vriável de escolh

Leia mais

Decomposição Clássica

Decomposição Clássica Méodos Esaísicos de Previsão MÉTODOS ESTATÍSTICOS DE PREVISÃO 0 08 06 04 02 00 98 96 94 92 90 0 5 0 5 20 Decomposição Clássica Bernardo Almada-Lobo Méodos Esaísicos de Previsão 2 Decomposição Clássica

Leia mais

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I

FUNÇÕES. Funções. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I. TE203 Fundamentos Matemáticos para a Engenharia Elétrica I FUNÇÕES DATA //9 //9 4//9 5//9 6//9 9//9 //9 //9 //9 //9 6//9 7//9 8//9 9//9 //9 5//9 6//9 7//9 IBOVESPA (fechmento) 8666 9746 49 48 4755 4 47 4845 45 467 484 9846 9674 97 874 8 88 88 DEFINIÇÃO Um grndez

Leia mais

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral.

Este capítulo tem por objetivo apresentar métodos para resolver numericamente uma integral. Nots de ul de Métodos Numéricos. c Deprtmeto de Computção/ICEB/UFOP. Itegrção Numéric Mrcoe Jmilso Freits Souz, Deprtmeto de Computção, Istituto de Ciêcis Exts e Biológics, Uiversidde Federl de Ouro Preto,

Leia mais

8.1 Áreas Planas. 8.2 Comprimento de Curvas

8.1 Áreas Planas. 8.2 Comprimento de Curvas 8.1 Áres Plns Suponh que um cert região D do plno xy sej delimitd pelo eixo x, pels rets x = e x = b e pelo grá co de um função contínu e não negtiv y = f (x) ; x b, como mostr gur 8.1. A áre d região

Leia mais

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida.

Matemática. Atividades. complementares. ENSINO FUNDAMENTAL 7- º ano. Este material é um complemento da obra Matemática 7. uso escolar. Venda proibida. 7 ENSINO FUNMENTL 7- º no Memáic ividdes complemenres Ese meril é um complemeno d or Memáic 7 Pr Viver Junos. Reprodução permiid somene pr uso escolr. Vend proiid. Smuel sl píulo 9 Polígonos 1. Oserve

Leia mais

Matemática UNICAMP ETAPA. Resposta. Resposta QUESTÃO 14 QUESTÃO 13

Matemática UNICAMP ETAPA. Resposta. Resposta QUESTÃO 14 QUESTÃO 13 Mtemátic UNICAMP QUESTÃO 1 Em 1 de outubro de 01, Felix Bumgrtner quebrou o recorde de velocidde em qued livre. O slto foi monitordo oficilmente e os vlores obtidos estão expressos de modo proximdo n tbel

Leia mais

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Roberta Teixeira)

Mat.Semana. PC Sampaio Alex Amaral Rafael Jesus. (Roberta Teixeira) 9 PC Smpio Alex Amrl Rfel Jesus Mt.Semn (Robert Teixeir) Este conteúdo pertence o Descomplic. Está vedd cópi ou reprodução não utorizd previmente e por escrito. Todos os direitos reservdos. CRONOGRAMA

Leia mais

Diogo Pinheiro Fernandes Pedrosa

Diogo Pinheiro Fernandes Pedrosa Integrção Numéric Diogo Pinheiro Fernndes Pedros Universidde Federl do Rio Grnde do Norte Centro de Tecnologi Deprtmento de Engenhri de Computção e Automção http://www.dc.ufrn.br/ 1 Introdução O conceito

Leia mais

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP

Curso Básico de Fotogrametria Digital e Sistema LIDAR. Irineu da Silva EESC - USP Curso Básico de Fotogrmetri Digitl e Sistem LIDAR Irineu d Silv EESC - USP Bses Fundmentis d Fotogrmetri Divisão d fotogrmetri: A fotogrmetri pode ser dividid em 4 áres: Fotogrmetri Geométric; Fotogrmetri

Leia mais

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS.

Quadratura por interpolação Fórmulas de Newton-Cotes Quadratura Gaussiana. Integração Numérica. Leonardo F. Guidi DMPA IM UFRGS. Qudrtur por interpolção DMPA IM UFRGS Cálculo Numérico Índice Qudrtur por interpolção 1 Qudrtur por interpolção 2 Qudrturs simples Qudrturs composts 3 Qudrtur por interpolção Qudrtur por interpolção O

Leia mais

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA

UNIVERSIDADE DE SÃO PAULO ESCOLA POLITÉCNICA UNVERSDDE DE SÃO PULO ESOL POLTÉN Deprtmento de Engenhri de Estruturs e Geotécnic URSO ÁSO DE RESSTÊN DOS TERS FSÍULO Nº 5 Flexão oblíqu H. ritto.010 1 FLEXÃO OLÍU 1) udro gerl d flexão F LEXÃO FLEXÃO

Leia mais

Incertezas e Propagação de Incertezas. Biologia Marinha

Incertezas e Propagação de Incertezas. Biologia Marinha Incertezs e Propgção de Incertezs Cursos: Disciplin: Docente: Biologi Biologi Mrinh Físic Crl Silv Nos cálculos deve: Ser coerente ns uniddes (converter tudo pr S.I. e tender às potêncis de 10). Fzer um

Leia mais

Suponha que X tem distribuição Beta com parâmetros a e b. Mostre que Y = 1- X tem distribuição Beta com parâmetros b e a.

Suponha que X tem distribuição Beta com parâmetros a e b. Mostre que Y = 1- X tem distribuição Beta com parâmetros b e a. ENCE CÁLCULO DE PROBABILIDADE II Seesre 9. Prof. Monic Brros Lis de exercícios soluções Proble Suponh que X e disribuição Be co prâeros e b. Mosre que Y - X e disribuição Be co prâeros b e. Noe que X é

Leia mais

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2

DETERMINANTES. Notação: det A = a 11. Exemplos: 1) Sendo A =, então det A = DETERMINANTE DE MATRIZES DE ORDEM 2 DETERMINANTES A tod mtriz qudrd ssoci-se um número, denomindo determinnte d mtriz, que é obtido por meio de operções entre os elementos d mtriz. Su plicção pode ser verificd, por exemplo, no cálculo d

Leia mais

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo

FUNÇÃO LOGARITMICA. Professora Laura. 1 Definição de Logaritmo 57 FUÇÃO LOGARITMICA Professor Lur 1 Definição de Logritmo Chm se logritmo de um número > 0 em relção um bse (0 < 1), o expoente que se deve elevr bse, fim de que potênci obtid sej igul. log, onde: > 0,

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i =

dx f(x) dx p(x). dx p(x) + dx f (n) n! i=1 f(x i) l i (x) ), a aproximação seria então dada por f(x i ) l i (x) = i=1 i=1 C i f(x i ), i=1 C i = Cpítulo 7 Integrção numéric 71 Qudrtur por interpolção O método de qudrtur por interpolção consiste em utilizr um polinômio interpolnte p(x) pr proximr o integrndo f(x) no domínio de integrção [, b] Dess

Leia mais

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são:

5) Para b = temos: 2. Seja M uma matriz real 2 x 2. Defina uma função f na qual cada elemento da matriz se desloca para a posição. e as matrizes são: MATEMÁTIA Sej M um mtriz rel x. Defin um função f n qul cd elemento d mtriz se desloc pr posição b seguinte no sentido horário, ou sej, se M =, c d c implic que f (M) =. Encontre tods s mtrizes d b simétrics

Leia mais

2. Prisma de base hexagonal: formado 8 faces, 2 hexágonos (bases), 6 retângulos (faces laterais).

2. Prisma de base hexagonal: formado 8 faces, 2 hexágonos (bases), 6 retângulos (faces laterais). unifmu Nome: Professor: Ricrdo Luís de Souz Curso de Design Mtemátic Aplicd Atividde Explortóri V Turm: Dt: SÓLIDOS GEOMÉTRICOS: CÁLCULO DE ÁREA SUPERFICIAL E DE VOLUME Objetivo: Conecer e nomer os principis

Leia mais

DERIVADAS DAS FUNÇÕES SIMPLES12

DERIVADAS DAS FUNÇÕES SIMPLES12 DERIVADAS DAS FUNÇÕES SIMPLES2 Gil d Cost Mrques Fundentos de Mteátic I 2. Introdução 2.2 Derivd de y = n, n 2.2. Derivd de y = / pr 0 2.2.2 Derivd de y = n, pr 0, n =,, isto é, n é u núero inteiro negtivo

Leia mais

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}.

Exemplo: y 3, já que sen 2 e log A matriz nula m n, indicada por O m n é tal que a ij 0, i {1, 2, 3,..., m} e j {1, 2, 3,..., n}. Mrzes Mrz rel Defnção Sem m e n dos números neros Um mrz rel de ordem m n é um conuno de mn números res, dsrbuídos em m lnhs e n coluns, formndo um bel que se ndc em gerl por 9 Eemplo: A mrz A é um mrz

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

Integrais Imprópias Aula 35

Integrais Imprópias Aula 35 Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção

Leia mais

Nível 7ªe 8ªséries (8º e 9º anos) do Ensino Fundamental

Nível 7ªe 8ªséries (8º e 9º anos) do Ensino Fundamental Nível 7ªe 8ªséries (8º e 9º nos) do Ensino Fundmentl 2ªFASE 20 de outubro de 2007 2 Prbéns pelo seu desempenho n 1ª Fse d OBMEP. É com grnde stisfção que contmos gor com su prticipção n 2ª Fse. Desejmos

Leia mais

CURSO de FÍSICA - Gabarito

CURSO de FÍSICA - Gabarito UNIVERSIDADE FEDERAL FLUMINENSE TRANSFERÊNCIA o semestre letivo de 010 e 1 o semestre letivo de 011 CURSO de FÍSICA - Gbrito Verifique se este cderno contém: PROVA DE REDAÇÃO com um propost; INSTRUÇÕES

Leia mais

CPV O cursinho que mais aprova na GV

CPV O cursinho que mais aprova na GV O cursinho que mis prov n GV FGV Administrção 04/junho/006 MATEMÁTICA 0. Pulo comprou um utomóvel fle que pode ser bstecido com álcool ou com gsolin. O mnul d montdor inform que o consumo médio do veículo

Leia mais

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x).

GABARITO. 2 Matemática A. 08. Correta. Note que f(x) é crescente, então quanto menor for o valor de x, menor será sua imagem f(x). Eensivo V. Eercícios ) D y = log ( + ) Pr = : y = log ( + ) y = log y = Noe que o gráfico pss pel origem. Porno, únic lerniv possível é D. ) M + = log B B M + = log B B M + = log + log B B Como M = log

Leia mais

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas

Matemática. Resolução das atividades complementares. M13 Progressões Geométricas Resolução ds tividdes complementres Mtemátic M Progressões Geométrics p. 7 Qul é o o termo d PG (...)? q q? ( ) Qul é rzão d PG (...)? q ( )? ( ) 8 q 8 q 8 8 Três números reis formm um PG de som e produto

Leia mais

GRUPO I. Espaço de rascunho: G 2 10

GRUPO I. Espaço de rascunho: G 2 10 GRUPO I I.1) Considere o seguinte grfo de estdos de um problem de procur. Os vlores presentdos nos rcos correspondem o custo do operdor (cção) respectivo, enqunto os vlores nos rectângulos correspondem

Leia mais

Comprimento de arco. Universidade de Brasília Departamento de Matemática

Comprimento de arco. Universidade de Brasília Departamento de Matemática Universidde de Brsíli Deprtmento de Mtemátic Cálculo Comprimento de rco Considerefunçãof(x) = (2/3) x 3 definidnointervlo[,],cujográficoestáilustrdo bixo. Neste texto vmos desenvolver um técnic pr clculr

Leia mais

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano)

LISTA PREPARATÓRIA PARA RECUPERAÇÃO FINAL MATEMÁTICA (9º ano) PARTE I ) Determine s potêncis: ) 4 = b) - = ) Escrev usndo potênci de bse 0: ) 7 bilhões: b) um milionésimo: ) Trnsforme os números ddos em potencições e simplifique epressão: 0000000 00000 5 = 4) Escrev

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Lingugens Formis e Autômtos - 0 emestre 2006 Professor : ndr Aprecid de Amo List de Exercícios n o - 4/08/2006 Observção : os exercícios

Leia mais

Função Modular. x, se x < 0. x, se x 0

Função Modular. x, se x < 0. x, se x 0 Módulo de um Número Rel Ddo um número rel, o módulo de é definido por:, se 0 = `, se < 0 Observção: O módulo de um número rel nunc é negtivo. Eemplo : = Eemplo : 0 = ( 0) = 0 Eemplo : 0 = 0 Geometricmente,

Leia mais

CAPÍTULO EXERCÍCIOS pg. 127

CAPÍTULO EXERCÍCIOS pg. 127 CAPÍTULO. EXERCÍCIOS pg.. Deerinr equção d re ngene às seguines curvs, nos ponos indicdos. Esboçr o gráico e cd cso..,,, ; R.. As igurs que segue osr s res ngenes pr os ponos e. Coo o vlor de é genérico

Leia mais

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c.

EQUAÇÃO DO 2 GRAU. Seu primeiro passo para a resolução de uma equação do 2 grau é saber identificar os valores de a,b e c. EQUAÇÃO DO GRAU Você já estudou em série nterior s equções do 1 gru, o gru de um equção é ddo pelo mior expoente d vriável, vej lguns exemplos: x + = 3 equção do 1 gru já que o expoente do x é 1 5x 8 =

Leia mais

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA

UM MÉTODO RÁPIDO PARA ANÁLISE DO COMPORTAMENTO TÉRMICO DO ENROLAMENTO DO ESTATOR DE MOTORES DE INDUÇÃO TRIFÁSICOS DO TIPO GAIOLA ART643-07 - CD 262-07 - PÁG.: 1 UM MÉTD RÁPID PARA ANÁLISE D CMPRTAMENT TÉRMIC D ENRLAMENT D ESTATR DE MTRES DE INDUÇÃ TRIFÁSICS D TIP GAILA 1 - RESUM Jocélio de Sá; João Robero Cogo; Hécor Arango. objeivo

Leia mais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais

Professores Edu Vicente e Marcos José Colégio Pedro II Departamento de Matemática Potências e Radicais POTÊNCIAS A potênci de epoente n ( n nturl mior que ) do número, representd por n, é o produto de n ftores iguis. n =...... ( n ftores) é chmdo de bse n é chmdo de epoente Eemplos =... = 8 =... = PROPRIEDADES

Leia mais

Alocação sequencial - Pilhas

Alocação sequencial - Pilhas Alocção seqüencil - pilhs Alocção sequencil - Pilhs Pilhs A estrutur de ddos Pilh é bstnte intuitiv. A nlogi é um pilh de prtos. Se quisermos usr um pilh de prtos com máxim segurnç, devemos inserir um

Leia mais

EDITAL 001/2017 SELEÇÃO DE BOLSISTAS

EDITAL 001/2017 SELEÇÃO DE BOLSISTAS EDITAL 001/2017 SELEÇÃO DE BOLSISTAS O coordendor dos projetos de pesquis e desenvolvimento institucionl nº 034280, 042571, 042576, torn públic bertur de inscrições pr seleção de lunos dos cursos de grdução

Leia mais

Semelhança e áreas 1,5

Semelhança e áreas 1,5 A UA UL LA Semelhnç e áres Introdução N Aul 17, estudmos o Teorem de Tles e semelhnç de triângulos. Nest ul, vmos tornr mis gerl o conceito de semelhnç e ver como se comportm s áres de figurs semelhntes.

Leia mais

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial

1º semestre de Engenharia Civil/Mecânica Cálculo 1 Profa Olga (1º sem de 2015) Função Exponencial º semestre de Engenhri Civil/Mecânic Cálculo Prof Olg (º sem de 05) Função Eponencil Definição: É tod função f: R R d form =, com R >0 e. Eemplos: = ; = ( ) ; = 3 ; = e Gráfico: ) Construir o gráfico d

Leia mais

Roteiro-Relatório da Experiência N o 6 ASSOCIAÇÃO DE QUADRIPOLOS SÉRIE - PARALELO - CASCATA

Roteiro-Relatório da Experiência N o 6 ASSOCIAÇÃO DE QUADRIPOLOS SÉRIE - PARALELO - CASCATA UNERSDADE DO ESTADO DE SANTA CATARNA UDESC FACULDADE DE ENGENHARA DE JONLLE FEJ DEPARTAMENTO DE ENGENHARA ELÉTRCA CRCUTOS ELÉTRCOS CEL PROF.: CELSO JOSÉ FARA DE ARAÚJO RoteiroReltório d Experiênci N o

Leia mais

Faculdade de Computação

Faculdade de Computação UNIVERIDADE FEDERAL DE UBERLÂNDIA Fculdde de Computção Disciplin : Teori d Computção Professor : ndr de Amo Revisão de Grmátics Livres do Contexto (1) 1. Fzer o exercicio 2.3 d págin 128 do livro texto

Leia mais

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais.

EXPOENTE. Podemos entender a potenciação como uma multiplicação de fatores iguais. EXPOENTE 2 3 = 8 RESULTADO BASE Podeos entender potencição coo u ultiplicção de ftores iguis. A Bse será o ftor que se repetirá O expoente indic qunts vezes bse vi ser ultiplicd por el es. 2 5 = 2. 2.

Leia mais

Prova I - Modelagem e Simulação - 22/04/2008

Prova I - Modelagem e Simulação - 22/04/2008 nome: 1)[2.0] Considere o méodo de previsão de Hol & Winers dado abaixo. Quais os parâmeros (e variáveis) que devem ser fornecidos (inicializados) a priori para m (período sazonal) qualquer? X L = α +

Leia mais

Redes de Computadores

Redes de Computadores Inrodução Ins iuo de Info ormáic ca - UF FRGS Redes de Compuadores Conrole de fluxo Revisão 6.03.015 ula 07 Comunicação em um enlace envolve a coordenação enre dois disposiivos: emissor e recepor Conrole

Leia mais