2.1. Integrais Duplos (definição de integral duplo)

Tamanho: px
Começar a partir da página:

Download "2.1. Integrais Duplos (definição de integral duplo)"

Transcrição

1 Análise Mtemáti II- no letivo 6/7.. Integris uplos (efinição e integrl uplo) Pr melhor ompreener efinição e integrl uplo vmos omeçr por olor o seguinte esfio: Tene eterminr o volume o sólio que está im o quro x y e ixo o prolóie elíptio z = 6 x y. ivi R em quros iguis e esolh o ponto mostr omo seno o nto superior ireito e quro R. Fç um esoço o sólio e s ixs ij retngulres proxims. Resolução: Fzeno o álulo proximo o volume fi: V f ( xi, yi ) A = f (,) A + f (,) A + f (,) A + f (,) A i= j= =()+7()+()+4()=4 Como se o volume otio é um vlor por efeito o volume pretenio. 4ª ul teóri pág. 7

2 Análise Mtemáti II- no letivo 6/7 No entnto, repre que otemos melhor proximção o volume quno umentmos o número e quros. As figurs seguintes mostrm omo s oluns omeçm preer mis om o volume pretenio. m=n=4, v=4,5 m=n=8, v=44,875 m=n=6, v=46,468 Como se etermin o volume exto? Otém o volume exto quno n e m tener pr volume é o pelo seguinte limite : +, ou sej o lim m n + + m n f ( xij, yij ) A = i= j= Ao limite nterior (so exist) hm-se integrl uplo função f(x, ssente no omínio e integrção. Se f(x, pr x, (, orrespone o volume o sólio limito inferiormente pelo plno xy, lterlmente pel superfíie ilínri uj iretriz é fronteir e e superiormente pel superfíie z=f(x,. 4ª ul teóri pág. 8

3 Análise Mtemáti II- no letivo 6/7 Então o volume orreto é o pelo integrl uplo ujo omínio e integrção é o quro e lo e função integrr é que efine superfíie o prolóie elíptio. x 88 V = 6 x y = 6 x y x y = 4y = y = y 4y (mis à frente vi prener lulr este tipo e integris e poer ssim resolver prolems que envolvm o álulo e volumes). Propriees o integrl uplo Sejm f e g: R, om feho e limito, f e g funções ontinus, K (onstnte) R, então: R ) + g( x, = + f g( x, ) = k kf ) = = + Teorem e Fuini Se f(x, for ontínu no retângulo efinio pel região x, y R : x y, então: { } = ( ) A = yx = 4ª ul teóri pág. 9

4 Análise Mtemáti II- no letivo 6/7.. Cálulo e integris uplos Teorem. Sej R um onjunto feho e limito, o tipo = { R : x ψ( y ψ ( } e f : R ontínu, então: ψ ( = y x ψ( y =ψ ( y =ψ ( Not: y ψ ( x ) e y = ψ ( = são funções ontínus. Cálulo o integrl ψ ( x ψ( x = ) y x = ψ ( ) ψ x [ Fy ] ( ) x = Fy ψ ( ) Fy ψ ( )x Teorem.4 Sej R um onjunto feho e limito, o tipo = { R : y ϕ( x ϕ( }, e f: R ontínu, então: ϕ ( = x y ϕ( x = ϕ (y ) x = ϕ ( Not: x ϕ ( y ) e x = ϕ( = são funções ontínus. 4ª ul teóri pág.

5 Análise Mtemáti II- no letivo 6/7 Cálulo o integrl ϕ ( y ϕ( y = ) x y = ϕ( ) ϕ y [ Fx ] ( ) y = Fx ( ϕ(, Fx ( ϕ (, y Exemplos: ) (x + y ) yx, o omínio é limito por: x=, x=, y=, y=x, seno = { R : y x y x )} ) ( x.4. Algums Aplições os Integris uplos Cálulo e áres Sej um onjunto feho e limito, então áre e é por: Are( ) = Exemplo: lule áre o onjunto {(, ) : } = x y R y x x + x Cálulo e Volumes Se z = o, R ( x,, ( feho e limito) e z ontínu, então o volume o sólio efinio inferiormente pelo plno xy, superiormente por f e lterlmente pel gertriz ssente n fronteir e é o seguinte: V = f ( x, y ) 4ª ul teóri pág.

6 Análise Mtemáti II- no letivo 6/7 Exemplos: ) Clule o volume e um uo e lo. ) Clule o volume o sólio limito pelo prolóie e pelo plno z =. z = 4 x y Cálulo áre e superfíies Áre superfíie z = (,, x, é por: σ = + f x + f y.5. Integris uplos em oorens polres. Cálulo e áres Sej um omínio regulr, isto é pr α θ β, ret θ = θ interset φ e φ (em e respetivmente) e o segmento e ret [, ] está totlmente ontio em, então áre e è por: A = ρ ρ θ = β φ = A = α φ ρρθ φ φ θ = θ Exemplos: () Clulr áre e um irunferêni e rio R em oorens polres utilizno os integris uplos () Clulr áre, em. polres, efini pelo onjunto A. ρ, θ, +, π : ρ + sen θ ρ A= {( ) [ [ [ [ } 4ª ul teóri pág.

7 Análise Mtemáti II- no letivo 6/7 Cálulo e volumes Sej F( θ ρ) z=, superiormente pelo gráfio e F( θ ρ),, o volume limito inferiormente pelo plno, e lterlmente pels gertrizes ssentes n fronteir e é o seguinte: V = F ( θ, ρ) ρ ρ θ Exemplo: etermine o volume esfer z + x + y = R 4 R Sol. π 4ª ul teóri pág.

Integrais duplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 24. Assunto: Integrais Duplas

Integrais duplas UNIVERSIDADE FEDERAL DO PARÁ CÁLCULO II - PROJETO NEWTON AULA 24. Assunto: Integrais Duplas Assunto: Integris Dupls UNIVESIDADE FEDEAL DO PAÁ CÁLCULO II - POJETO NEWTON AULA 24 Plvrs-hves: integris dupls,soms de iemnn, teorem de Fubini Integris dupls Sej o retângulo do plno rtesino ddo por {(x,

Leia mais

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS

CÁLCULO DIFERENCIAL E INTEGRAL II INTEGRAIS MÚLTIPLAS CÁLCULO IFEENCIAL E INTEGAL II INTEGAIS MÚLTIPLAS A ierenç prinipl entre Integrl eini F ) F ) e s Integris Múltipls resie no to e que, em lugr e omeçrmos om um prtição o intervlo [, ], suiviimos um região

Leia mais

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009

PROVA MATRIZ DE MATEMÁTICA EFOMM-2009 PROVA MATRIZ DE MATEMÁTICA EFOMM-009 ª Questão: Qul é o número inteiro ujo prouto por 9 é um número nturl omposto pens pelo lgrismo? (A) 459 4569 (C) 45679 (D) 45789 (E) 456789 ª Questão: O logotipo e

Leia mais

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R.

02. Resolva o sistema de equações, onde x R. x x Solução: (1 3 1) Faça 3x + 1 = y 2, daí: 02. Resolva o sistema de equações, onde x R e y R. GGE ESPONDE 7 ATEÁTICA Prov Disursiv. Sej um mtriz rel. Defin um função n qul element mtriz se eslo pr posição seguinte no sentio horário, sej, se,impli que ( ) f. Enontre tos s mtrizes simétris reis n

Leia mais

Resumo com exercícios resolvidos do assunto: Aplicações da Integral

Resumo com exercícios resolvidos do assunto: Aplicações da Integral www.engenhrifcil.weely.com Resumo com exercícios resolvidos do ssunto: Aplicções d Integrl (I) (II) (III) Áre Volume de sólidos de Revolução Comprimento de Arco (I) Áre Dd um função positiv f(x), áre A

Leia mais

3. CÁLCULO INTEGRAL EM IR

3. CÁLCULO INTEGRAL EM IR 3 CÁLCULO INTEGRAL EM IR A importâni do álulo integrl em IR reside ns sus inúmers plições em vários domínios d engenhri, ms tmém em ísi, em teori ds proiliddes, em eonomi, em gestão 3 Prtição de um intervlo

Leia mais

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes:

Bateria de Exercícios Matemática II. 1 Determine os valores de x e y, sabendo que os triângulos ABC e DEF são semelhantes: Colégio: Nome: nº Sem limite pr reser Professor(): Série: 1ª EM Turm: Dt: / /2013 Desonto Ortográfio: Not: Bteri de Exeríios Mtemáti II 1 Determine os vlores de x e y, sendo que os triângulos ABC e DEF

Leia mais

Cálculo 1 - Cálculo Integral Teorema Fundamental do Cálculo

Cálculo 1 - Cálculo Integral Teorema Fundamental do Cálculo Cálulo 1 - Cálulo Integrl Teorem Fundmentl do Cálulo Prof. Fbio Silv Botelho November 17, 2017 1 Resultdos Preliminres Theorem 1.1. Sej f : [,b] R um função ontínu em [,b] e derivável em (,b). Suponh que

Leia mais

VETORES. Problemas Resolvidos

VETORES. Problemas Resolvidos Prolems Resolvidos VETORES Atenção Lei o ssunto no livro-teto e ns nots de ul e reproduz os prolems resolvidos qui. Outros são deidos pr v. treinr PROBLEMA 1 Dois vetores, ujos módulos são de 6e9uniddes

Leia mais

MÉTODO DA SUBSTITUIÇÃO OU MUDANÇA DE VARIÁVEL PARA INTEGRAÇÃO. As fórmulas de primitivação não mostram como calcular as integrais Indefinidas do tipo

MÉTODO DA SUBSTITUIÇÃO OU MUDANÇA DE VARIÁVEL PARA INTEGRAÇÃO. As fórmulas de primitivação não mostram como calcular as integrais Indefinidas do tipo MÉTODO DA SUBSTITUIÇÃO OU MUDANÇA DE VARIÁVEL PARA INTEGRAÇÃO As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 ou os(4x) Ms lgums vezes, é possível determir itegrl de um dd

Leia mais

Integrais Múltiplos. Capítulo 5

Integrais Múltiplos. Capítulo 5 Cpítulo 5 Integris Múltiplos Neste pítulo vmos generlizr noção de integrl de um função rel de vriável rel, estendendo- o so de funções reis de vriável vetoril, f : D R m R. No âmbito ds funções de um vriável,

Leia mais

3 Integral Indefinida

3 Integral Indefinida 3 Itegrl Idefiid 3. Método d Sustituição (ou Mudç de Vriável) pr Itegrção As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 Ms lgums vezes, é possível determir itegrl de um

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 1º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tem II Introdução o Cálulo Diferenil II Tref nº 1 do plno de trlho nº 7 Pr levr o est tref pode usr su luldor ou o sketh fmilis.gsp

Leia mais

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia.

Prova elaborada pelo prof. Octamar Marques. Resolução da profa. Maria Antônia Conceição Gouveia. ª AVALIAÇÃO DA ª UNIDADE ª SÉRIE DO ENSINO MÉDIO DISCIPLINA: MATEMÁTICA Prov elord pelo prof. Otmr Mrques. Resolução d prof. Mri Antôni Coneição Gouvei.. Dispondo de livros de mtemáti e de físi, qunts

Leia mais

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta

MÉTODOS MATEMÁTICOS 2 a Aula. Claudia Mazza Dias Sandra Mara C. Malta MÉTODOS MATEMÁTICOS Aul Clui Mzz Dis Snr Mr C. Mlt Introução o Conceito e Derivs Noção: Velocie Méi Um utomóvel é irigio trvés e um estr cie A pr cie B. A istânci s percorri pelo crro epene o tempo gsto

Leia mais

1 Integral de Riemann-Sieltjes

1 Integral de Riemann-Sieltjes Cálulo Avnçdo - 2009 Referêni: Brtle, R. G. The Elements of Rel Anlysis, Seond Edition, Wiley. 1 Integrl de Riemnn-Sieltjes 1.1 Definição No que segue vmos onsiderr f e g funções reis definids em J = [,

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? Cálculo II Prof. Adrin Cherri 1 INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região

Leia mais

Álgebra Linear e Geometria Analítica D

Álgebra Linear e Geometria Analítica D 3 Deprtmento de Mtemáti Álgebr Liner e Geometri Anlíti D Segundo Teste 6 de Jneiro de 2 PREENCHA DE FORMA BEM LEGÍVEL Nome: Número de derno: Grelh de Resposts A B C D 2 3 4 5 Atenção Os primeiros 5 grupos

Leia mais

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli

Introdução à Integral Definida. Aula 04 Matemática II Agronomia Prof. Danilene Donin Berticelli Introdução à Integrl Definid Aul 04 Mtemátic II Agronomi Prof. Dnilene Donin Berticelli Áre Desde os tempos mis ntigos os mtemáticos se preocupm com o prolem de determinr áre de um figur pln. O procedimento

Leia mais

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana.

INTEGRAL DEFINIDO. O conceito de integral definido está relacionado com um problema geométrico: o cálculo da área de uma figura plana. INTEGRAL DEFINIDO O oneito de integrl definido está reliondo om um prolem geométrio: o álulo d áre de um figur pln. Vmos omeçr por determinr áre de um figur delimitd por dus rets vertiis, o semi-eio positivo

Leia mais

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2

CÁLCULO I. Teorema 1 (Teorema Fundamental do Cálculo I). Se f for contínua em [a, b], então. f(x) dx = F (b) F (a) x dx = F (b) F (a), x dx = x2 2 CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Aul n o 5: Teorem Fundmentl do Cálculo I. Áre entre grácos. Objetivos d Aul Apresentr o Teorem Fundmentl do Cálculo (Versão Integrl).

Leia mais

Interpretação Geométrica. Área de um figura plana

Interpretação Geométrica. Área de um figura plana Integrl Definid Interpretção Geométric Áre de um figur pln Interpretção Geométric Áre de um figur pln Sej f(x) contínu e não negtiv em um intervlo [,]. Vmos clculr áre d região S. Interpretção Geométric

Leia mais

1 Integral Indefinida

1 Integral Indefinida Itegrl Idefiid. Método d Sustituição (ou Mudç de Vriável) pr Itegrção As fórmuls de primitivção ão mostrm omo lulr s itegris Idefiids do tipo 5x + 7 Ms lgums vezes, é possível determir itegrl de um dd

Leia mais

Cálculo IV EP1 Aluno

Cálculo IV EP1 Aluno Fundação Centro de Ciênias e Eduação Superior a istânia do Estado do Rio de Janeiro Centro de Eduação Superior a istânia do Estado do Rio de Janeiro Cálulo IV EP Aluno Objetivos Aula Integrais uplas Compreender

Leia mais

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na

Se entregar em papel, por favor, prenda esta folha de rosto na sua solução desta lista, deixando-a em branco. Ela será usada na 1 2 Cálculo Numérico List numero 04 Curvs com gnuplot trcisio.prcino@gmil.com T. Prcino-Pereir Dep. e Computção lun@: 17 e bril e 2013 Univ. Estul Vle o Acrú Documento escrito com L A TEX sis. op. Debin/Gnu/Linux

Leia mais

16.4. Cálculo Vetorial. Teorema de Green

16.4. Cálculo Vetorial. Teorema de Green ÁLULO VETORIAL álculo Vetoril pítulo 6 6.4 Teorem de Green Nest seção, prenderemos sore: O Teorem de Green pr váris regiões e su plicção no cálculo de integris de linh. INTROUÇÃO O Teorem de Green fornece

Leia mais

GGE RESPONDE IME MATEMÁTICA Determine os valores reais de x que satisfazem a inequação:

GGE RESPONDE IME MATEMÁTICA Determine os valores reais de x que satisfazem a inequação: . Determine os vores reis e x que stisfzem inequção: x IR e X og x og 9 x² x og x og Fzeno x og, temos: ( ) ( ) ( ) ² ² ² ² + + + + + + - - - - - - - - - - - - - - - - - - + + + - + + + - - - + + + + +

Leia mais

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e

2.) O grafo de interseção de uma coleção de conjuntos A1;A2;...;An é o grafo que tem um vértice para cada um dos conjuntos da coleção e UDESC DCC BCC DISCIPLINA : TEG0001 Teori os Grfos PRIMEIRA LISTA DE EXERCÍCIOS 1.) Ientifique pr um os três grfos ixo:. número e nós e ros;. o gru e nó;. Compre som e toos os grus os nós e grfo om o número

Leia mais

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU

Matemática Régis Cortes FUNÇÃO DO 2 0 GRAU FUNÇÃO DO 2 0 GRAU 1 Fórmul de Bháskr: x 2 x 2 4 2 Utilizndo fórmul de Bháskr, vmos resolver lguns exeríios: 1) 3x²-7x+2=0 =3, =-7 e =2 2 4 49 4.3.2 49 24 25 Sustituindo n fórmul: x 2 7 25 2.3 7 5 7 5

Leia mais

S o l u ç ã o d o s i m u l a d o 01

S o l u ç ã o d o s i m u l a d o 01 S o l u ç ã o d o s i m u l a d o 01 Questão 1 160% 100% 160. 6000 60% 6000 7,5% 160 esposta: Letra e UT SLUÇÃ 160% 100% 6,5% 100% % redução é 100-6,5 7,5% Questão Vamos usar a Média ritmétia 1 + Média

Leia mais

Métodos Numéricos Integração Numérica Regra de Simpson. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina

Métodos Numéricos Integração Numérica Regra de Simpson. Professor Volmir Eugênio Wilhelm Professora Mariana Kleina Métodos Numérios Integrção Numéri Regr de Simpson Proessor Volmir Eugênio Wilelm Proessor Mrin Klein Revisão Integrção Numéri n d p d p I ()d p... m m n n- mn d As ténis mis omuns de integrção numéri são:

Leia mais

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral

Escola Superior de Agricultura Luiz de Queiroz Universidade de São Paulo. Módulo I: Cálculo Diferencial e Integral Escol Superior de Agricultur Luiz de Queiroz Universidde de São Pulo Módulo I: Cálculo Diferencil e Integrl Teori d Integrção e Aplicções Professor Rent Alcrde Sermrini Nots de ul do professor Idemuro

Leia mais

Aula. Transformações lineares hlcs

Aula. Transformações lineares hlcs UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE Aul Álger Liner Trnsformções lineres hls Resumo Trnsformções lineres Definição Núleo Imgem Definição Relção entre espços vetoriis Preservção e operções* Aplição

Leia mais

Cálculo a uma Variável

Cálculo a uma Variável Cálculo um Vriável Sinésio Pesco CAP 9 - A Integrl (Integrção Numéric) Som de Riemnn Podemos usr som de Riemnn pr clculr um proximção pr integrl dx. Pr isso em cd suintervlo [x i,x i ] sustituimos integrl

Leia mais

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura.

Definição 1. (Volume do Cilindro) O volume V de um um cilindro reto é dado pelo produto: V = area da base altura. Cálculo I Aul 2 - Cálculo de Volumes Dt: 29/6/25 Objetivos d Aul: Clculr volumes de sólidos por seções trnsversis Plvrs-chves: Seções Trnsversis - Volumes Volume de um Cilindro Nosso objetivo nest unidde

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x?

INTEGRAIS DEFINIDAS. Como determinar a área da região S que está sob a curva y = f(x) e limitada pelas retas verticais x = a, x = b e pelo eixo x? INTEGRAIS DEFINIDAS O Prolem d Áre Como determinr áre d região S que está so curv y = f(x) e limitd pels rets verticis x =, x = e pelo eixo x? Um idei é proximrmos região S utilizndo retângulos e depois

Leia mais

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra de Simpson

TP062-Métodos Numéricos para Engenharia de Produção Integração Numérica Regra de Simpson TP6-Métodos Numérios pr Engenri de Produção Integrção Numéri Regr de Simpson Pro. Volmir Wilelm Curiti, Revisão Integrção Numéri n d p d p I ()d p... m m n n- mn d As ténis mis omuns de integrção numéri

Leia mais

Integrais impróprias - continuação Aula 36

Integrais impróprias - continuação Aula 36 Integris imprópris - continução Aul 36 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 06 de Junho de 204 Primeiro Semestre de 204 Turm 20406 - Engenhri Mecânic Alexndre Nolsco de

Leia mais

Aula 29 Aplicações de integrais Áreas e comprimentos

Aula 29 Aplicações de integrais Áreas e comprimentos Aplicções de integris Áres e comprimentos MÓDULO - AULA 9 Aul 9 Aplicções de integris Áres e comprimentos Objetivo Conhecer s plicções de integris no cálculo d áre de um superfície de revolução e do comprimento

Leia mais

Integrais Impróprios

Integrais Impróprios Integris Impróprios Extendem noção de integrl intervlos não limitdos e/ou funções não limitds Os integris impróprios podem ser dos seguintes tipos: integris impróprios de 1 espéie v qundo os limites de

Leia mais

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux.

4.1 Definição e interpretação geométrica de integral definido. Somas de Darboux. Aálse Memá I - Ao Levo 006/007 4- Cálulo Iegrl emr 4. Defção e erpreção geomér de egrl defdo. Soms de Drou. Def.4.- Sej f() um fução oíu o ervlo [, ]. M e m o mámo e o mímo vlor d fução, respevmee. Se

Leia mais

UNIVERSIDADE FEDERAL DO AMAPÁ. Tópicos Especiais de Matemática Aplicada

UNIVERSIDADE FEDERAL DO AMAPÁ. Tópicos Especiais de Matemática Aplicada UNIVERSIDADE FEDERAL DO AMAPÁ Tópicos Especiis de Mtemátic Aplicd Márleson Rôndiner dos Sntos Ferreir mrleson p@yhoo.com.br Unifp-AP 23/junho/2010 Universidde Federl do Ampá 1 INTEGRAIS DE LINHA E SUPERFÍIE

Leia mais

Integrais Imprópias Aula 35

Integrais Imprópias Aula 35 Frções Prciis - Continução e Integris Imprópis Aul 35 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 05 de Junho de 203 Primeiro Semestre de 203 Turm 20304 - Engenhri de Computção

Leia mais

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z.

raio do disco: a; carga do disco: Q; distância ao ponto onde se quer o campo elétrico: z. Um disco de rio está crregdo niformemente com m crg Q. Clcle o vetor cmpo elétrico: ) Nm ponto P sobre o eixo de simetri perpendiclr o plno do disco m distânci do se centro. b) No cso em qe o rio d plc

Leia mais

1 Áreas de figuras planas

1 Áreas de figuras planas Nome: n o : Ensino: Médio érie: ª. Turm: Dt: Professor: Mário esumo 1 Áres de figurs plns 1.1 etângulo h. h 1. Qudrdo 1. Prlelogrmo h. h 1.4 Trpézio h B h B 1.5 Losngo d Dd. D 1.6 Triângulos 1.6.1 Triângulo

Leia mais

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule:

c) S = S = log 4 (log 3 9) + log 2 (log 81 3) + log 0,8 (log 16 32) 8. Calcule: Aulão Esprtno Os 00 e Logritmo Prof Pero Felippe Definição Clule pel efinição os seguintes ritmos: ) (/8) ) 8 ) 0,5 Clule pel efinição os seguintes ritmos: ) 6 ) 7 (/7) ) 9 (/7) ) (/9) e) 7 8 f) 0,5 8

Leia mais

TÓPICOS DE MATEMÁTICA

TÓPICOS DE MATEMÁTICA INSTITUTO SUPERIOR DE CONTABILIDADE E ADMINISTRAÇÃO DE COIMBRA SOLICITADORIA E ADMINISTRAÇÃO TÓPICOS DE MATEMÁTICA CÁLCULO EM R I.Revisões Cálulo om frções Reore que, pr, Not:...3.4 R e, R \ {0}: + + pois

Leia mais

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos

CÁLCULO I. 1 Volume. Objetivos da Aula. Aula n o 25: Volume por Casca Cilíndrica e Volume por Discos CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o 25: Volume por Csc Cilíndric e Volume por Discos Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo técnic do volume por csc

Leia mais

AULA: Superfícies Quádricas

AULA: Superfícies Quádricas AULA: Superfíies Quádris Definição : Um equção gerl do gru em três vriáveis é um equção do tipo: A B C D E F G H I J (I), om pelo menos um ds onstntes A, B, C, D, E ou F é diferente de ero. Definição :

Leia mais

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES

Todos os exercícios sugeridos nesta apostila se referem ao volume 2. MATEMÁTICA III 1 DETERMINANTES INTRODUÇÃO... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... DETERMINANTE DE MATRIZ DE ORDEM... PROPRIEDADES DOS DETERMINANTES... 8 REGRA DE CHIÓ... MENOR COMPLEMENTAR... COFATOR...

Leia mais

Lista de Exercícios Vetores Mecânica da Partícula

Lista de Exercícios Vetores Mecânica da Partícula List de Eeríios Vetores Meâni d Prtíul 01) Ddos os vetores e, ujos módulos vlem, respetivmente, 6 e 8, determine grfimente o vetor som e lule o seu módulo notções 0) Ddos os vetores, e, represente grfimente:

Leia mais

MTDI I /08 - Integral de nido 55. Integral de nido

MTDI I /08 - Integral de nido 55. Integral de nido MTDI I - 7/8 - Integrl de nido 55 Integrl de nido Sej f um função rel de vriável rel de nid e contínu num intervlo rel I [; b] e tl que f (x) ; 8x [; b]: Se dividirmos [; b] em n intervlos iguis, mplitude

Leia mais

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral.

CÁLCULO I. Apresentar a técnica de integração por substituição; Utilizar técnicas apresentadas no cálculo integral. CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Auls n o 8: Técnics de Integrção I - Método d Substituição Objetivos d Aul Apresentr técnic de integrção por substituição; Utilizr técnics presentds

Leia mais

Geometria Analítica e Álgebra Linear

Geometria Analítica e Álgebra Linear NOS DE UL Geometri nlíti e Álger Liner rnsformções Lineres Professor: Lui Fernndo Nunes Dr 8/Sem_ Geometri nlíti e Álger Liner ii Índie 6 rnsformções Lineres 6 Definição 6 Imgem de um trnsformção liner

Leia mais

AULA 7 EFICIÊNCIA E EFETIVIDADE DE ALETAS

AULA 7 EFICIÊNCIA E EFETIVIDADE DE ALETAS 49 UL 7 EFICIÊNCI E EFETIVIDDE DE LETS Efiiêni de let teori desenvolvid n ul nterior é stnte útil pr um nálise em detlhes pr o projeto de novs onfigurções e geometris de lets. Pr lguns sos simples, existem

Leia mais

Sólidos semelhantes. Segmentos proporcionais Área Volume

Sólidos semelhantes. Segmentos proporcionais Área Volume Sólios semelntes Segmentos proporcionis Áre olume Sólios semelntes Consiere um pirâmie cuj se é um polígono qulquer: Se seccionrmos ess pirâmie por um plno prlelo à se, iiiremos pirâmie em ois outros sólios:

Leia mais

e b ij = , se i = j i 2 + j 2 i 3 j 3 b ij =

e b ij = , se i = j i 2 + j 2 i 3 j 3 b ij = Universie Feerl e Ouro Preto List e GAAL/MTM730 Professor: Antônio Mros Silv Oservção: Muitos os exeríios ixos form retiros s lists o professor Wenerson 0 Revej os exemplos feitos em sl e ul Sejm ij e

Leia mais

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira:

CÁLCULO I. Aula n o 29: Volume. A(x i ) x = i=1. Para calcularmos o volume, procedemos da seguinte maneira: CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 29: Volume. Objetivos d Aul Clculr o volume de sólidos de revolução utilizndo o método

Leia mais

CÁLCULO I. 1 Funções denidas por uma integral

CÁLCULO I. 1 Funções denidas por uma integral CÁLCULO I Prof. Mrcos Diniz Prof. André Almeid Prof. Edilson Neri Júnior Prof. Emerson Veig Prof. Tigo Coelho Aul n o 26: Teorem do Vlor Médio pr Integris. Teorem Fundmentl do Cálculo II. Funções dds por

Leia mais

f(x) dx. Note que A é a área sob o gráfico

f(x) dx. Note que A é a área sob o gráfico FFCLRP-USP AULA-INTEGRAL - CÁLCULO II- ECONOMIA Professor: Jir Silvério dos Sntos PROPRIEDADES DA INTEGRAL Sejm f,g : [,b] R funções integráveis. Então (i) [f(x) + g(x)]dx = (ii) Se λ é um número rel,

Leia mais

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 1

Material Teórico - Módulo Triângulo Retângulo, Leis dos Cossenos e dos Senos, Poĺıgonos Regulares. Lei dos Senos e Lei dos Cossenos - Parte 1 Mteril Teório - Módulo Triângulo Retângulo, Leis dos ossenos e dos Senos, Poĺıgonos Regulres Lei dos Senos e Lei dos ossenos - Prte 1 Nono no utor: Prof. Ulisses Lim Prente Revisor: Prof. ntonio min M.

Leia mais

Simulado 7: matrizes, determ. e sistemas lineares

Simulado 7: matrizes, determ. e sistemas lineares Simulo 7 Mtrizes, eterminntes e sistems lineres. b... e 6. 7. 8.. 0. b.. e. Simulo 8 Cirunferêni / Projeções / Áres. b 6. e 7. 8.. 0. Simulo Análise ombintóri / Probbilie / Esttísti. e.. e.. b... e.....

Leia mais

Álgebra Linear e Geometria Analítica

Álgebra Linear e Geometria Analítica Álger iner e Geometri nlti º Folh de poio o estudo Sumário: ü Operções lgris om mtrizes: dição de mtrizes multiplição de um eslr por um mtriz e multiplição de mtrizes. ü Crtersti de um mtriz. Eerios resolvidos.

Leia mais

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1

MATEMÁTICA. Equações do Segundo Grau. Professor : Dêner Rocha. Monster Concursos 1 MATEMÁTICA Equções do Segundo Gru Professor : Dêner Roh Monster Conursos 1 Equções do segundo gru Ojetivos Definir equções do segundo gru. Resolver equções do segundo gru. Definição Chm-se equção do º

Leia mais

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET RACIOCÍNIO LÓGICO

C Sistema destinado à preparação para Concursos Públicos e Aprimoramento Profissional via INTERNET  RACIOCÍNIO LÓGICO Pr Ordendo RACIOCÍNIO LÓGICO AULA 06 RELAÇÕES E FUNÇÕES O pr ordendo represent um ponto do sistem de eixos rtesinos. Este sistem é omposto por um pr de rets perpendiulres. A ret horizontl é hmd de eixo

Leia mais

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que:

fundamental do cálculo. Entretanto, determinadas aplicações do Cálculo nos levam a formulações de integrais em que: Cpítulo 8 Integris Imprópris 8. Introdução A eistênci d integrl definid f() d, onde f é contínu no intervlo fechdo [, b], é grntid pelo teorem fundmentl do cálculo. Entretnto, determinds plicções do Cálculo

Leia mais

A integral de Riemann e Aplicações Aula 28

A integral de Riemann e Aplicações Aula 28 A integrl de Riemnn - Continução Aplicções d Integrl A integrl de Riemnn e Aplicções Aul 28 Alexndre Nolsco de Crvlho Universidde de São Pulo São Crlos SP, Brzil 16 de Mio de 2014 Primeiro Semestre de

Leia mais

- Departamento de Matemática Aplicada (GMA) Notas de aula Prof a. Marlene Dieguez Fernandez. Integral definida

- Departamento de Matemática Aplicada (GMA) Notas de aula Prof a. Marlene Dieguez Fernandez. Integral definida Interl Deinid Nots de ul - pro. Mrlene - 28-2 1 - Deprtmento de Mtemáti Aplid (GMA) Nots de ul - 28-2 Pro. Mrlene Dieuez Fernndez Interl deinid Oservção: esse teto ontém pens prte teóri desse ssunto, não

Leia mais

f(x) dx for um número real. (1) x = x 0 Figura A

f(x) dx for um número real. (1) x = x 0 Figura A FFCLRP-USP Integris Imprópris - CÁLCULO DIFERENCIAL E INTEGRAL I Professor Dr Jir Silvério dos Sntos Integris Imprópris Definição Sej f : ; x ) R um função Suponh ret x = x é um Assíntot Verticl o gráfico

Leia mais

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe

4. Teorema de Green. F d r = A. dydx. (1) Pelas razões acima referidas, a prova deste teorema para o caso geral está longe 4 Teorem de Green Sej U um berto de R 2 e r : [, b] U um cminho seccionlmente, fechdo e simples, isto é, r não se uto-intersect, excepto ns extremiddes Sej região interior r([, b]) prte d dificuldde n

Leia mais

Cálculo em Computadores 2006 Integrais e volumes 1. Cálculo em Computadores Integrais de funções de duas variáveis reais 4

Cálculo em Computadores 2006 Integrais e volumes 1. Cálculo em Computadores Integrais de funções de duas variáveis reais 4 Cálculo em Computdores 2006 Integris e volumes 1 Contents Cálculo em Computdores 2006 Integris de funções de dus vriáveis 1 Áres no plno 2 1.1 exercícios...............................................

Leia mais

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9

Exercícios. setor Aula 25. f(2) = 3. f(3) = 0. f(11) = 12. g(3) = 14. Temos: 2x 1 = 5 x = 3 Logo, f(5) = 3 2 = 9 setor 07 070409 070409-SP Aul 5 FUNÇÃO (COMPOSIÇÃO DE FUNÇÕES) FUNÇÃO COMPOSTA Sej f um função de A em B e sej g um função de B em C. Chm-se função compost de g com f função h definid de A em C, tl que

Leia mais

Definimos a unidade imaginária j, como sendo um número não real de tal forma que: PROPRIEDADES: j 4 = j 2 x j 2 = ( -1) x ( -1) = 1 ;

Definimos a unidade imaginária j, como sendo um número não real de tal forma que: PROPRIEDADES: j 4 = j 2 x j 2 = ( -1) x ( -1) = 1 ; TÍTULO: NÚMEROS COMPLEXOS INTRODUÇÃO: Os números complexos form desenvolvidos pelo mtemático K Guss, prtir dos estudos d trnsformção de Lplce, com o único ojetivo de solucionr prolems em circuitos elétricos

Leia mais

Platão Comenta Prova Específica de Matemática UEM julho de 2009 Gabarito 1

Platão Comenta Prova Específica de Matemática UEM julho de 2009 Gabarito 1 Pltão Coment Prov Específic de Mtemátic UEM julho de Grito QUESTÃO: GRITO: ) Corret q 6 6 6 6 6. q 6 6 6 6 8 ) Corret q n com *. n n, q > e ) Incorret. n. n ( ). n S n n n. n n. n 6 8) Corret Como < então.

Leia mais

Funções representadas por integrais

Funções representadas por integrais Funções representds por integris Felipe Felix Souto Mrt Cilene Gdotti esumo N Análise de Fourier os prinipis elementos são funções definids por integris, omo os oefiientes d Série de Fourier, ou, priniplmente,

Leia mais

Aplicações da integral Volumes

Aplicações da integral Volumes Aplicções d integrl Volumes Sumário. Método ds seções trnsversis........... 5. Método ds cscs cilíndrics............. 6.3 Exercícios........................ 9.4 Mis plicções d integrl Áres e comprimentos.5

Leia mais

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais:

Matemática Básica. A.1. Trigonometria. Apêndice A - Matemática Básica. A.1.1. Relações no triângulo qualquer. Leis Fundamentais: Apênice A - Mtemátic Básic A.. Trigonometri A... Relções no triângulo qulquer A Mtemátic Básic C A α c β B γ Figur A. - Triângulo qulquer Leis Funmentis: c sen = sen = sen c A- Lei os cossenos: = + c -

Leia mais

I = O valor de I será associado a uma área, e usaremos esta idéia para desenvolver um algoritmo numérico. Ao

I = O valor de I será associado a uma área, e usaremos esta idéia para desenvolver um algoritmo numérico. Ao Cpítulo 6 Integrl Nosso objetivo qui é clculr integrl definid I = f(x)dx. (6.1) O vlor de I será ssocido um áre, e usremos est idéi pr desenvolver um lgoritmo numérico. Ao contrário d diferencição numéric,

Leia mais

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em:

Relembremos que o processo utilizado na definição das três integrais já vistas consistiu em: Universidde Slvdor UNIFAS ursos de Engenhri álculo IV Prof: Il Reouçs Freire álculo Vetoril Texto 4: Integris de Linh Até gor considermos três tipos de integris em coordends retngulres: s integris simples,

Leia mais

Cálculo Diferencial e Integral II Prof. Ânderson Vieira

Cálculo Diferencial e Integral II Prof. Ânderson Vieira CÁLCULO DE ÁREAS Cálculo de áres Cálculo Diferencil e Integrl II Prof. Ânderson Vieir Considere região S que está entre dus curvs y = f(x) e y = g(x) e entre s curvs verticis x = e x = b, onde f e g são

Leia mais

Simulado EFOMM - Matemática

Simulado EFOMM - Matemática Simuldo EFOMM - Mtemátic 1. Sejm X, Y, Z, W subconjuntos de N tis que: 1. (X Y ) Z = {1,,, },. Y = {5, 6}, Z Y =,. W (X Z) = {7, 8},. X W Z = {, }. Então o conjunto [X (Z W)] [W (Y Z)] é igul (A) {1,,,,

Leia mais

02. Resolva o sistema de equações, onde x R. x x (1 3 1) Solução: Faça 3x + 1 = y 2, daí: 03. Resolva o sistema de equações, onde x R e y R.

02. Resolva o sistema de equações, onde x R. x x (1 3 1) Solução: Faça 3x + 1 = y 2, daí: 03. Resolva o sistema de equações, onde x R e y R. 7 ATEÁTICA Prov Diuriv. Sej um mtriz rel. Defin um função n qul element mtriz e elo pr poição eguinte no entio horário, ej, e,impli que ( f. Enontre to mtrize imétri rei n qul = (. Sej um mtriz form e

Leia mais

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos

Sumário Conjuntos Nebulosos - Introdução. Conjuntos Clássicos. Conjuntos Clássicos. Problemas/Conjuntos Clássicos. Operações com conjuntos clássicos Sumário Conjuntos Neulosos - Introução rino Joquim e O Cruz NCE e IM UFRJ rino@ne.ufrj.r Se voê tem um mrtelo tuo irá preer um prego triuío Dinísio e gpunt (3 C) Conjuntos Clássios Função e Inlusão em

Leia mais

MATEMÁTICA II - Engenharias/Itatiba. 1 o Semestre de 2009 Prof. Maurício Fabbri RELAÇÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO.

MATEMÁTICA II - Engenharias/Itatiba. 1 o Semestre de 2009 Prof. Maurício Fabbri RELAÇÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO. MTEMÁTIC II - Engenhris/Ii o Semesre de 09 Prof. Muríio Fri 04-9 Série de Exeríios RELÇÕES TRIGONOMÉTRICS NO TRIÂNGULO RETÂNGULO sen = os = n = se = os os e = sen sen n = os o n = n ÂNGULOS NOTÁVEIS grus

Leia mais

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas;

Objetivo. Integrais de funções vetoriais. Conhecer a integral de funções vetoriais; Aprender a calcular comprimentos de curvas parametrizadas; Funções vetoriis Integris MÓDULO 3 - AULA 35 Aul 35 Funções vetoriis Integris Objetivo Conhecer integrl de funções vetoriis; Aprender clculr comprimentos de curvs prmetrizds; Aprender clculr áres de regiões

Leia mais

2.4 Integração de funções complexas e espaço

2.4 Integração de funções complexas e espaço 2.4 Integrção de funções complexs e espço L 1 (µ) Sej µ um medid no espço mensurável (, F). A teori de integrção pr funções complexs é um generlizção imedit d teori de integrção de funções não negtivs.

Leia mais

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari

MATEMÁTICA II. Profa. Dra. Amanda Liz Pacífico Manfrim Perticarrari MATEMÁTICA II Prof. Dr. Amnd Liz Pcífico Mnfrim Perticrrri mnd.perticrrri@unesp.r DEFINIÇÃO. Se f é um função contínu definid em x, dividimos o intervlo, em n suintervlos de comprimentos iguis: x = n Sejm

Leia mais

Cálculo I (2015/1) IM UFRJ Lista 5: Integral Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Integral

Cálculo I (2015/1) IM UFRJ Lista 5: Integral Prof. Milton Lopes e Prof. Marco Cabral Versão Exercícios de Integral Eercícios de Integrl Eercícios de Fição Cálculo I (5/) IM UFRJ List 5: Integrl Prof Milton Lopes e Prof Mrco Cbrl Versão 55 Fi : Determine se é Verddeiro (provndo rmtiv) ou Flso (dndo contreemplo): b ()

Leia mais

CIRCUITOS LINEARES DE CORRENTE CONTÍNUA

CIRCUITOS LINEARES DE CORRENTE CONTÍNUA ssoição de resistêis em série um ligção de resitêis em série, orrete que flui o iruito é mesm e pode-se oter um resistêi uivlete do ojuto. CCTOS S D COT COTÍ...... (... )... lise de Ciruitos 0 lise de

Leia mais

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas;

CÁLCULO I. 1 Área entre Curvas. Objetivos da Aula. Aula n o 24: Área entre Curvas, Comprimento de Arco e Trabalho. Calcular área entre curvas; CÁLCULO I Prof. Edilson Neri Júnior Prof. André Almeid Aul n o : Áre entre Curvs, Comprimento de Arco e Trblho Objetivos d Aul Clculr áre entre curvs; Clculr o comprimento de rco; Denir Trblho. 1 Áre entre

Leia mais

Propriedades das Linguagens Regulares

Propriedades das Linguagens Regulares Cpítulo 5 Proprieddes ds Lingugens Regulres Considerndo um lfeto, já vimos que podemos rterizr lsse ds lingugens regulres sore esse lfeto omo o onjunto ds lingugens que podem ser desrits por expressões

Leia mais

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b).

equação paramêtrica/vetorial da curva: a lei γ(t) =... Dizemos que a curva é fechada se I = [a, b] e γ(a) = γ(b). 1 Lembrete: curvs Definição Chmmos Curv em R n : um função contínu : I R n onde I R é intervlo. (link desenho curvs) Definimos: Trço d curv: imgem equção prmêtric/vetoril d curv: lei (t) =... Dizemos que

Leia mais

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ

Lic. Ciências da Computação 2009/10 Exercícios de Teoria das Linguagens Universidade do Minho Folha 6. δ Li. Ciênis d Computção 2009/10 Exeríios de Teori ds Lingugens Universidde do Minho Folh 6 2. Autómtos finitos 2.1 Considere o utómto A = (Q,A,δ,i,F) onde Q = {1,2,,4}, A = {,}, i = 1, F = {4} e função

Leia mais

Máximos e Mínimos Locais

Máximos e Mínimos Locais INSTITUTO DE MATEMÁTICA DA UFBA DEPARTAMENTO DE MATEMÁTICA MAT B Limites e Derivds - Pro Grç Luzi Domiguez Sntos ESTUDO DA VARIAÇÃO DAS FUNÇÕES Máimos e Mínimos Lois Deinição: Dd um unção, sej D i possui

Leia mais

AULA 1 Introdução 3. AULA 2 Propriedades e teorema fundamental do cálculo 5. AULA 3 Integrais indefinidas 7. AULA 4 Integração por substituição 9

AULA 1 Introdução 3. AULA 2 Propriedades e teorema fundamental do cálculo 5. AULA 3 Integrais indefinidas 7. AULA 4 Integração por substituição 9 www.mtemticemexercicios.com Integris (volume ) Índice AULA Introdução AULA Proprieddes e teorem fundmentl do cálculo 5 AULA Integris indefinids 7 AULA 4 Integrção por sustituição 9 AULA 5 Integrção por

Leia mais

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração

RESUMO DE INTEGRAIS. d dx. NOTA MENTAL: Não esquecer a constante para integrais indefinidas. Fórmulas de Integração RESUMO DE INTEGRAIS INTEGRAL INDEFINIDA A rte de encontrr ntiderivds é chmd de integrção. Desse modo, o plicr integrl dos dois ldos d equção, encontrmos tl d ntiderivd: f (x) = d dx [F (x)] f (x)dx = F

Leia mais

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2

Comprimento de Curvas. Exemplo. Exemplos, cont. Exemplo 2 Para a cúspide. Continuação do Exemplo 2 Definição 1 Sej : omprimento de urvs x x(t) y y(t) z z(t) um curv lis definid em [, b]. O comprimento d curv é definido pel integrl L() b b [x (t)] 2 + [y (t)] 2 + [z (t)] 2 dt (t) dt v (t) dt Exemplo

Leia mais

k 0 4 n NOTAS DE AULA A Integral Definida

k 0 4 n NOTAS DE AULA A Integral Definida NOTS DE UL Itegrl Defd Som de Rem Teorem Fudmetl do Cálulo: Itegrl Defd Áre so um Curv [Eemplos e plções] Comprmeto de um Curv Pl Ls [ou Suve] Teorem do Vlor Médo pr Itegrs SOM DE RIEMNN Notção: k k Eemplos:

Leia mais