XXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Terceira Fase Nível 3 (Ensino Médio)

Tamanho: px
Começar a partir da página:

Download "XXII OLIMPÍADA BRASILEIRA DE MATEMÁTICA Terceira Fase Nível 3 (Ensino Médio)"

Transcrição

1 XXII OLIMPÍADA BRAILEIRA DE MATEMÁTICA Terceira Fase Níel 3 (Esio Médio PROBLEMA 1: Em uma folha de papel a rea r passa pelo cao A da folha e forma um âgulo com a borda horizoal, como a figura 1. Para diidir ese âgulo em rês pares iguais, execuaremos as seguies cosruções: a iicialmee, marcamos dois poos B e C sobre a borda erical de modo que AB = BC; pelo poo B raçamos a rea s paralela à borda (figura ; b a seguir, dobramos o papel, ausado-o de modo que o poo C coicida com um poo C sobre a rea r e o poo A coicida com um poo A sobre a rea s (figura 3; chamamos de B o poo com o qual B coicide. Mosre que as reas AA e AB diidem o âgulo em rês pares iguais. r r r C A C C B s B B A A A Figura 1 Figura Figura 3 PROBLEMA : ea ( a soma de odos os diisores posios de, ode é um ieiro posio (p or exemplo, ( 6 1 e ( Dizemos que é quase perfeo se ( 1(por exemplo, 4 é quase perfeo, pois ( 4 7. eam mod o reso da diisão de por e s( mod (por exemplo: s(6 = = 3 e s(11 = =. Proe que é quase perfeo se, e somee se, s( s( 1. PROBLEMA 3: ea f uma fução defiida os ieiros posios da seguie forma: a Dado, escreemos (b 1, com a e b ieiros e defiimos f ( a a 1. Deermie o meor ieiro posio al que f ( 1 f (... f ( PROBLEMA 4: A aeida Proidêcia em ifios semáforos igualmee espaçados e sicroizados. A disâcia ere dois semáforos cosecuios é de 1.m. Os semáforos ficam aberos por 1 mi 3s, depois fechados por 1 mi, depois aberos por 1 mi 3s e assim sucessiamee. upoha que um carro rafegue com elocidade cosae igual a, em m/s, pela aeida Proidêcia. Para quais alores de é possíel que o carro passe por uma quaidade arbrariamee grade de semáforos sem parar em qualquer um deles?

2 PROBLEMA : ea X o couo de odas as seqüêcias a a, a,..., ais que a {,1, } se ( 1 a 1 i 1 e ai {,1 } se 11 i. Dados a e b em X, defiimos a disâcia d( a, b ere a e b como sedo o úmero de alores de i, 1 i, ais que ai b i. Deermie o úmero de fuções f : X X que preseram disâcia, iso é, ais que d( f ( a, f ( b d( a, b, para quaisquer a e b em X. PROBLEMA 6: ea C um cubo de madeira. Para cada um dos 8 pares de érices de C coramos o cubo C pelo plao mediador dos dois érices do par. Em quaos pedaços fica diidido o cubo? Noa: Dados dois poos A e B o espaço, o plao mediador de A e B é o couo dos poos do espaço cuas disâcias a A e B são iguais. Em ouras palaras: é o plao perpedicular ao segmeo AB passado pelo poo médio de AB. i

3 XXII OLIMPÍADA BRAILEIRA DE MATEMÁTICA OLUÇÕE Terceira Fase Níel 3 (Esio Médio PROBLEMA 1: OLUÇÃO DE MARTHA PRICILLA ARAÚJO DE MORAE (FORTALEZA - CE r B A X P Vea que AP A' P, eão AA' P é isósceles. ea PA ˆA' eão AA ˆ ' B ( BA ' // AP. Noe que APX A' PX, Daí: X AP ˆ XAˆ ' P XAˆ A' XA ˆA' Agora obsere que: BAX ˆ 9 BXˆ A BAX ˆ 9 B' Xˆ A C B A K Dode segue que os poos A, X, B' são colieares Como CB C' B', AB A' B' CB AB, emos que C' B' A' B'. Eão AB' é mediaa e alura do C' AA', sedo, cosequeemee, bisseriz do C' AA'. Daí: C' AB ˆ ' B' AA ˆ ' PAˆ A'. e

4 PROBLEMA : OLUÇÃO DE FABRÍCIO IQUEIRA BENEVIDE (FORTALEZA - CE Fixe. ea Temos s Vea que se a i mod i e mod i b i ( a i e s( 1 i1 b i i1 d, por defiição, a, e que (mod d 1 1(mod d b d 1 (á que b d d 1 (iclusie se d = 1 Além disso se \, a e é fácil er que b a 1. edo assim: s( s( 1 d ai bi ad a a bd b ( d d ad i1 1 i1 d d \ d d \ d d d a b ( d 1 d d 1 ea f( o úmero de diisores de. Temos: d d d 1 ( d ( ( ( f ( 1 f ( ( d d d d f ( ( 1. De modo que s( s( 1 ( 1. f ( 1 PROBLEMA 3: OLUÇÃO DE ULIE MEDEIRO DE ALBUQUERQUE (FORTALEZA - CE Cosidere as represeações biárias dos úmeros, ex: 17 = (11; 4 = (11 e = (11 ea a base igual a (... a i... a3aa1a, ode ai ou a i 1, i Z se a. a (b 1 a é a quaidade de zeros à direa a sua represeação biária. Ex: a p / o4 é 3, á a = p/ 17 e. Iso em exaamee do que sigifica a represeação de um úmero em uma dada base. (* ea f (1 f ( f (3... f ( Como a só depede da quaidade de zeros o fial (*, emos que se, 1 eão f ( f (, pois erão a mesma quaidade de zeros à direa a base Assim f (1 f (... f ( 1 f ( f ( 1 f (... f ( ( f (1 ( 1 f (... ( 1 f ( f ( f ( f ( ( f (1 ( 1 ( ( 1. f (... f ( 1 f (

5 Primeiros 's : = 1, 1 = 4, = 1, 3 = 3, 4 = 68, = 146, 6 = 34, 7 = 6, 8 = 16, 9 = 38, 1 = 96, 11 = 114, 1 = 4, 13 = 493, 14 = 81888, 1 = ea g( f (1 f (... f (, proaremos que g ( a i i, ode i1 (... a... aa4a3aa1a. ea o maior possíel, al que a a1 a a g( ( f (1 f (... f ( ( f ( 1 f (... f ( a 1... a 1 g( ( f (1 f (... f ( a 1... a De modo aálogo, omamos o maior, al que e a 1. g( ( f (1 f ( f (3... f ( ( f ( 1... f ( a 1... a g( ( ( f (1 f (... f ( a 1... a De maeira aáloga, fazemos (amos baixado para odos os a i's = 1. Como ai 1ou ai, podemos escreer g( a i i i1 Para ermos o meor, al que g( 1346 Temos que coseguir uma soma de ' s 1346, com os meores 's possíeis, pois iso se refleirá em (... a i... aa1a com os meores i's possíeis. Mas iso é uma arefa fácil se omarmos os 's calculados a págia seguie e ambém sabedo que: Daí, emos que a soma procurada é: Assim, o meor al que g( 1346 é ( = 471 O meor ieiro posio, al que f ( 1... f ( 1346 é 471. PROBLEMA 4: OLUÇÃO DA BANCA upoha que o empo os siais se abram e que o carro passe pela primeira ez por um sial o empo (mediremos o empo sempre em segudos. Os siais esarão aberos ere os empos 1 e e fechados ere os empos e 1( + 1, para odo ieiro 1. O carro passará pelos siais os empos r, para odo ieiro r. Assim, a codição 1 ecessária e suficiee para que o carro ecore sempre o sial abero é que r sea 1 igual a um ieiro mais um úmero ere e 3 para odo r ieiro. Isso é claramee possíel 1 1 se é ieiro (com qualquer ere e 9 e se é a meade de um ieiro ímpar (com qualquer ere e

6 Vamos mosrar que esses são os úicos casos possíeis. Primeiro mosraremos que se ão é igual a um ieiro mais um úmero perecee a 1, : sea, com ieiro e,1. e, omamos. r e, 1, com, e omamos r. 3 e 1, omamos 1 e ieiro al que 1 ( 1. Como, emos 3, e podemos omar r e, emos 1, e podemos proceder como o caso aerior. 1 Para fializar, amos mosrar que, esses casos, exise ieiro posio al que é 1 igual a um ieiro mais um elemeo de 3,1. 1 De fao, exise m ieiro al que r m, com, e exise e ieiros com 1 ( 1, dode r lm ( m 1, ode Assim as possíeis elocidades são m / s, para cada ieiro posio. PROBLEMA : OLUÇÃO DE HUMBERTO ILVA NAVE (ÃO PAULO - P Vamos obserar um caso paricular primeiro: abemos que: d( f (,,,...,, f (1,,,..., 1 e d( f (1,,,...,, f (,,,,..., 1 e d( f (,,,...,, f (,,,..., 1 ea A f (,,...,, B f (1,,,..., e C f (,,,..., A a, a,..., e B b, b,..., e C c, c,..., ( 1 a ( 1 b Dee exisir um úico i 1 N e 1 i1, a b, amos proar que i 1 1. Dee exisir um úico absurdo, logo i1 i 1 ' Logo emos: A (...,,... B (..., a i1 b i1,... e como ' 1 ( 1 c al que: i al que b ' c ' e se fosse i ' eríamos que d( A, C, um a b c a logo i 1 1. i1 i1 i1 i1 1 i 1 Vamos proar que se: x f, a ', a ',..., a ' ( x, x,..., eão x a. ( 3 1 x

7 upohamos por absurdo que x a (por simeria, cosideramos x b e d( A; x m, eão d( B; x m 1, pois B f (1,,,,,..., e A f (,,,..., x f, a ',..., ' mas d ( B, x m 1 (pois x b que é um absurdo, logo x ( 1 a Aalogamee proamos que se x f 1, b ', b ',..., b ' (,,..., 1 ( 3 1 eão b Vamos geeralizar o argumeo (ós só fizemos para o 1 o. ermo: Teorema 1: ea A f (,,...,,,... ( a, a1,..., a f,,...,1,,... ( b, b,..., B ( 1 b (,,...,,,..., ( c, c1,..., a C f ode 1. Eão se x f ( x, x,..., x,... x (,,..., eão a b c ' 1 1 se x ode i é posição que muda de A para B se x 1 se x a Obs: é claro que 1, a demosração que 1 é aálogo à de que i 1 1. Demosração: Aáloga à aerior (basa rocar algumas ariáeis e copiar a demosração aerior. É claro que i1, i,..., i1 são odos disios. Na erdade ( i1,..., i1 é uma permuação de (1,,...,1. Cosideramos agora as seguies -uplas. f,,..., ( a, a,..., A B ( 1 a f,,...,1,,,,..., ( b 1,..., b ode 1 abemos que ( d( A, B 1 N al que: a b e esse é úico! É claro que 1 (pois se fosse < 1, exisiria w 1 al que i, w um absurdo, pois o alor de posição wi da imagem é deermiado exclusiamee pelo alor da posição w da -upla do domíio da fução (deido ao eorema 1. Vamos chamar esse de i, assim como fizemos aeriormee. ea x f ( x,..., x,..., x (,...,,... ' De forma aáloga à aerior, demosramos que: a se x i i b i i se x 1 Para coar o úmero de fuções f : X X, basa coar o úmero de permuações de { 1,,...,1} ezes o úmero de permuações de 1 1 { 11,...,} (3! (! 1 que é 1! 1! 1 pois para deermiarmos uma fução f : X X basa escolher: i,..., que é uma permuação de ( 1,,...,1 e i,..., que é uma permuação de ( 1 i ( 11 i ( 11,..., e escolher os alores apropriados de ( a, b, c, para 1 1 (1 permuações de {,1, } e de ( a, b, para 11 (1 permuações de {, 1}. i

8 PROBLEMA 6: OLUÇÃO DE CHRITIAN WATANABE (ITAGUAÍ - RJ Plao mediador de dois érices adacees (PMVA. Exisem 1 aresas, logo são 1 pares de érices adacees, mas 4 pares possuem o mesmo plao mediador. Porao são 1 : 4 = 3 plaos. Plao mediador de dois érices oposos de uma face (PMVOF. Plao mediador de dois érices oposos (PMVO. Repare que odos os plaos mediadores uos deermia em cada face a seguie figura: PMVA PMVOF PMVO Como o cero do cubo é ierseção de odos os PMs e odas as ierseções ere reas da figura ao lado são exremidades das ierseções ere PMs, ao ligarmos as ierseções ere PMs, eremos árias pirâmides cuo érice comum é o cero do cubo e as bases são os riâgulos da face. Como são 16 6 = 96 riâgulos o oal, o cubo fica diidido em 96 pirâmides.

1. Na figura seguinte está representada parte do gráfico de uma função g, de domínio R e contínua em

1. Na figura seguinte está representada parte do gráfico de uma função g, de domínio R e contínua em PROVA ESCRITA DE MATEMÁTICA A.º E 00 Fevereiro 8 Duração da prova: 90 miuos VERSÃO Grupo I Para cada uma das cico quesões dese grupo, seleccioe a resposa correca de ere as aleraivas que lhe são apreseadas

Leia mais

Secção 7. Sistemas de equações diferenciais.

Secção 7. Sistemas de equações diferenciais. 7. Sisemas de equações difereciais Secção 7. Sisemas de equações difereciais. (Farlow: Sec. 6., 6.4 e 6.6) No caso geral, um sisema de equações difereciais de primeira ordem pode ser represeado da seguie

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução

Leia mais

Sinais e Sistemas. Env. CS1 Ground. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with. gravity and sine wave forcing in the

Sinais e Sistemas. Env. CS1 Ground. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with. gravity and sine wave forcing in the -4-6 -8 - - -4-6 -8 Frequecy khz Hammig kaiser Chebyshev Siais e Sisemas Power Specral Desiy Ev B F CS CS B F CS Groud Revolue Body Revolue Body Power/frequecy db/hz Sie Wave Joi Acuaor Joi Sesor Revolue

Leia mais

Juros Compostos 2016

Juros Compostos 2016 Juros Composos 2016 1. (G1 - ifal 2016) Em 2000, cero país da América Laia pediu um emprésimo de 1 milhão de dólares ao FMI (Fudo Moeário Ieracioal) para pagar em 100 aos. Porém, por problemas políicos

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Disciplina de Princípios de Telecomunicações Prof. MC. Leonardo Gonsioroski da Silva

Disciplina de Princípios de Telecomunicações Prof. MC. Leonardo Gonsioroski da Silva UNIVERSIDADE GAMA FILHO PROCE DEPARAMENO DE ENGENHARIA ELÉRICA Disciplia de Pricípios de elecomuicações Pro. MC. Leoardo Gosioroski da Silva Séries e rasormadas de Fourier Aálise de um sial seoidal o empo

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Itermédio de Matemática A Versão Teste Itermédio Matemática A Versão Duração do Teste: 90 miutos 6.05.0.º Ao de Escolaridade Decreto-Lei.º 74/004, de 6 de Março Na sua folha de respostas, idique

Leia mais

GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010

GEOMETRIA BÁSICA GGM00161-TURMA M2. Dirce Uesu Pesco Geometria Espacial 18/11/2010 GEOMETRIA BÁSICA 200-2 GGM006-TURMA M2 Dirce Uesu Pesco Geometria Espacial 8//200 Defiição : PRISMA Cosidere dois plaos paralelos α e β e um segmeto de reta PQ, cuja reta suporte r itercepta o plao α.

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

Exercícios de Cálculo Numérico Equações Diferenciais Ordinárias

Exercícios de Cálculo Numérico Equações Diferenciais Ordinárias Eercícios de Cálclo Nmérico Eqações Diereciais Ordiárias. Deermie a solção mérica aproimada da segie Eqação Dierecial Ordiária com o passo.: { ( ( [ ] ( (a Méodo de Eler ( Méodo das Tagees (b Méodo de

Leia mais

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento

Cinemática Vetorial Movimento Retilíneo. Movimento. Mecânica : relaciona força, matéria e movimento Fisica I - IO Cinemáica Veorial Moimeno Reilíneo Prof. Crisiano Olieira Ed. Basilio Jafe sala crislpo@if.usp.br Moimeno Mecânica : relaciona força, maéria e moimeno Cinemáica : Pare da mecânica que descree

Leia mais

Matemática 5 aula 11 ( ) ( ) COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS REVISÃO. 4a 12ab + 5b 2a 2(2a)(3b) + (3b) (2b)

Matemática 5 aula 11 ( ) ( ) COMENTÁRIOS ATIVIDADES PARA SALA COMENTÁRIOS ATIVIDADES PROPOSTAS REVISÃO. 4a 12ab + 5b 2a 2(2a)(3b) + (3b) (2b) Matemática 5 aula 11 REVISÃO 1. Seja L a capacidade, em litros, do taque. Por regra de três simples, temos: I. Toreira 1: II. Toreira : 1 L 18 L x 1 x + xl ( x+ ) 1 = = L 1 18 xl ( x+ ) Sabedo que R 1

Leia mais

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c = MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab

Leia mais

Desigualdades Aritméticas

Desigualdades Aritméticas Projecto Delfos: Escola de Matemática Para Joves Desigualdades Aritméticas. Mostra que a + b a + b, para todos os úmeros reais a e b (desigualdade triagular). Quado é que se tem a igualdade? Geeraliza

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar Progressão Ariméica e Progressão Geomérica. (Pucrj 0) Os números a x, a x e a x esão em PA. A soma dos números é igual a: a) 8 b) c) 7 d) e) 0. (Fuves 0) Dadas as sequências an n n, n n cn an an b, e b

Leia mais

UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DAS ENGENHARIAS Disciplina: Vetores e Álgebra linear. Lista 01

UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DAS ENGENHARIAS Disciplina: Vetores e Álgebra linear. Lista 01 UNIVERSIDADE FEDERAL DE PELOTAS CENTRO DAS ENGENHARIAS Disciplia: Vetores e Álgebra liear Lista Prof: Germá Suazo Desehe os seguites vetores com o poto iicial a origem de coordeadas (posição padrão) em

Leia mais

Professor: Danilo Dacar

Professor: Danilo Dacar . (Pucrj 0) Os números a x, a x e a3 x 3 esão em PA. A soma dos 3 números é igual a: é igual a e o raio de cada semicírculo é igual à meade do semicírculo anerior, o comprimeno da espiral é igual a a)

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXXIV OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Esio Médio) GABARITO GABARITO NÍVEL ) E 6) C ) E 6) B ) D ) C 7) D ) C 7) A ) A ) B 8) B ) B 8) A ) B ) D 9) D ) A 9) B ) E 5) D 0) D 5) A

Leia mais

Resoluções dos exercícios propostos

Resoluções dos exercícios propostos da física 1 P.55 a) A distância entre dois entres consecutios é igual à distância entre dois nós consecutios: d d x d L d L d d 0,5 m L m b) x d 0,5 x x 0,5 m c) d d 0,5 1 m d) Sendo 0,5 m/s, temos: f

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,

Leia mais

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior.

de uma PA é justamente o valor da DIFERENÇA entre qualquer termo e o anterior. 0. PROGRESSÃO ARITMÉTICA: É toda sequêcia em que é SEMPRE costate a DIFERENÇA etre um termo qualquer da sequêcia (a partir do segudo, claro!) e seu aterior, logo dada a sequêcia a a a a a a R. A razão

Leia mais

Faculdade de Engenharia. Análise Matemática 2 MIEEC 2015/2016

Faculdade de Engenharia. Análise Matemática 2 MIEEC 2015/2016 aculdade de Egeharia Aálise Maemáica 2 MEEC 25/26 ucioameo aculdade de Egeharia Teórico-práicas exposição e discussão da maéria resolução de exercícios Trabalho exra-aula resolução dos exercícios proposos

Leia mais

NÚMEROS REAIS E OPERAÇÕES

NÚMEROS REAIS E OPERAÇÕES Reisão de Pré-Cálclo NÚMEROS REAIS E OPERAÇÕES Prof Dr José Ricardo de Rezede Zei Departameto de Matemática, FEG, UNESP Lc Ismael Soares Madreira Júior Garatigetá, SP, Otbro, 2016 Direitos reserados Reprodção

Leia mais

1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) ) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70

1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) ) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70 OLIMPÍADA DE MATEMÁTICA 2015 GABARITO 5º E 6º ANOS Questão Resposta 1) C 2) A 3) D 4) E 5) A 6) A 7) D 8) C 9) B 10) E 11) 1 dia, 2h e 1 min. 12) 450 13) 6 14) 24 15) a) R$ 1,20 e b) R$ 2,70 OLIMPÍADA

Leia mais

Resoluções de Exercícios

Resoluções de Exercícios Resoluções de Exercícios MATEMÁTICA V Caíulo Coecimeos uméricos 0 Sequêcias BC 0 0 C De acordo com as iformações, emos que a evolução do úmero de diabéicos corresode à sequêcia (0, 0, 0, 0, 70, 00, 0,...)

Leia mais

Seção 5: Equações Lineares de 1 a Ordem

Seção 5: Equações Lineares de 1 a Ordem Seção 5: Equações Lineares de 1 a Ordem Definição. Uma EDO de 1 a ordem é dia linear se for da forma y + fx y = gx. 1 A EDO linear de 1 a ordem é uma equação do 1 o grau em y e em y. Qualquer dependência

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma. ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)

Leia mais

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Nível Avaçado. INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Vamos abordar esse artigo a aritmética de dois cojutos de iteiros algébricos: os Iteiros de Gauss e os Iteiros

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with -4-6 -8-0 - -4-6 -8-30 -3 Frequec Hz Hammig aiser Chebshev Faculdade de Egeharia iais e isemas Power pecral Desi Ev B F C C B F C Groud Revolue Bod Revolue Bod Power/frequec db/hz ie Wave Joi Acuaor Joi

Leia mais

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012

F-128 Física Geral I. Aula exploratória-07 UNICAMP IFGW F128 2o Semestre de 2012 F-18 Física Geral I Aula eploraória-07 UNICAMP IFGW username@ii.unicamp.br F18 o Semesre de 01 1 Energia Energia é um conceio que ai além da mecânica de Newon e permanece úil ambém na mecânica quânica,

Leia mais

Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n.

Questão 1. Questão 2. Questão 4. Questão 3. alternativa C. alternativa B. alternativa D. alternativa A n 2 n! O valor de log 2. c) n. b) 2n. Questão 4 6 O valor de log :! a). b). c). d) log. e) log. Para iteiro positivo, 4 6 = = ( ) ( ) ( 3) ( ) = = ( 3 ) =! Portato 4 6! log = log!! = = log =. Questão Num determiado local, o litro de combustível,

Leia mais

AVF - MA Gabarito

AVF - MA Gabarito MESTRADO PROFISSIONAL EM MATEMÁTICA EM REDE NACIONAL AVF - MA13-016.1 - Gabarito Questão 01 [,00 pts ] Em um triângulo ABC de perímetro 9, o lado BC mede 3 e a distância entre os pés das bissetrizes interna

Leia mais

4.2 Numeração de funções computáveis

4.2 Numeração de funções computáveis 4. Numeração de fuções computáveis 4.1 Numeração de programas 4.2 Numeração de fuções computáveis 4.3 O método da diagoal 4.4 O Teorema s-m- Teresa Galvão LEIC - Teoria da Computação I 4.1 4.1 Numeração

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre os modelos de

Leia mais

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a.

Seja AB = BC = CA = 4a. Sendo D o ponto de interseção da reta s com o lado AC temos, pelo teorema de Tales, AD = 3a e DC = a. GABARITO MA1 Geometria I - Avaliação 2-201/2 Questão 1. (pontuação: 2) As retas r, s e t são paralelas, como mostra a figura abaixo. A distância entre r e s é igual a e a distância entre s e t é igual

Leia mais

M23 Ficha de Trabalho SUCESSÕES 2

M23 Ficha de Trabalho SUCESSÕES 2 M Ficha de Trabalho NOME: SUCESSÕES I PARTE Relativamete à sucessão a =, pode-se afirmar que: (A) É um ifiitamete grade positivo (B) É um ifiitésimo (C) É um ifiitamete grade egativo (D) É limitada Cosidere

Leia mais

Como o Intervalo de Confiança para a média é bilateral, teremos uma situação semelhante à da figura abaixo:

Como o Intervalo de Confiança para a média é bilateral, teremos uma situação semelhante à da figura abaixo: INE66 Méodo Eaíico Exercício Prova - Semere 15.1 O poo de fuão (medido em C) é um apeco crucial em maeriai cerâmico, epecialmee o uado em reaore ucleare, como a ória. Receemee um fabricae apreeou dua ova

Leia mais

Mecânica da partícula

Mecânica da partícula -- Mecânica da parícula Moimenos sob a acção de uma força resulane consane Prof. Luís C. Perna LEI DA INÉRCIA OU ª LEI DE NEWTON LEI DA INÉRCIA Para que um corpo alere o seu esado de moimeno é necessário

Leia mais

AULA Matriz inversa Matriz inversa.

AULA Matriz inversa Matriz inversa. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries)

XXV OLIMPÍADA BRASILEIRA DE MATEMÁTICA Segunda Fase Nível 2 (7 a. ou 8 a. séries) PROBLEMA No desenho ao lado, o quadrado ABCD tem área de 30 cm e o quadrado FHIJ tem área de 0 cm. Os vértices A, D, E, H e I dos três quadrados pertencem a uma mesma reta. Calcule a área do quadrado BEFG.

Leia mais

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão Resolução das atividades complemetares Matemática M Fução Epoecial p. 6 (Furg-RS) O valor da epressão A a) c) e) 6 6 b) d) 0 A?? A? 8? A A A? A 6 8 Ecotre o valor da epressão 0 ( ) 0 ( ) 0 0 0. Aplicado

Leia mais

Física e Química A 11.º Ano N.º 2 - Movimentos

Física e Química A 11.º Ano N.º 2 - Movimentos Física e Química A 11.º Ano N.º 2 - Moimenos 1. Uma parícula P 1 descree uma rajecória circular, de raio 1,0 m, parindo da posição A no senido indicado na figura 1 (a). fig. 1 Uma oura parícula P 2 descree

Leia mais

GEOMETRIA: ÂNGULOS E TRIÂNGULOS

GEOMETRIA: ÂNGULOS E TRIÂNGULOS Atividade: Ângulos e Triângulos (ECA 03 Atividade para 16/03/2015) Série: 1ª Série do Ensino Médio Etapa: 1ª Etapa 2014 Professor: Cadu Pimentel GEOMETRIA: ÂNGULOS E TRIÂNGULOS ATENÇÃO: Estimados alunos,

Leia mais

REFRAÇÃO DA LUZ I) FÓRMULA DE REFRAÇÃO DA LUZ

REFRAÇÃO DA LUZ I) FÓRMULA DE REFRAÇÃO DA LUZ I) FÓRMULA DE REFRAÇÃO DA LUZ c = ídice de refração: represeta quatas vezes a velocidade da luz o meio em questão é meor que a velocidade da luz o vácuo REFRAÇÃO DA LUZ Feômeo que ocorre quado a luz muda

Leia mais

(b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da letra E?

(b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da letra E? Exercício 1. (a) Quantos são os anagramas da palavra CINEMA. (b) Em quantos destes anagramas as letras CI aparecem juntas e nesta ordem? (c) Em quantos anagramas a letra A aparece antes (a esquerda) da

Leia mais

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré. 1 Sequências de números reais 1

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré.  1 Sequências de números reais 1 Matemática Essecial Sequêcias Reais Departameto de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessecial/ Coteúdo Sequêcias de úmeros reais 2 Médias usuais 6 3 Médias versus progressões

Leia mais

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma:

BINÔMIO DE NEWTON. O desenvolvimento da expressão 2. a b é simples, pois exige somente quatro multiplicações e uma soma: 07 BINÔMIO DE NEWTON O desevolvimeto da epressão a b é simples, pois eige somete quatro multiplicações e uma soma: a b a b a b a ab ba b a ab b O desevolvimeto de a b é uma tarefa um pouco mais trabalhosa,

Leia mais

TÓPICOS. Matriz inversa. Método de condensação. Matriz ortogonal. Propriedades da álgebra matricial.

TÓPICOS. Matriz inversa. Método de condensação. Matriz ortogonal. Propriedades da álgebra matricial. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Série Trigonométrica de Fourier

Série Trigonométrica de Fourier studo sobre a Série rigoométrica de Fourier Série rigoométrica de Fourier Uma fução periódica f( pode ser decomposta em um somatório de seos e seos eqüivaletes à fução dada f ( o ( ( se ( ) ode: o valor

Leia mais

Números Complexos. David zavaleta Villanueva 1

Números Complexos. David zavaleta Villanueva 1 Material do miicurso a ser lecioado o III EREM-Mossoró-UERN UFRN - Uiversidade Federal do Rio Grade do Norte Edição N 0 outubro 011 Números Complexos David zavaleta Villaueva 1 1 CCET-UFRN, Natal, RN,

Leia mais

CAPÍTULO VI MOMENTOS ESTÁTICOS, BARICENTROS E MOMENTOS DE INÉRCIA

CAPÍTULO VI MOMENTOS ESTÁTICOS, BARICENTROS E MOMENTOS DE INÉRCIA 52 CPÍTULO VI MOMENTOS ESTÁTICOS, BRICENTROS E MOMENTOS DE INÉRCI I.MOMENTOS ESTÁTICOS Mometo Estático de um elemeto de superfície, em relação a um eio, situado o mesmo plao que a superfície cosiderada,

Leia mais

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia.

PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 2011 RESOLUÇÃO: Profa. Maria Antônia Gouveia. PROVA DE MATEMÁTICA DA UNIFESP VESTIBULAR 0 Profa Maria Atôia Gouveia 6 A figura represeta um cabo de aço preso as etremidades de duas hastes de mesma altura h em relação a uma plataforma horizotal A represetação

Leia mais

CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA

CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA CÁLCULO VETORIAL E GEOMETRIA ANÁLITICA Consideremos uma reta r e sejam A e B dois pontos de r Ao segmento de reta AB, podemos associar 2 sentidos : de A para B e de B para A Escrevemos AB para representar

Leia mais

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F.

Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 8 ano E.F. Módulo de Números Naturais. Divisibilidade e Teorema da Divisão Euclideana. 1 Exercícios Introdutórios Exercício 1.

Leia mais

está localizado no cruzamento da i-ésima linha com a j-ésima coluna.

está localizado no cruzamento da i-ésima linha com a j-ésima coluna. MATRIZES 1. DEFINIÇÕES As marizes são frequenemene usadas para organizar dados, como uma abela indexada. Por exemplo, as noas dos alunos de uma escola podem ser disposas numa mariz cujas colunas correspondem

Leia mais

Matemática. Binômio de Newton. Professor Dudan.

Matemática. Binômio de Newton. Professor Dudan. Matemática Biômio de Newto Professor Duda www.acasadococurseiro.com.br Matemática BINÔMIO DE NEWTON Defiição O biômio de Newto é uma expressão que permite calcular o desevolvimeto de (a + b), sedo a +

Leia mais

CURSO E COLÉGIO OBJETIVO TREINO PARA PROVA DE FÍSICA PROF. Peixinho 1 o Ano E.M. 2 o Bimestre-2010

CURSO E COLÉGIO OBJETIVO TREINO PARA PROVA DE FÍSICA PROF. Peixinho 1 o Ano E.M. 2 o Bimestre-2010 VETORES 1 1. (G1) Observe a figura a seguir e determine quais as flechas que: a) tem a mesma direção. b) tem o mesmo sentido. c) tem o mesmo comprimento. d) são iguais. 2. (G1) Quantos sentidos possui

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08

UFBA / UFRB a Fase Matemática RESOLUÇÃO: Professora Maria Antônia Gouveia. QUESTÕES de 01 a 08 UFBA / UFRB 008 1a Fase Matemática Professora Maria Antônia Gouveia QUESTÕES de 01 a 08 INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de

Leia mais

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres-

Em linguagem algébrica, podemos escrever que, se a sequência (a 1, a 2, a 3,..., a n,...) é uma Progres- MATEMÁTICA ENSINO MÉDIO MÓDULO DE REFORÇO - EAD PROGRESSÕES Progressão Geométrica I) PROGRESSÃO GEOMÉTRICA (P.G.) Progressão Geométrica é uma sequêcia de elemetos (a, a 2, a 3,..., a,...) tais que, a partir

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PR EQUÇÕES DIFERENCIIS PRCIIS 1- Resolução de Sistemas Lieares. 1.1- Matrizes e Vetores. 1.2- Resolução de Sistemas Lieares de Equações lgébricas por Métodos Exatos (Diretos). 1.3- Resolução

Leia mais

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO

5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5. ANÁLISE DE SISTEMAS DA CONFIABILIADE DE SISTEMAS SÉRIE-PARALELO 5.1 INTRODUÇÃO Um sistema é defiido como todo o cojuto de compoetes itercoectados, previamete determiados, de forma a realizar um cojuto

Leia mais

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO

XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL 3 (Ensino Médio) GABARITO XXX OLIMPÍADA BRASILEIRA DE MATEMÁTICA PRIMEIRA FASE NÍVEL (Ensino Médio) GABARITO GABARITO NÍVEL ) D 6) C ) D 6) C ) B ) A 7) B ) B 7) B ) C ) D 8) C ) E 8) B ) B 4) D 9) E 4) D 9) C 4) D ) D 0) A ou

Leia mais

Elementos de Matemática

Elementos de Matemática Elemetos de Matemática Números Complexos e Biomiais: Exercícios - 2007 Versão compilada o dia de Outubro de 2007. Departameto de Matemática - UEL Prof. Ulysses Sodré: ulysses(auel(ptbr Matemática Essecial:

Leia mais

MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e

MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e MATEMÁTICA CADERNO CURSO E FRENTE ÁLGEBRA Módulo Equações do ọ Grau e do ọ Grau ) [ ( )] = [ + ] = + = + = + = = Resposta: V = { } 9) Na equação 6 = 0, tem-se a = 6, b = e c =, etão: I) = b ac = + = b

Leia mais

ΔS = 2 m = 2 x 10-3 km

ΔS = 2 m = 2 x 10-3 km Dinâmica de um Sistema de Partículas Faculdade de Engenharia, Arquiteturas e Urbanismo FEAU Profa. Dra. Diana Andrade & Prof. Dr. Sergio Pilling Parte1 - Moimento Retilíneo (continuação) Velocidade instantânea

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL

Movimento unidimensional 25 MOVIMENTO UNIDIMENSIONAL Movimeno unidimensional 5 MOVIMENTO UNIDIMENSIONAL. Inrodução Denre os vários movimenos que iremos esudar, o movimeno unidimensional é o mais simples, já que odas as grandezas veoriais que descrevem o

Leia mais

Transformação de similaridade

Transformação de similaridade Trasformação de similaridade Relembrado bases e represetações, ós dissemos que dada uma base {q, q,..., q} o espaço real - dimesioal, qualquer vetor deste espaço pode ser escrito como:. Ou a forma matricial

Leia mais

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições

Departamento de Informática. Modelagem Analítica. Modelagem Analítica do Desempenho de Sistemas de Computação. Disciplina: Algumas Distribuições Deartameto de Iformática Discilia: do Desemeho de Sistemas de Comutação Algumas Distribuições Algumas Distribuições Discretas Prof. Sérgio Colcher colcher@if.uc-rio.br Coyright 999-8 by TeleMídia Lab.

Leia mais

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas.

INSTRUÇÃO: Assinale as proposições verdadeiras, some os números a elas associados e marque o resultado na Folha de Respostas. SIMULADO DE MATEMÁTICA - TURMAS DO O ANO DO ENSINO MÉDIO COLÉGIO ANCHIETA-BA - JULHO DE 0. ELABORAÇÃO: PROFESSORES OCTAMAR MARQUES E ADRIANO CARIBÉ. PROFESSORA MARIA ANTÔNIA C. GOUVEIA QUESTÕES de 0 a

Leia mais

Coordenadas Cartesianas

Coordenadas Cartesianas 1 Coordenadas Cartesianas 1.1 O produto cartesiano Para compreender algumas notações utilizadas ao longo deste texto, é necessário entender o conceito de produto cartesiano, um produto entre conjuntos

Leia mais

(divisor de corrente) (Iaf - corrente máxima do el. motor) (divisor de corrente)

(divisor de corrente) (Iaf - corrente máxima do el. motor) (divisor de corrente) 1.a) Começando pela escala de 500 mv temos: Vfe = 500 mv = (R5 + RA) Logo R5 = 3 KΩ scala de 10 V: Vfe = 10 V = (R2 + R5 + RA) R2 = 95 KΩ scala de 30 V: Vfe = 30 V = (R1 + R2 + R5 + RA) R1 = 200 KΩ Passemos

Leia mais

INTEGRAÇÃO NUMÉRICA. b a

INTEGRAÇÃO NUMÉRICA. b a INTEGRAÇÃO NUMÉRICA No cálculo, a itegral de uma ução oi criada origialmete para determiar a área sob uma curva o plao cartesiao. Ela também surge aturalmete em dezeas de problemas de Física, como por

Leia mais

Métodos de Classificação dos Objetos Segmentados(IAR) Vizinho Próximo Lógica Fuzzy

Métodos de Classificação dos Objetos Segmentados(IAR) Vizinho Próximo Lógica Fuzzy Viziho Próximo ógica Fuzzy Métodos de Classificação dos Objetos Segmetados(IAR) objeto REGRA CASSE Fuzzy Cohecimeto Miima Distâcia Viziho Próximo O método do viziho próximo é baseado o método da míima

Leia mais

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach Sobre a ecessidade das hipóteses o Teorema do Poto Fio de Baach Marcelo Lopes Vieira Valdair Bofim Itrodução: O Teorema do Poto Fio de Baach é crucial a demostração de vários resultados importates da Matemática

Leia mais

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano

Módulo de Equações do Segundo Grau. Relações entre coeficientes e raízes. Nono Ano Módulo de Equações do Segundo Grau Relações entre coeficientes e raízes. Nono Ano Relações entre Coeficientes e Raízes. Exercícios Introdutórios Exercício. Fazendo as operações de soma e de produto entre

Leia mais

Teoria dos anéis 1 a parte 3

Teoria dos anéis 1 a parte 3 A U L A Teoria dos anéis 1 a parte 3 Meta da aula Descrever a estrutura algébrica de anel como uma generalização de determinadas propriedades dos números inteiros. objetivos Ao final desta aula, você deverá

Leia mais

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação

Questão 1. Questão 3. Questão 2. alternativa B. alternativa E. alternativa C. Os números inteiros x e y satisfazem a equação Quesão Os números ineiros x e y saisfazem a equação x x y y 5 5.Enãox y é: a) 8 b) 5 c) 9 d) 6 e) 7 alernaiva B x x y y 5 5 x ( ) 5 y (5 ) x y 7 x 6 y 5 5 5 Como x e y são ineiros, pelo Teorema Fundamenal

Leia mais

O gráfico que é uma reta

O gráfico que é uma reta O gráfico que é uma rea A UUL AL A Agora que já conhecemos melhor o plano caresiano e o gráfico de algumas relações enre e, volemos ao eemplo da aula 8, onde = + e cujo gráfico é uma rea. Queremos saber

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

2. PRODUTOS NOTÁVEIS 2.1. EXPANSÃO DE PRODUTOS

2. PRODUTOS NOTÁVEIS 2.1. EXPANSÃO DE PRODUTOS 2. PRODUTOS NOTÁVEIS 2.1. EXPANSÃO DE PRODUTOS Em álgebra, é frequente termos de expandir produtos cujos fatores são expressões algébricas (polinômios, por exemplo). Para isso, aplicamos a propriedade

Leia mais

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton

CAPÍTULO 4. Vamos partir da formulação diferencial da lei de Newton 9 CPÍTUL 4 DINÂMIC D PRTÍCUL: IMPULS E QUNTIDDE DE MVIMENT Nese capíulo será analsada a le de Newon na forma de negral no domíno do empo, aplcada ao momeno de parículas. Defne-se o conceo de mpulso e quandade

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 12º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Introdução ao Cálculo Diferencial II ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS 2º ANO DE ESCOLARIDADE DE MATEMÁTICA A Tema II Inrodução ao Cálculo Diferencial II TPC nº 9 Enregar em 4 2 29. Num loe de bolbos de úlipas a probabilidade de que

Leia mais

n IN*. Determine o valor de a

n IN*. Determine o valor de a Progressões Aritméticas Itrodução Chama-se seqüêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais ou complexos. Exemplo: A=(3, 5, 7, 9,,..., 35). Uma seqüêcia pode ser fiita ou ifiita.

Leia mais

Interpolação-Parte II Estudo do Erro

Interpolação-Parte II Estudo do Erro Iterpolação-Parte II Estudo do Erro. Estudo do Erro a Iterpolação. Iterpolação Iversa 3. Grau do Poliômio Iterpolador 4. Fução Splie em Iterpolação 4. Splie Liear 4. Splie Cúbica .Estudo do Erro a Iterpolação

Leia mais

CAP. VI DIFERENCIAÇÃO E INTEGRAÇÃO NUMÉRICA

CAP. VI DIFERENCIAÇÃO E INTEGRAÇÃO NUMÉRICA CAP. VI DIFRNCIAÇÃO INGRAÇÃO NUÉRICA 6. DIFRNCIAÇÃO NUÉRICA m muitas circustâcias tora-se diícil obter valores de derivadas de uma ução: derivadas que ão são de ácil obteção; emplo (calcular a ª derivada:

Leia mais

1 Conjuntos, Números e Demonstrações

1 Conjuntos, Números e Demonstrações 1 Conjuntos, Números e Demonstrações Definição 1. Um conjunto é qualquer coleção bem especificada de elementos. Para qualquer conjunto A, escrevemos a A para indicar que a é um elemento de A e a / A para

Leia mais