Sinais e Sistemas. Env. CS1 Ground. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with. gravity and sine wave forcing in the

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Sinais e Sistemas. Env. CS1 Ground. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with. gravity and sine wave forcing in the"

Transcrição

1 Frequecy khz Hammig kaiser Chebyshev Siais e Sisemas Power Specral Desiy Ev B F CS CS B F CS Groud Revolue Body Revolue Body Power/frequecy db/hz Sie Wave Joi Acuaor Joi Sesor Revolue Double Pedulum wo coupled plaar pedulums wih Revolue Agle graviy ad sie wave forcig i he Joi Sesor upper Revolue joi. SS MIEIC 8/9 Programa de SS Siais e Sisemas aulas Sisemas Lieares e Ivariaes aulas Aálise de Fourier empo coíuo 3aulas Aálise de Fourier empo discreo 3aulas Amosragem de Siais Coíuos aulas SiSis

2 Siais e Sisemas Siais em empo coíuo e em empo discreo Operações elemeares com siais rasformação de variável idepedee Decomposição de siais Caracerísicas de siais Siais fudameais Sisemas e sua ierligação Propriedades de sisemas SiSis 3 Siais Uilizados para descrever feómeos Eemplos aliude de um avião ao logo de um voo h emperaura da água do mar em fução da profudidade precipiação oal diária regisada por uma esação meeorológica p z d variação espacial da iesidade de uma imagem moocromáica y SiSis 4

3 Siais Descrios por fuções de uma ou mais variáveis idepedees Apeas iremos raar siais com uma úica variável idepedee Por facilidade iremos cosiderar como variável idepedee o empo No caso geral podemos er siais que omam valores compleos SiSis 5 Siais em empo coíuo Variável idepedee é coíua, omado odos os valores um dado iervalo de úmeros reais desigação do sial Noação:, y, v, variável idepedee Noa: Os siais em empo coíuo podem ser fuções descoíuas da variável idepedee Habiualmee ão impora o valor do sial os isaes de descoiuidade, mas só oslimiesàesquerdae àdireia SiSis 6

4 Siais em empo discreo Variável idepedee oma apeas um cojuo discreo de valores, por coveção ieiros y desigação do sial Noação:, y, v, variável idepedee Variável idepedee discrea isae seguie e isae aerior Noa: Podem resular de amosragem de siais em empo coíuo SiSis 7 Operações elemeares com siais Muliplicação por um escalar y a Eemplos y.5 y.5 y 3 y SiSis 8

5 Operações elemeares com siais Operações algébricas soma, muliplicação, Eemplo z + y y Eemplo a b c a b SiSis 9 Operações elemeares com siais Ouras operações derivação, iegração, acumulação, Eemplo d y d Eemplo z m3 m SiSis

6 rasformação de variável idepedee raslação y y y y SiSis rasformação de variável idepedee raslação y y > > araso do sial y 3 < < avaço do sial y SiSis

7 rasformação de variável idepedee Mudaça de escala a > y a y a / a y / a a / a SiSis 3 rasformação de variável idepedee Mudaça de escala a > y a a > coracção da escala emporal y < a < epasão da escala emporal y / 4 SiSis 4

8 rasformação de variável idepedee Mudaça de escala a > y a No caso discreo apeas em seido se a for ieiro a > correspode sempre a uma amosragem Eemplo y SiSis 5 rasformação de variável idepedee Rebaimeo y y correspode a uma refleão do gráfico do sial a reca y y SiSis 6

9 rasformação de variável idepedee Mudaça de escala a < y a y a a correspode a um rebaimeo e a uma coracção/epasão defiida por a a < ão impora a ordem por que são realizados o rebaimeo e a coracção/epasão! a a a / a y a / a a a SiSis 7 rasformação de variável idepedee Caso geral y a b y a b Combia uma raslação com uma coracção/epasão e com eveual rebaimeo y a b b a +b a b y a b b a a y +b a +b b a b b + b b a y a b pode ser obido de duas formas: raslação seguida de mudaça de escala mudaça de escala seguida de raslação SiSis 8

10 rasformação de variável idepedee Caso geral y a b y a b Realizado primeiro a raslação b b araso de b b b e depois a mudaça de escala y b a a b b + b escalameo de a y a b b a +b a SiSis 9 rasformação de variável idepedee Caso geral y a b y a b Realizado primeiro a mudaça de escala a a escalameo de a a a e depois a raslação b y a a b a a a b a araso de b/a y a b b a +b a SiSis

11 rasformação de variável idepedee Eemplo: Dado, deermiar ober. ober SiSis rasformação de variável idepedee Eemplo: Dado, deermiar Noa:. ober. ober 4 5 SiSis

12 Eercício Dados os siais < < < > y deermie e esboce + y SiSis 3 Eercício Cosidere o sial y y + y e deermie SiSis 4

13 Siais pares Um sial em empo coíuo diz-se par se Um sial em empo discreo diz-se par se Noa: O gráfico de um sial par é simérico relaivamee à reca SiSis 5 Siais ímpares Um sial em empo coíuo diz-se ímpar se Um sial em empo discreo diz-se ímpar se Noas: O gráfico de um sial ímpar é simérico relaivamee à origem O valor de um sial ímpar em é ulo ou ão esá aí defiido SiSis 6

14 SiSis 7 Decomposição em pare par e pare ímpar Um sial em empo coíuo pode sem decomposo a soma de um sial par com um sial ímpar i p + p i ée pare par de éa pare ímpar de i i p p p + i p + i i p + i p SiSis 8 Decomposição em pare par e pare ímpar Um sial em empo discreo pode sem decomposo a soma de um sial par com um sial ímpar i p + p i ée pare par de éa pare ímpar de i i p p p + i p + i i p + i p

15 Deermiação de pare par e pare ímpar p p i i SiSis 9 Poêcia isaâea A poêcia isaâea do sial é é um valor sempre ão egaivo apeas é ula os isaes em que é ulo se é real eão a poêcia isaâea é dada por Para siais em empo discreo, a poêcia isaâea do sial é dada por sedo ambém válidas as afirmações acima SiSis 3

16 Eergia Eergia do sial o iervalo, { }, E d se a eergia de um sial um iervalo é ula, eão o sial é ulo esse iervalo Quado esá defiido para odos os úmeros reais a sua eergia é E{ } + d Noas: Um sial apeas defiido um iervalo, diz-se de duração limiada Um sial de duração limiada pode eseder-se a odo o domíio real, fazedo para < > de modo a maer a sua eergia SiSis 3 Eergia Eergia do sial o iervalo, { }, E se a eergia de um sial um iervalo é ula, eão o sial é ulo esse iervalo Quado esá defiido para odos os úmeros ieiros a sua eergia é E { } + Noas: Um sial apeas defiido um iervalo, diz-se de duração limiada Um sial de duração limiada pode eseder-se a odo o domíio ieiro, fazedo para < > de modo a maer a sua eergia SiSis 3

17 Eergia eemplos - - { } E, d + d + d E{ } d d d d SiSis 33 Poêcia média Poêcia média do sial o iervalo, { }, P d Poêcia média do sial o iervalo, { }, + P Noa: O iervalo de ieiros, coém + poos! Caso os siais esejam defiidos em de a + a poêcia média é defiida por P C C { } lim C + d ou P{ } lim C D D + + D D SiSis 34

18 Poêcia média eemplos P, { } y 3 P{ y } lim D D + + D D y lim D + D + D D + lim D + D + SiSis 35 Siais de duração ilimiada siais de eergia e siais de poêcia Os siais com eergia fiia E{}< são desigados siais de eergia. Eses siais êm poêcia média ula! Eemplos:, < <, ouros 3, 5 < < 3, ouros Os siais com poêcia média ão ula e fiia <P{}< são desigados siais de poêcia. Eses siais êm eergia ifiia E{}! Eemplos:,, < Há aida siais que êm eergia ifiia E{} e poêcia média ifiia P{}! Eemplos:,, < SiSis 36

19 Valor médio Valor médio do sial o iervalo,, d Valor médio do sial o iervalo,, + Caso os siais esejam defiidos em de a + o valor médio é defiido por C lim d ou lim C + C D + D + C D D SiSis 37 Valor médio eemplos - -, d + + d d y y lim D D + + D D y lim D + D + D D + lim D + D + SiSis 38

20 Siais periódicos empo coíuo O sial diz-se periódico se eisir > al que + se m é ieiro eão + m o meor ão egaivo que saisfaz + é desigado período fudameal SiSis 39 Siais periódicos empo discreo O sial diz-se periódico se eisir N> al que + N N N N N se m é ieiro eão + mn o meor N ão egaivo que saisfaz + N é desigado período fudameal SiSis 4

21 Siais periódicos valor médio, poêcia média e valor eficaz de período valor médio + d Noa: Iegrações realizadas ao logo de qualquer iervalo de largura poêcia média P + { } d valor eficaz P{ } ef RMS + d roo mea square SiSis 4 Siais periódicos valor médio, poêcia média e valor eficaz de período N valor médio N + N Noa: Somaórios realizados ao logo de qualquer iervalo de N poos cosecuivos poêcia média P { } N N valor eficaz P{ } ef RMS N + N roo mea square SiSis 4

22 Valor médio, poêcia média e valor eficaz eemplo A / d / A d / A A 4 P{ } d / A d / 4A d 3 4A / 3 3 A 6 RMS P{ } A 6 SiSis 43 Siais pediódicos compoees coíua e alerada de período + AC compoee alerada de AC compoee coíua de de período N + AC compoee alerada de AC compoee coíua de SiSis 44

23 Compoees coíua e alerada eemplo A d A d A A AC A AC A/ A/ SiSis 45 Eercício 3 Relaivamee ao sial da figura deermie a o valor médio A b a poêcia média c o valor eficaz d a compoee alerada SiSis 46

24 Eercício 4 Cosidere o sial com eergia E{} fiia. Deermie: a E{ b } b E{ a } c E{ a b } SiSis 47

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with -4-6 -8-0 - -4-6 -8-30 -3 Frequec Hz Hammig aiser Chebshev Faculdade de Egeharia iais e isemas Power pecral Desi Ev B F C C B F C Groud Revolue Bod Revolue Bod Power/frequec db/hz ie Wave Joi Acuaor Joi

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes -4-6 -8 - - -4-6 -8 - - Frequec khz Hmmig kiser Chebshev Fculdde de Egehri Sisems Lieres e Ivries Power Specrl Desi Ev B F CS CS B F CS Groud Revolue Bod Revolue Bod Power/frequec db/hz Sie Wve Joi Acuor

Leia mais

Disciplina de Princípios de Telecomunicações Prof. MC. Leonardo Gonsioroski da Silva

Disciplina de Princípios de Telecomunicações Prof. MC. Leonardo Gonsioroski da Silva UNIVERSIDADE GAMA FILHO PROCE DEPARAMENO DE ENGENHARIA ELÉRICA Disciplia de Pricípios de elecomuicações Pro. MC. Leoardo Gosioroski da Silva Séries e rasormadas de Fourier Aálise de um sial seoidal o empo

Leia mais

Faculdade de Engenharia. Análise Matemática 2 MIEEC 2015/2016

Faculdade de Engenharia. Análise Matemática 2 MIEEC 2015/2016 aculdade de Egeharia Aálise Maemáica 2 MEEC 25/26 ucioameo aculdade de Egeharia Teórico-práicas exposição e discussão da maéria resolução de exercícios Trabalho exra-aula resolução dos exercícios proposos

Leia mais

Sistemas Lineares e Invariantes

Sistemas Lineares e Invariantes -14-16 -18-2 -22-24 -26-28 -3-32 Frequency (Hz Hamming aiser Chebyshev isemas Lineares e Invarianes Power pecral Densiy Env B F C1 C2 B F C1 Ground Revolue Body Revolue1 Body1 Power/frequency (db/hz ine

Leia mais

Exercícios de Análise de Sinal

Exercícios de Análise de Sinal Exercícios de Aálise de Sial FEUP DEEC Seembro 008 recolha de problemas de diversos auores edição feia por: H. Mirada, J. Barbosa (000) M.I. Carvalho, A. Maos (003, 006, 008) Coeúdo Complexos 3 Siais 5

Leia mais

1. Na figura seguinte está representada parte do gráfico de uma função g, de domínio R e contínua em

1. Na figura seguinte está representada parte do gráfico de uma função g, de domínio R e contínua em PROVA ESCRITA DE MATEMÁTICA A.º E 00 Fevereiro 8 Duração da prova: 90 miuos VERSÃO Grupo I Para cada uma das cico quesões dese grupo, seleccioe a resposa correca de ere as aleraivas que lhe são apreseadas

Leia mais

Secção 7. Sistemas de equações diferenciais.

Secção 7. Sistemas de equações diferenciais. 7. Sisemas de equações difereciais Secção 7. Sisemas de equações difereciais. (Farlow: Sec. 6., 6.4 e 6.6) No caso geral, um sisema de equações difereciais de primeira ordem pode ser represeado da seguie

Leia mais

Introdução à análise e ao processamento de sinais usando o MATLAB. Parte 1 RUBENS SAMPAIO ROBERTO RIQUELME EDSON CATALDO XXI CNMAC

Introdução à análise e ao processamento de sinais usando o MATLAB. Parte 1 RUBENS SAMPAIO ROBERTO RIQUELME EDSON CATALDO XXI CNMAC Irodução à aálise e ao processameo de siais usado o MALAB RUBENS SAMPAIO EDSON CAALDO ROBERO RIQUELME Pare SINAIS E SISEMAS SINAIS - São variáveis que carregam iormação SISEMAS - Processam siais de erada

Leia mais

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais.

4- Método de Diferenças Finitas Aplicado às Equações Diferenciais Parciais. MÉTODOS NM ÉRICOS PARA E QAÇÕES DIFEREN CIAIS PARCIAIS 4- Méodo de Difereças Fiias Aplicado às Equações Difereciais Parciais. 4.- Aproximação de Fuções. 4..- Aproximação por Poliômios. 4..- Ajuse de Dados:

Leia mais

MAGISTÉRIO MATEMÁTICA

MAGISTÉRIO MATEMÁTICA PROVA DE CONHECIMENTOS ESPECÍFICOS CONCURSO DE ADMISSÃO 0 ao CFO/QC - 0 PAG -6 4 Aalise as afirmaivas a seguir, colocado ere parêeses a lera V quado se raar de proposição verdadeira e a lera F quado se

Leia mais

3 Computação de Volumes de Gás Natural

3 Computação de Volumes de Gás Natural 3 Compuação de olumes de Gás Naural 3.1. Codições Para a Compuação de olumes de Gás Naural A orma API 21.1 apresea diversos aspecos relacioados à compuação de volumes obidos a parir da iegração, ao logo

Leia mais

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with

Sinais e Sistemas. Env. CS1 Ground Revolute. Sine Wave Joint Actuator. Double Pendulum Two coupled planar pendulums with -14-16 -18-20 -22-24 -26-28 -30-32 Frequency (khz) Hamming kaiser Chebyshev Sinais e Sistemas Power Spectral Density Env B F CS1 CS2 B F CS1 Ground Revolute Body Revolute1 Body1 Power/frequency (db/hz)

Leia mais

Processamento Digital de Sinais. Notas de Aula. Amostragem e Reconstrução de Sinais. Amostragem de Sinais

Processamento Digital de Sinais. Notas de Aula. Amostragem e Reconstrução de Sinais. Amostragem de Sinais Amosragem de Siais Amosragem de Siais 2 Amosragem de Siais Processameo Digial de Siais Noas de Aula Siais de empo discreo: podem ser obidos a parir de siais de empo coíuo amosragem Amosras de um sial:

Leia mais

Sinais e Sistemas CS Body Revolute Angle -26. Revolute MIEIC 2008/2009

Sinais e Sistemas CS Body Revolute Angle -26. Revolute MIEIC 2008/2009 Sinais e Sistemas -14 Power Spectral Density Hamming Env B F CS1 CS B F CS1-16 kaiser Chebyshev Ground Revolute Body Revolute1 Body1-18 -0 Revolute1 Sine Wave Joint Actuator Double Pendulum Two coupled

Leia mais

Faculdades Adamantinenses Integradas (FAI)

Faculdades Adamantinenses Integradas (FAI) Faculdades Adamaieses Iegradas (FAI) www.fai.com.br ROCHA, Naiara Chierici; BOTTA, Vaessa. Diâmica populacioal aplicada à população de Adamaia. Omia Exaas, v.2,.2, p.56-65, 2009. DINÂMICA POPULACIONAL

Leia mais

TÓPICOS. Matriz inversa. Método de condensação. Matriz ortogonal. Propriedades da álgebra matricial.

TÓPICOS. Matriz inversa. Método de condensação. Matriz ortogonal. Propriedades da álgebra matricial. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Exercícios de Cálculo Numérico Equações Diferenciais Ordinárias

Exercícios de Cálculo Numérico Equações Diferenciais Ordinárias Eercícios de Cálclo Nmérico Eqações Diereciais Ordiárias. Deermie a solção mérica aproimada da segie Eqação Dierecial Ordiária com o passo.: { ( ( [ ] ( (a Méodo de Eler ( Méodo das Tagees (b Méodo de

Leia mais

Simulação por Eventos Discretos

Simulação por Eventos Discretos imulação por Eveos Disreos Apliação à simulação de ráfego isemas de Teleomuiações IEEC - Área de Teleomuiações 4º Ao - º emesre FEUP 009-0 JL, PR Ieioalmee em brao imulação por eveos disreos - priípios

Leia mais

A limitação da metodologia dos MQ conduziu a diversas abordagens alternativas. As

A limitação da metodologia dos MQ conduziu a diversas abordagens alternativas. As Capíulo 3 ESTIMAÇÃO ROBUSTA A limiação da meodologia dos MQ coduziu a diversas abordages aleraivas. As écicas de esimação robusa cosiuem uma abordagem à esimação ão depededo de uma disribuição em paricular.

Leia mais

CIRCUITOS EM CORRENTE ALTERNADA PARTE 1

CIRCUITOS EM CORRENTE ALTERNADA PARTE 1 // UO E OENE END E. UNÇÕE EÓD. DOÍNO DO EO. OE. OÊN. OÊN E. OÊN ENE 7. EÊN 8. ÂN 9. NDUÂN // // UNÇÕE EÓD UNÇÕE EÓD egime UNÇÕE EÓD : eão e ore ão periódi egime eacioário: O valo iaâeo ão coae. egime raiório:

Leia mais

AULA Subespaço, Base e Dimensão Subespaço.

AULA Subespaço, Base e Dimensão Subespaço. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira TÓPICOS Subespaço. ALA Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

MÉTODOS OBSERVACIONAIS EM CLIMATOLOGIA E METEOROLOGIA DE MESOESCALA : NOTAS DE AULA. Prof. Resposável: Dra. Leila M. Véspoli de Carvalho IAG/USP

MÉTODOS OBSERVACIONAIS EM CLIMATOLOGIA E METEOROLOGIA DE MESOESCALA : NOTAS DE AULA. Prof. Resposável: Dra. Leila M. Véspoli de Carvalho IAG/USP MÉTODOS OBSERVACIONAIS EM CLIMATOLOGIA E METEOROLOGIA DE MESOESCALA : NOTAS DE AULA Prof. Resposável: Dra. Leila M. Véspoli de Carvalho IAG/USP ANÁLISE DE SÉRIES TEMPORAIS Referêcias Básicas : I) ALGORITMOS

Leia mais

INTRODUÇÃO AOS SISTEMAS DINÂMICOS

INTRODUÇÃO AOS SISTEMAS DINÂMICOS INTRODUÇÃO AOS SISTEMAS DINÂMICOS Ese maerial é uma revisão sobre algus coceios e resulados da eoria dos sisemas diâmicos, com o objeivo de faciliar a melhor compreesão dese ema para esudaes de ecoomia,

Leia mais

Introdução aos Sinais

Introdução aos Sinais UNIVASF Análise de Sinais e Sisemas Inrodução aos Sinais Prof. Rodrigo Ramos godoga@gmail.com Classificação de Sinais Sinais Sinais geralmene ransporam informações a respeio do esado ou do comporameno

Leia mais

Critérios para a Apuração dos Preços de Ajuste e Prêmios das Opções de Compra e de Venda Maio 2009

Critérios para a Apuração dos Preços de Ajuste e Prêmios das Opções de Compra e de Venda Maio 2009 Criérios para a Apuração dos Preços de Ajuse e Prêmios das Opções de Compra e de Veda Maio 2009 Iformamos os procedimeos a serem aplicados durae o mês de maio de 2009 para a apuração dos preços de ajuses

Leia mais

Processamento Digital de Sinais. Notas de Aula. Amostragem e Reconstrução de Sinais. Amostragem de Sinais

Processamento Digital de Sinais. Notas de Aula. Amostragem e Reconstrução de Sinais. Amostragem de Sinais Amosragem de Siais Amosragem de Siais 2 Amosragem de Siais Processameo Digial de Siais Noas de Aula Siais de empo discreo: podem ser obidos a parir de siais de empo coíuo amosragem Amosras de um sial:

Leia mais

AULA Matriz inversa Matriz inversa.

AULA Matriz inversa Matriz inversa. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Critérios para a Apuração dos Preços de Ajuste Fevereiro 2009.

Critérios para a Apuração dos Preços de Ajuste Fevereiro 2009. Criérios para a Apuração dos Preços de Ajuse Fevereiro 2009. Iformamos os procedimeos a serem aplicados durae o mês de fevereiro de 2009 para a apuração dos preços de ajuses diários dos coraos derivaivos

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

FUNDO DE COMÉRCIO * Pedro Schubert

FUNDO DE COMÉRCIO * Pedro Schubert FUNDO DE COMÉRCIO * Pedro Schuber Esa maéria que ão em bibliografia e o seu coceio o ambiee coábil refere-se aos bes iagíveis e os auores ficam com os ies iagíveis possíveis de serem regisrados pela coabilidade

Leia mais

LISTA DE EXERCÍCIOS 3 INE 7001 PROF. MARCELO MENEZES REIS ANÁLISE DE SÉRIE TEMPORAIS GABARITO

LISTA DE EXERCÍCIOS 3 INE 7001 PROF. MARCELO MENEZES REIS ANÁLISE DE SÉRIE TEMPORAIS GABARITO LISTA DE EXERCÍCIOS 3 INE 700 PROF. MARCELO MENEZES REIS ANÁLISE DE SÉRIE TEMPORAIS GABARITO ) A que compoees de uma série emporal (pelo modelo clássico) esariam pricipalmee associados cada um dos seguies

Leia mais

Critérios para a Apuração dos Preços de Ajuste Março 2009.

Critérios para a Apuração dos Preços de Ajuste Março 2009. Criérios para a Apuração dos Preços de Ajuse Março 2009. Iformamos os procedimeos a serem aplicados durae o mês de março de 2009 para a apuração dos preços de ajuses diários dos coraos derivaivos fiaceiros

Leia mais

Sinais contínuos e discretos. Sinais contínuos. Sinais: o que são? Sinais. Os sinais traduzem a evolução de uma grandeza ao longo do tempo.

Sinais contínuos e discretos. Sinais contínuos. Sinais: o que são? Sinais. Os sinais traduzem a evolução de uma grandeza ao longo do tempo. Sas coíuos e dscreos Sas orge s. marques orge s. marques Sas: o que são? Sas coíuos Os sas raduzem a eolução de uma gradeza ao logo do empo empo : IR IR ou : [ab] IR ou do espaço Um sal dz-se coíuo se

Leia mais

Matriz. Matrizes especiais

Matriz. Matrizes especiais Mariz Mariz de ipo m sobre um corpo Uma mariz de ipo m sobre um corpo Ω é um quadro com m lihas e coluas cujos elemeos A ij são escalares de Ω. A11 A2 A1 A21 A22 A 2 A= A ij = Am 1 Am2 Am A mariz A ij

Leia mais

Aonde estou eu...? Ou qual é o meu momento? Ou o que é que eu sou...? Que diabo...! Porque que me vou preocupar com tudo isso de novo...?

Aonde estou eu...? Ou qual é o meu momento? Ou o que é que eu sou...? Que diabo...! Porque que me vou preocupar com tudo isso de novo...? Crise de ideidade de um Foão de Luz... Dualidade Oda-Parícula Aode esou eu...? Ou qual é o meu momeo? Ou o que é que eu sou...? Que diabo...! Porque que me vou preocupar com udo isso de ovo...? Eu em eo

Leia mais

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas.

Conceito. Exemplos. Os exemplos de (a) a (d) mostram séries discretas, enquanto que os de (e) a (g) ilustram séries contínuas. Coceio Na Esaísica exise siuações ode os dados de ieresse são obidos e isaes sucessivos de epo (iuo, hora, dia, ês ou ao), ou aida u período coíuo de epo, coo acoece u elerocardiograa ou sisógrafo. Esses

Leia mais

4 Método dos elementos distintos para simular rochas

4 Método dos elementos distintos para simular rochas 4 Méodo dos elemeos disios para simular rochas Em 2004, Poyody e Cudall (56) propuseram um modelo para simular o comporameo de rochas, o BPM ( Boded Paricle Model for rock ). Nesse modelo, a rocha é modelada

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

Universidade Federal do Rio de Janeiro

Universidade Federal do Rio de Janeiro Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL42 Coneúdo 8 - Inrodução aos Circuios Lineares e Invarianes...1 8.1 - Algumas definições e propriedades gerais...1 8.2 - Relação enre exciação

Leia mais

CIRCUITOS EM CORRENTE ALTERNADA PARTE 1

CIRCUITOS EM CORRENTE ALTERNADA PARTE 1 9// UO E OENE END E. FUNÇÕE EÓD. DOÍNO DO EO. FOE. OÊN. OÊN E. OÊN ENE 7. EÊN 8. ÂN 9. NDUÂN 8// 8// FUNÇÕE EÓD FUNÇÕE EÓD egime FUNÇÕE EÓD : eão e ore ão periódi egime eacioário: O valo iaâeo ão coae.

Leia mais

CAP. 6 - ANÁLISE DE INVESTIMENTOS EM SITUAÇÃO DE RISCO

CAP. 6 - ANÁLISE DE INVESTIMENTOS EM SITUAÇÃO DE RISCO CAP. 6 - ANÁLISE DE INVESTIMENTOS EM SITUAÇÃO DE RISCO 1. APRESENTAÇÃO Nese capíulo serão abordados vários méodos que levam em coa o uso das probabilidades a aálise de ivesimeos. Eses méodos visam subsidiar

Leia mais

MAT302 - Cálculo 2. INTEGRAIS Integral Indefinida pág. 403. Bibliografia: Cálculo volume I, 5 edição. James Stewart Prof.

MAT302 - Cálculo 2. INTEGRAIS Integral Indefinida pág. 403. Bibliografia: Cálculo volume I, 5 edição. James Stewart Prof. MAT - Cálculo Biliografia: Cálculo volume I, 5 edição. James Sewar Prof. Valdecir Boega INTEGRAIS Iegral Idefiida pág. 4 Aé aqui, osso prolema ásico era: ecorar a derivada de uma fução dada. A parir de

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

INTERPRETANDO CORRETAMENTE O PASSADO PODEM-SE GERAR PREVISÕES ÚTEIS PARA O FUTURO.

INTERPRETANDO CORRETAMENTE O PASSADO PODEM-SE GERAR PREVISÕES ÚTEIS PARA O FUTURO. MÓDUO - MODEOS DE PREVISÃO E ESTIMATIVA DE DEMANDA Baseado em Chopra, Suil e Meidl, Peer, Gereciameo da Cadeia de Suprimeos, Preice Hall, São Paulo, 23. Quao se deve fabricar os próximos dias? Quais os

Leia mais

Apontamentos de Análise de Sinais

Apontamentos de Análise de Sinais LICENCIATURA EM ENGENHARIA DE SISTEMAS DE TELECOMUNICAÇÕES E ELECTRÓNICA Apomeos de Aálise de Siis Módulo Prof. José Amrl Versão. 6-- Secção de Comuicções e Processmeo de Sil ISEL-CEDET, Gbiee C jd@isel.p

Leia mais

Filtros de Partículas: O Algoritmo Resample-Move Ana Flávia Cupertino Pinto

Filtros de Partículas: O Algoritmo Resample-Move Ana Flávia Cupertino Pinto UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS EXATAS DEPARTAMENTO DE ESTATÍSTICA MESTRADO EM ESTATÍSTICA Filros de Parículas: O Algorimo Resample-Move Aa Flávia Cuperio Pio Orieador: Prof.

Leia mais

Prova 3 Matemática ... RASCUNHO PARA ANOTAÇÃO DAS RESPOSTAS PROVA 3 INVERNO 2017 GABARITO 1 17/07/ :13 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA

Prova 3 Matemática ... RASCUNHO PARA ANOTAÇÃO DAS RESPOSTAS PROVA 3 INVERNO 2017 GABARITO 1 17/07/ :13 INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA Vesibular de Ivero 07 Prova N ọ DE ORDEM: N ọ DE INSCRIÇÃO: NOME DO CANDIDATO: INSTRUÇÕES PARA A REALIZAÇÃO DA PROVA. Cofira os campos N ọ DE ORDEM, N ọ DE INSCRIÇÃO e NOME DO CANDIDATO, que cosam a eiquea

Leia mais

Métodos Estatísticos de Previsão MÉTODOS ESTATÍSTICOS DE PREVISÃO. Análise de Erros. Bernardo Almada Lobo. Bernardo Almada-Lobo (2007)

Métodos Estatísticos de Previsão MÉTODOS ESTATÍSTICOS DE PREVISÃO. Análise de Erros. Bernardo Almada Lobo. Bernardo Almada-Lobo (2007) Méodos saísicos de Previsão MÉTODO TATÍTICO D PRVIÃO 0 08 06 04 0 00 98 96 94 9 90 0 5 0 5 0 Aálise de rros Berardo Almada Lobo Berardo Almada-Lobo (007) Méodos saísicos de Previsão Regressão Liear Múlipla

Leia mais

Apontamentos de Análise de Sinais

Apontamentos de Análise de Sinais LICENCITUR EM ENGENHRI DE SISTEMS DE TELECOMUNICÇÕES E ELECTRÓNIC poameos de álise de Siais Módlo Prof. José maral Versão. -- Secção de Comicações e Processameo de Sial ISEL-CEDET, Gabiee C jda@isel.p

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON)

TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 18 LIVRO DO NILSON) TRANSFORMADA DE FOURIER NOTAS DE AULA (CAP. 8 LIVRO DO NILSON). CONSIDERAÇÕES INICIAIS SÉRIES DE FOURIER: descrevem funções periódicas no domínio da freqüência (ampliude e fase). TRANSFORMADA DE FOURIER:

Leia mais

MOSFET: O MOSFET canal p e a Resistência de Saída Aula 3

MOSFET: O MOSFET canal p e a Resistência de Saída Aula 3 MOSFET: O MOSFET caal p e a Resisêcia de Saída Aula 3 47 Aula Maéria Cap./págia 1ª 03/08 Elerôica PS33 Programação para a Primeira Prova Esruura e operação dos rasisores de efeio de campo caal, caracerísicas

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

Proposta de Exame de Matemática A 12.º ano

Proposta de Exame de Matemática A 12.º ano Proposta de Eame de Matemática A 1.º ao Nome da Escola Ao letivo 0-0 Matemática A 1.º ao Nome do Aluo Turma N.º Data Professor - - 0 GRUP I Na resposta aos ites deste grupo, selecioe a opção correta. Escreva,

Leia mais

está localizado no cruzamento da i-ésima linha com a j-ésima coluna.

está localizado no cruzamento da i-ésima linha com a j-ésima coluna. MATRIZES 1. DEFINIÇÕES As marizes são frequenemene usadas para organizar dados, como uma abela indexada. Por exemplo, as noas dos alunos de uma escola podem ser disposas numa mariz cujas colunas correspondem

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS

QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÕES ANPEC EQUAÇÕES DIFERENCIAIS E EQUAÇÕES DE DIFERENÇAS QUESTÃO Assinale V (verdadeiro) ou F (falso): () A solução da equação diferencial y y y apresena equilíbrios esacionários quando, dependendo

Leia mais

A função zeta de Riemann

A função zeta de Riemann A fução zea de Riema Maria Cecília K. Aguilera-Navarro, Valdir C. Aguilera-Navarro Deparameo de Maemáica - UNICENTRO 855-43 Guarapuava, PR Deparameo de Química e Física - UNICENTRO 855-43 Guarapuava, PR

Leia mais

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003

ÁLGEBRA. Licenciatura em Engenharia Electrotécnica e de Computadores LEEC Ano lectivo de 2002/2003 ÁLGEBRA Liceciatura em Egeharia Electrotécica e de Computadores LEEC Ao lectivo de 00/003 Apotametos para a resolução dos exercícios da aula prática 5 MATRIZES ELIMINAÇÃO GAUSSIANA a) Até se obter a forma

Leia mais

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO Processameto Digital de Siais Aula 7 Professor Marcio Eisecraft abril 0 AULA 7 A TRANSFORMADA Z - DEFINIÇÃO Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Siais e Sistemas, a edição, Pearso, 00. ISBN 9788576055044.

Leia mais

Sistemas Dinâmicos. Sistema massa-mola-atrito. O que é um sistema? Sistemas Lineares e Invariantes no Tempo

Sistemas Dinâmicos. Sistema massa-mola-atrito. O que é um sistema? Sistemas Lineares e Invariantes no Tempo Sisemas Diâmicos Sisemas Lieares e Ivariaes o Tempo O que é um sisema? Sisema massa-mola-ario Um sisema é um objeco ou grupo de objecos que ieragem com o mudo. Essa ieracção é represeada aravés de eradas

Leia mais

Problema de Fluxo de Custo Mínimo

Problema de Fluxo de Custo Mínimo Problema de Fluo de Custo Míimo The Miimum Cost Flow Problem Fluo de Custo Míimo O Problema de Fluo de Custo Míimo (The Miimum Cost Flow Problem) Este problema possui papel pricipal etre os modelos de

Leia mais

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c =

MATEMÁTICA II. 01. Uma função f, de R em R, tal. , então podemos afirmar que a, b e c são números reais, tais. que. D) c = MATEMÁTCA 0. Uma fução f, de R em R, tal que f(x 5) f(x), f( x) f(x),f( ). Seja 9 a f( ), b f( ) e c f() f( 7), etão podemos afirmar que a, b e c são úmeros reais, tais que A) a b c B) b a c C) c a b ab

Leia mais

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária. 1.4 Determiates A teoria dos determiates surgiu quase simultaeamete a Alemaha e o Japão. Ela foi desevolvida por dois matemáticos, Gottfried Wilhelm Leibiz (1642-1716) e Seki Shisuke Kowa (1642-1708),

Leia mais

Wavelets. Jorge Salvador Marques, Motivação

Wavelets. Jorge Salvador Marques, Motivação Wavelets Jorge Salvador Marques, 9 Motivação Jorge Salvador Marques, 9 Qual é a melhor escala? Os obectos aparecem a imagem com dimesões muito diferetes Não uma escala úica que sea apropriada Há uma escala

Leia mais

Como o Intervalo de Confiança para a média é bilateral, teremos uma situação semelhante à da figura abaixo:

Como o Intervalo de Confiança para a média é bilateral, teremos uma situação semelhante à da figura abaixo: INE66 Méodo Eaíico Exercício Prova - Semere 15.1 O poo de fuão (medido em C) é um apeco crucial em maeriai cerâmico, epecialmee o uado em reaore ucleare, como a ória. Receemee um fabricae apreeou dua ova

Leia mais

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão

Matemática. Resolução das atividades complementares. M7 Função Exponencial. 2 Encontre o valor da expressão Resolução das atividades complemetares Matemática M Fução Epoecial p. 6 (Furg-RS) O valor da epressão A a) c) e) 6 6 b) d) 0 A?? A? 8? A A A? A 6 8 Ecotre o valor da epressão 0 ( ) 0 ( ) 0 0 0. Aplicado

Leia mais

ENGF93 Análise de Processos e Sistemas I

ENGF93 Análise de Processos e Sistemas I ENGF93 Análise de Processos e Sisemas I Prof a. Karen Pones Revisão: 3 de agoso 4 Sinais e Sisemas Tamanho do sinal Ampliude do sinal varia com o empo, logo a medida de seu amanho deve considerar ampliude

Leia mais

4 - ANÁLISE DE SÉRIES TEMPORAIS

4 - ANÁLISE DE SÉRIES TEMPORAIS INE 7001 Aálise de Séries Temporais 1 4 - ANÁLISE DE SÉRIES TEMPORAIS Série Temporal é um cojuo de observações sobre uma variável, ordeado o empo, e regisrado em períodos regulares. Podemos eumerar os

Leia mais

3. Representaç ão de Fourier dos Sinais

3. Representaç ão de Fourier dos Sinais Sinais e Sisemas - 3. Represenaç ão de Fourier dos Sinais Nese capíulo consideramos a represenação dos sinais como uma soma pesada de exponenciais complexas. Dese modo faz-se uma passagem do domínio do

Leia mais

Porto Alegre, 14 de novembro de 2002

Porto Alegre, 14 de novembro de 2002 Poro Alegre, 14 de novembro de 2002 Aula 6 de Relaividade e Cosmologia Horácio Doori 1.12- O paradoo dos gêmeos 1.12.1- Sisemas Inerciais (observadores) com velocidades diversas vêem a disância emporal

Leia mais

PROCESSOS ESTOCÁSTICOS E TEORIA DE FILAS

PROCESSOS ESTOCÁSTICOS E TEORIA DE FILAS Uiversidade Federal do Rio de Jaeiro COE: rograma de Egeharia de rodução Área de esquisa Oeracioal O Escola oliécica: Dearameo de Egeharia Idusrial ROCESSOS ESTOCÁSTICOS E TEORIA DE FILAS rof. Virgílio

Leia mais

CÁLCULO DIRETO DE HARMÔNICAS EM REATORES CONTROLADOS A TIRISTORES UTILIZANDO FUNÇÕES DE CHAVEAMENTO MODIFICADAS

CÁLCULO DIRETO DE HARMÔNICAS EM REATORES CONTROLADOS A TIRISTORES UTILIZANDO FUNÇÕES DE CHAVEAMENTO MODIFICADAS UNVERSDADE ESADUAL PAULSA JÚLO DE MESQUA FLHO FACULDADE DE ENGENHARA DE LHA SOLERA DEPARAMENO DE ENGENHARA ELÉRCA PÓS-GRADUAÇÃO EM ENGENHARA ELÉRCA CÁLCULO DREO DE HARMÔNCAS EM REAORES CONROLADOS A RSORES

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 4

Análise Complexa Resolução de alguns exercícios do capítulo 4 Aálise Complexa Resolução de algus exercícios do capítulo 4. Caso de C0, 0, : Caso de C0,, + : Exercício º z z i i z + iz iz iz porque iz < i + z i +3 z. z z i i z + iz iz porque iz > iz i z 3 i 3 z..

Leia mais

Interpolação-Parte II Estudo do Erro

Interpolação-Parte II Estudo do Erro Iterpolação-Parte II Estudo do Erro. Estudo do Erro a Iterpolação. Iterpolação Iversa 3. Grau do Poliômio Iterpolador 4. Fução Splie em Iterpolação 4. Splie Liear 4. Splie Cúbica .Estudo do Erro a Iterpolação

Leia mais

Exercícios de Cálculo III - CM043

Exercícios de Cálculo III - CM043 Eercícios de Cálculo III - CM43 Prof. José Carlos Corrêa Eidam DMAT/UFPR Dispoível o sítio people.ufpr.br/ eidam/ide.htm o. semestre de 22 Lista Sequêcias e séries de úmeros reais. Decida se cada uma das

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

Previsão de consumos

Previsão de consumos revisão de cosumos Cláudio Moeiro Disribuição de Eergia II 5º ao da EEC - ramo de Eergia (FEU) Modelos de Regressão Se cohecer uma relação liear ere as variáveis depedees e idepedees podemos esimar o valor

Leia mais

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré. 1 Sequências de números reais 1

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré.  1 Sequências de números reais 1 Matemática Essecial Sequêcias Reais Departameto de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessecial/ Coteúdo Sequêcias de úmeros reais 2 Médias usuais 6 3 Médias versus progressões

Leia mais

Juros Compostos 2016

Juros Compostos 2016 Juros Composos 2016 1. (G1 - ifal 2016) Em 2000, cero país da América Laia pediu um emprésimo de 1 milhão de dólares ao FMI (Fudo Moeário Ieracioal) para pagar em 100 aos. Porém, por problemas políicos

Leia mais

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus

1 o Exame 10 de Janeiro de 2005 Nota: Resolva os problemas do exame em folhas separadas. Justifique todas as respostas e explique os seus i Sinais e Sisemas (LERCI) o Exame 0 de Janeiro de 005 Noa: Resolva os problemas do exame em folhas separadas. Jusifique odas as resposas e explique os seus cálculos. Problema.. Represene graficamene o

Leia mais

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,

Leia mais

Métodos de Amortização

Métodos de Amortização Méodos de Amorização Rui Assis Egeheiro Mecâico IST rassis@rassis.com www.rassis.com Fevereiro de 2006 Reviso em Seembro de 20 Méodos de Amorização Irodução Na perspeciva coabilísica, a amorização referese

Leia mais

Capítulo 39: Mais Ondas de Matéria

Capítulo 39: Mais Ondas de Matéria Capítulo 39: Mais Odas de Matéria Os elétros da superfície de uma lâmia de Cobre foram cofiados em um curral atômico - uma barreira de 7,3 âgstros de diâmetro, imposta por 48 átomos de Ferro. Os átomos

Leia mais

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma.

ITA Destas, é (são) falsa(s) (A) Apenas I (B) apenas II (C) apenas III (D) apenas I e III (E) apenas nenhuma. ITA 00. (ITA 00) Cosidere as afirmações abaixo relativas a cojutos A, B e C quaisquer: I. A egação de x A B é: x A ou x B. II. A (B C) = (A B) (A C) III. (A\B) (B\A) = (A B) \ (A B) Destas, é (são) falsa(s)

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Circuitos Elétricos I EEL420

Circuitos Elétricos I EEL420 Universidade Federal do Rio de Janeiro Circuios Eléricos I EEL420 Coneúdo 1 - Circuios de primeira ordem...1 1.1 - Equação diferencial ordinária de primeira ordem...1 1.1.1 - Caso linear, homogênea, com

Leia mais

2.6 - Conceitos de Correlação para Sinais Periódicos

2.6 - Conceitos de Correlação para Sinais Periódicos .6 - Conceios de Correlação para Sinais Periódicos O objeivo é o de comparar dois sinais x () e x () na variável empo! Exemplo : Considere os dados mosrados abaixo y 0 x Deseja-se ober a relação enre x

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

DETERMINAÇÃO EXPERIMENTAL DAS PROPRIEDADES DINÂMICAS DE TRANSDUTORES DE PRESSÃO PIEZORRESISTIVOS

DETERMINAÇÃO EXPERIMENTAL DAS PROPRIEDADES DINÂMICAS DE TRANSDUTORES DE PRESSÃO PIEZORRESISTIVOS DETERMINAÇÃO EXPERIMENTAL DAS PROPRIEDADES DINÂMICAS 15 DETERMINAÇÃO EXPERIMENTAL DAS PROPRIEDADES DINÂMICAS DE TRANSDUTORES DE PRESSÃO PIEZORRESISTIVOS Evaldo Ferezi Luiz Carlos Felicio EESC-USP, Av.

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 4 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado MATEMÁTICA 0 Seja f ( ) log ( ) + log uma fução

Leia mais

IFT. Generalizações do Movimento Browniano e suas Aplicações. Dennis Fernandes Alves Bessada. Orientador. Prof. Dr.

IFT. Generalizações do Movimento Browniano e suas Aplicações. Dennis Fernandes Alves Bessada. Orientador. Prof. Dr. IFT Isiuo de Física Teórica Uiversidade Esadual Paulisa DISSERTAÇÃO DE MESTRADO IFT D9/5 Geeralizações do Movimeo Browiao e suas Aplicações à Física e a Fiaças Deis Ferades Alves Bessada Orieador Prof

Leia mais

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2

QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA. Prova 3 Matemática QUESTÕES OBJETIVAS GABARITO 2 Prova QUESTÕES OBJETIVAS QUESTÕES APLICADAS A TODOS OS CANDIDATOS QUE REALIZARAM A PROVA ESPECÍFICA DE MATEMÁTICA UEM Comissão Cetral do Vestibular Uificado GABARITO MATEMÁTICA 0 Na figura a seguir, esboçamos

Leia mais

4. SINAL E CONDICIONAMENTO DE SINAL

4. SINAL E CONDICIONAMENTO DE SINAL 4. SINAL E CONDICIONAMENO DE SINAL Sumário 4. SINAL E CONDICIONAMENO DE SINAL 4. CARACERÍSICAS DOS SINAIS 4.. Período e frequência 4..2 alor médio, valor eficaz e valor máximo 4.2 FILRAGEM 4.2. Circuio

Leia mais

Uso da Simulação de Monte Carlo e da Curva de Gatilho na Avaliação de Opções de Venda Americanas

Uso da Simulação de Monte Carlo e da Curva de Gatilho na Avaliação de Opções de Venda Americanas J.G. Casro e al. / Ivesigação Operacioal, 27 (2007 67-83 67 Uso da imulação de Moe Carlo e da Curva de Gailho a Avaliação de Opções de Veda Americaas Javier Guiérrez Casro Tara K. Nada Baidya Ferado A.

Leia mais