4.2 Numeração de funções computáveis

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "4.2 Numeração de funções computáveis"

Transcrição

1 4. Numeração de fuções computáveis 4.1 Numeração de programas 4.2 Numeração de fuções computáveis 4.3 O método da diagoal 4.4 O Teorema s-m- Teresa Galvão LEIC - Teoria da Computação I 4.1

2 4.1 Numeração de programas Defiições Um cojuto X é eumerável se existe uma bijecção f : X N. Uma eumeração de um cojuto X é uma sobrejecção g: N X ; é represetada por X = {x 0, x 1, x 2, }, ode x = g(). Se g é ijectiva, a eumeração ão tem repetições. Seja X um cojuto de objectos fiitos (por ex: cojuto de iteiros, istruções, programas). X é efectivamete eumerável se existe uma bijecção f: X N tal que f e f -1 são fuções efectivamete computáveis. Um cojuto é eumerável se e só se pode ser eumerado sem repetições Teresa Galvão LEIC - Teoria da Computação I 4.2

3 Teorema 4.1 Numeração de programas Os seguites cojutos são efectivamete eumeráveis: (a) N x N; (b) N + x N + x N + ; (c) U k>0 N k, o cojuto de todas as sequêcias fiitas de úmeros aturais. Notação útil: p x desiga o x-ésimo umero primo. (Por coveção, p 0 = 0, logo, p 1 = 2, p 2 = 3, etc) x y = o expoete de p y a factorizaçao em umeros primos de x, para x, y > 0 0, se x = 0 ou y = 0 ( ) Teresa Galvão LEIC - Teoria da Computação I 4.3

4 4.1 Numeração de programas Prova: (a) N x N é efectivamete umerável (?) Uma bijecção π π -1 π : N N N π (m,) =2 m ( 2 + 1) 1 é uma fução efectivamete computável. é efectivamete computável, pois : é defiida por: -1 π (x) = ( π 1( x), π 2( x )) π 1 ( x) = (x +1) 1 = 1 x +1 π 2 ( x) 2 π x 1 2 ( ) 1 π 1 π 2 e e são fuções computáveis. Teresa Galvão LEIC - Teoria da Computação I 4.4

5 4.1 Numeração de programas (b) N + x N + x N + é efectivamete eumerável (?) Uma bijecção ζ : N N N N é defiida por: e ζ (m,,q) = π ( π (m -1, -1), q -1) -1 ζ (x) = ( π ( π ( x)) + 1, π ( π ( x)) + 1, π ( x) + 1) π π 1 π 2 Como as fuções, e são efectivamete computáveis, também ζ e ζ 1 são computáveis. Teresa Galvão LEIC - Teoria da Computação I 4.5

6 4.1 Numeração de programas (c) U k>0 N k é efectivamete eumerável (?) Uma bijecção U τ : N k>0 é uma fução efectivamete computável. k N é defiida por: k τ (a,a,...,a ) = k -1 a a +a + 1 a +a + a + 2 a +a a + k 1 Para calcular τ (x), sabemos que dado x, podemos efectivamete ecotrar valores úicos k > 0 e 0 b1 < b 2 <... < bk tais que: b b b x + 1 = k Etão -1 τ (x) = (a 1,a 2,...,a k ), ode a = b 1 1 a = b b 1 (1 i< k) i+1 i+1 i Teresa Galvão LEIC - Teoria da Computação I 4.6

7 4.1 Numeração de programas Desigemos o cojuto de todas as istruções URM por I e o cojuto de todos os programas URM por P. Um programa cosiste uma lista fiita de istruções. Teorema I é efectivamete eumerável. Prova: Defia-se uma bijecção β : I N que, aos quatro tipos de istruções URM faz correspoder úmeros aturais das formas 4u, 4u+1, 4u+2, 4u+3: β(z()) = 4( 1) β(s()) = 4( 1) +1 β (T(m,)) = 4 π (m -1, 1) + 2 β (J(m,,q)) = 4 ζ (m,, q) + 3 Teresa Galvão LEIC - Teoria da Computação I 4.7

8 4.1 Numeração de programas Para calcular β 1 (x) : (i) (ii) (iii) Determiar u, r tais que x = 4 u + r, com 0 r < 4 O valor de r diz-os que tipo de istrução correspode a A partir de u, podemos calcular efectivamete a istrução particular: Se r = 0, etão -1 β (x) = Z(u +1) Se r = 1, etão Se r = 2, etão -1 β (x) = S(u + 1) -1 β (x) = T( π (u) + 1, π (u) + 1) 1 2 Se r = 3, etão β -1 (x) = J(m,,q), ode (m,,q) = ζ -1 ( u ) β e β 1 são efectivamete computáveis, logo I é efectivamete eumerável. Teresa Galvão LEIC - Teoria da Computação I 4.8

9 4.1 Numeração de programas Teorema P é efectivamete eumerável. Prova: Defia-se uma bijecção γ : P N. Seja P = I 1, I 2,, I s. Etão γ ( P ) = τ ( β ( I ),..., β ( I )) 1 s Como τ e β são bijecções, também é uma bijecção; Como τ, β e as suas iversas são efectivamete computáveis, também γ e são efectivamete computáveis. γ γ 1 Teresa Galvão LEIC - Teoria da Computação I 4.9

10 4.1 Numeração de programas Para um dado programa P, o úmero γ (P) chama-se o código de P ou úmero de Gödel de P. Defie-se P = o programa com o código γ 1 = () É fudametal que γ e sejam efectivamete computáveis, ou seja: γ 1 (a) (b) dado um programa P, podemos efectivamete calcular o seu código; dado um úmero, podemos efectivamete determiar o programa γ 1 P = (). Teresa Galvão LEIC - Teoria da Computação I 4.10

11 4.1 Numeração de programas Exemplos: (a) Seja P o programa Para calcular γ (P): T(1,3) S(4) Z(6) β(t(1,3)) = 4 π (0, 2) + 2 =4 (2 (2 2 +1) -1) + 2 = 18 β(s(4)) = = 13 β(z(6)) = 4 5 = 20 0 γ (P) = τ (18, 13, 20) = = Teresa Galvão LEIC - Teoria da Computação I 4.11

12 4.1 Numeração de programas (b) Seja = Qual é o programa P 4127? γ 1 1 ( 4127) = τ ( 4128) = ( a 1,...,ak ) 4127 = (4128 = 2 5 (129) = 2 5 (1+128) = 2 5 ( ) = ) Etão, P 4127 é um programa com duas istruções (k=2): I 1 e I 2 a 1 = 5 e a 2 = = 6 a 1 = β (I 1) = 5 a = β (I ) = 6 = = 4 π (1,0) Pela defiição, I 1 = S(2) e I 2 = T(2,1). P 4127 é o programa I 1 = S(2) I 2 = T(2,1). Teresa Galvão LEIC - Teoria da Computação I 4.12

13 Mais cojutos eumeráveis Q = O cojuto dos úmeros racioais positivos é eumerável 1/1 1/1 3/1 4/1 5/1 1/2 2/2 3/2 4/2 5/2 1/3 2/3 3/3 4/3 5/3 1/4 2/4 3/4 4/4 5/4 D = O cojuto de todos os cojutos fiitos de úmeros iteiros positivos é eumerável {1} : o cojuto cujo úico elemeto é o úmero 1 {2} : o cojuto cujo úico elemeto é o úmero 2 {1,2,5} : o cojuto cujos elemetos são os úmeros 1, 2 e 5 Todos os elemetos de D podem ser descritos de forma fiita (até por palavras), embora o cojuto seja ifiito. Teresa Galvão LEIC - Teoria da Computação I 4.13

14 Cojutos ão eumeráveis O cojuto dos úmeros reais ão é eumerável Cosideremos apeas os úmeros reais etre 0 e 1. Supohamos que coseguimos estabelecer uma correspodêcia etre cada úmero atural e cada úmero real etre 0 e 1. Supohamos aida que cada úmero real pode ser expresso como uma dízima ifiita, ou seja: 0.5 = Podemos etão costruir a seguite tabela: r(1) r(2) r(3) r(4) r(5) Os úmeros que se ecotram a diagoal serão usados para costruir um úmero que ão se ecotra a tabela. Subtraímos 1 a cada dígito do úmero da diagoal. Obtemos d = Dada a forma como a tabela foi costruída podemos afirmar que : 0 1º dígito de d ão é o 1º dígito de r(1); 0 2º dígito de d ão é o 2º dígito de r(2); 0 20º dígito de d ão é o 20º dígito de r(20); d ão se ecotra a tabela, logo R ão é eumerável Teresa Galvão LEIC - Teoria da Computação I 4.14

15 ( ) f P 4.2 Numeração de fuções computáveis desiga a fução -ária computada por P. Para cada a de N e para cada > 0, defie-se: ( ) ( ) φ a = f P a { a } W ( ) = Dom ( ( ) ) = ( x,..., x ): P ( x,..., x ) a φa 1 1 E ( ) a = Ra (φa ( ) ) Quado a fução é uária, omite-se o ídice =1, ficado apeas φ a, W a, E a. Ex: P 4127 é o programa I 1 = S(2) I 2 = T(2,1) Etão φ 4127 ( x ) = 1 W4127 = N E 4127 = 1 { } φ 4127 ( x 1,..., x ) = x W4127 = N E N 4127 = + Teresa Galvão LEIC - Teoria da Computação I 4.15

16 4.2 Numeração de fuções computáveis Seja f uma fução uária computável. Etão existe um programa P que computa f. a = γ ( P) f a Sedo o código desse programa, etão. Diz-se que a é um ídice para f. (Cada fução computável tem um úmero ifiito de ídices). Podemos cocluir que cada fução uária aparece a eumeração (com repetições): φ0, φ1, φ2, φ3,... = φ As mesmas coclusões podem ser tiradas para fuções -árias. Teresa Galvão LEIC - Teoria da Computação I 4.16

17 4.2 Numeração de fuções computáveis Teorema O cojuto C é eumerável. Prova: Vamos usar uma eumeração com repetições para costruir uma outra sem repetições. ( ) ( ) ( ) ( ) Seja φ, φ, φ, φ,... a eumeração com repetições Seja Etão f ( 0) = 0 ( ) ( ) ( ) f ( m + 1) = µ z( φz φ f ( 0),..., φ f ( m) ) ( ) ( ) ( ) ( ) f ( 0) f ( 1) f ( 2) f ( 3) φ, φ, φ, φ,... é uma eumeração de C sem repetições. Nota: Não se afirma que f é computável. Teresa Galvão LEIC - Teoria da Computação I 4.17

18 4.2 Numeração de fuções computáveis Teorema O cojuto C é eumerável. Prova: C = U C 1 C é a reuião eumerável de cojutos eumeráveis, logo também é eumerável. O teorema seguite mostra que existem fuções que ão são computáveis!! Teresa Galvão LEIC - Teoria da Computação I 4.18

19 4.3 O método da diagoal Teorema Existe uma fução uária total que ão é computável. Prova: Vamos costruir uma fução total f que é simultaeamete diferete de todas as fuções a eumeração,,,,... Defia-se φ φ φ φ φ( ) + 1, se φ( ) esta defiida f ( ) = 0, se φ( ) ao esta defiida Note-se que f foi costruída por forma que f é diferete de para cada : - Se φ está defiida, f ( ) = φ ( ) + 1 φ ( ) - Se φ ão está defiida: f ( ) = 0 φ ( ) Como f é diferete de todas as fuções computáveis, f ão é computável. Teresa Galvão LEIC - Teoria da Computação I 4.19 φ

20 4.3 O método da diagoal Vejamos como a fução aterior foi costruída: Costruímos a seguite tabela: f ( ) = φ( ) + 1, se φ( ) esta defiida 0, se φ( ) ao esta defiida φ 0 φ 0 ( 0) φ 0 ( 1) φ 0 ( 2) φ 0 ( 3)... φ 1 φ 2 φ 1 ( 0) φ 2 ( 0) φ 1 ( 1) φ 2 ( 1) φ 1 ( 2) φ 2 ( 2) φ 1 ( 3) φ 2 ( 3) Tomamos os elemetos da diagoal e alteramo-los sucessivamete, costruido f(). φ 3 φ 3 ( 0) φ 3 ( 1) φ 3 ( 2) φ 3 ( 3) Nota: existe uma grade liberdade a escolha dos f(); apeas temos de assegurar que f ( ) φ ( ) para cada. Por exemplo: φ g( ) = ( ) + 27, se φ ( ) esta defiida 2 é outra fução ão computável, se φ ( ) ao esta defiida Teresa Galvão LEIC - Teoria da Computação I 4.20

21 4.3 O método da diagoal Podemos geeralizar o método da diagoal da seguite forma: Seja χ0, χ1, χ2,... uma eumeração de objectos de um certo tipo (fuções ou cojutos de úmeros aturais) Podemos costruir um objecto χ do mesmo tipo, mas diferete de todos os χ Fazer χ e χ diferetes em Teresa Galvão LEIC - Teoria da Computação I 4.21

22 4.3 O método da diagoal Exemplos: (a) Seja f(x,y) uma fução total computável. Para cada m, seja g m a fução computável dada por g m (y) = f(m,y) Costrua uma fução total computável h tal que, para cada m: h g m g m (m) = f(m,m) Seja h(m) = f(m,m)+1 h é computável (pois f é computável) e total (b) Seja f 0, f 1, f 2, uma eumeração de fuções parciais de N em N. Costrua uma fução g: N -> N tal que, para cada i: Dom (g) Dom (f i ) g (i) = 1 idefiida,se f (i) ao esta defiida i,se f (i) esta defiida i ou seja, i Dom(g) sse i Dom (f i ) Teresa Galvão LEIC - Teoria da Computação I 4.22

23 4.4 O Teorema s-m- Seja f (x,y) uma fução computável (ão ecessariamete total). Etão, f tem um ídice, a, tal que φ a ( 2 ) = Para cada b, defia-se g (y) = f (b,y) b Por substituição, cada g b f é computável, logo tem um ídice. Este ídice depede de a e de b, logo, defia-se a fução biária k, ode k(a,b) é um ídice para a fução g b. Logo, φ k ( a, b ) ( y) = g b ( y) Mostraremos que k é uma fução computável. Sabemos que a fução f é computada por P a. Cosidere-se: T(1,2) Z(1) S(1) S(1) P a b vezes Este programa computa g b Teresa Galvão LEIC - Teoria da Computação I 4.23

24 4.4 O Teorema s-m- A fução k(a,b) dá-os o ídice deste programa. Para mostrar que k é computável usaremos a Tese de Church, argumetado que o algoritmo: 1. Determiar qual o programa que correspode ao código a, obtedo-se P a 2. Costruir o programa para computar g b (depede apeas de b) 3. Codificar esse programa, obtedo-se k(a,b). é efectivamete computável, logo k é computável. Notas: k é primitiva recursiva. Sem o recurso à Tese de Church, esta demostração seria loga e tediosa, mas é óbvio que fucioaria. Podemos agora costruir fuções que computam ídices de fuções. Teresa Galvão LEIC - Teoria da Computação I 4.24

25 4.4 O Teorema s-m- Exemplo: Seja f ( x, y) = y x Esta fução é computável, logo seja a um ídice para f : φ a ( 2 ) = f Para cada, defia-se g (y) = f (,y) = Seja k(a,) o ídice de g Etão φ k a y = g y = y Seja p() = k(a,). (, ) ( ) ( ) y p é a fução que, para cada calcula um ídice da fução -ésima potêcia. Teresa Galvão LEIC - Teoria da Computação I 4.25

26 Teorema s-m- 4.4 O Teorema s-m- Para cada m, > 0, existe uma fução (m+1)-ária total e computável s m (e, x) ( e m + ) tal que φ ( x, y) = φ m s Prova: (semelhate ao caso m==1) ( ) ( e, x) ( y) Desige-se por Q(i,x) o programa URM: Z(i) S(i) S(i) x vezes Defia-se s m (e, x) como o código do programa: T(,m+) T(1,m+1) Esta fução é computável, pela Tese de Church Q(1,x 1 ) Q(m,x m ) P e Teresa Galvão LEIC - Teoria da Computação I 4.26

Números primos, números compostos e o Teorema Fundamental da Aritmética

Números primos, números compostos e o Teorema Fundamental da Aritmética Polos Olímpicos de Treiameto Curso de Teoria dos Números - Nível 3 Carlos Gustavo Moreira Aula 4 Números primos, úmeros compostos e o Teorema Fudametal da Aritmética 1 O Teorema Fudametal da Aritmética

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária.

1.4 Determinantes. determinante é igual ao produto dos elementos da diagonal principal menos o produto dos elementos da diagonal secundária. 1.4 Determiates A teoria dos determiates surgiu quase simultaeamete a Alemaha e o Japão. Ela foi desevolvida por dois matemáticos, Gottfried Wilhelm Leibiz (1642-1716) e Seki Shisuke Kowa (1642-1708),

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

n IN*. Determine o valor de a

n IN*. Determine o valor de a Progressões Aritméticas Itrodução Chama-se seqüêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais ou complexos. Exemplo: A=(3, 5, 7, 9,,..., 35). Uma seqüêcia pode ser fiita ou ifiita.

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

1- Resolução de Sistemas Lineares.

1- Resolução de Sistemas Lineares. MÉTODOS NUMÉRICOS PR EQUÇÕES DIFERENCIIS PRCIIS 1- Resolução de Sistemas Lieares. 1.1- Matrizes e Vetores. 1.2- Resolução de Sistemas Lieares de Equações lgébricas por Métodos Exatos (Diretos). 1.3- Resolução

Leia mais

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré. 1 Sequências de números reais 1

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré.  1 Sequências de números reais 1 Matemática Essecial Sequêcias Reais Departameto de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessecial/ Coteúdo Sequêcias de úmeros reais 2 Médias usuais 6 3 Médias versus progressões

Leia mais

Teoria Elementar da Probabilidade

Teoria Elementar da Probabilidade 10 Teoria Elemetar da Probabilidade MODELOS MTEMÁTICOS DETERMINÍSTICOS PROBBILÍSTICOS PROCESSO (FENÓMENO) LETÓRIO - Quado o acaso iterfere a ocorrêcia de um ou mais dos resultados os quais tal processo

Leia mais

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Nível Avaçado. INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Vamos abordar esse artigo a aritmética de dois cojutos de iteiros algébricos: os Iteiros de Gauss e os Iteiros

Leia mais

Capítulo II - Sucessões e Séries de Números Reais

Capítulo II - Sucessões e Séries de Números Reais Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,...

( 1,2,4,8,16,32,... ) PG de razão 2 ( 5,5,5,5,5,5,5,... ) PG de razão 1 ( 100,50,25,... ) PG de razão ½ ( 2, 6,18, 54,162,... Progressões Geométricas Defiição Chama se progressão geométrica PG qualquer seqüêcia de úmeros reais ou complexos, ode cada termo a partir do segudo, é igual ao aterior, multiplicado por uma costate deomiada

Leia mais

Conjuntos Infinitos. Teorema (Cantor) Se A é conjunto qualquer, #A #P(A). Mais precisamente, qualquer

Conjuntos Infinitos. Teorema (Cantor) Se A é conjunto qualquer, #A #P(A). Mais precisamente, qualquer Cojutos Ifiitos Teorema (Cator) Se A é cojuto qualquer, #A #P(A). Mais precisamete, qualquer f : A P(A) ão é sobrejetora. Cosequêcia. Existe uma herarquia de cojutos ifiitos. Obs. Existe uma bijeção etre

Leia mais

Mas, a situação é diferente quando se considera, por exemplo, a

Mas, a situação é diferente quando se considera, por exemplo, a . NÚMEROS COMPLEXOS Se um corpo umérico uma equação algébrica ão tem raíes, é possível costruir outro corpo umérico, mais eteso, ode a equação se tora resolúvel. Eemplo: ± raíes irracioais Mas, a situação

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

2.2. Séries de potências

2.2. Séries de potências Capítulo 2 Séries de Potêcias 2.. Itrodução Série de potêcias é uma série ifiita de termos variáveis. Assim, a teoria desevolvida para séries ifiitas de termos costates pode ser estedida para a aálise

Leia mais

Sequências, PA e PG material teórico

Sequências, PA e PG material teórico Sequêcias, PA e PG material teórico 1 SEQUÊNCIA ou SUCESSÃO: é todo cojuto ode cosideramos os seus elemetos colocados, ou dispostos, uma certa ordem. Cosiderado a sequêcia (; 3; 5; 7;...), dizemos que:

Leia mais

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1

1.1. Ordem e Precedência dos Cálculos 1) = Capítulo 1 Capítulo. Aritmética e Expressões Algébricas O estudo de cálculo exige muito mais que o cohecimeto de limite, derivada e itegral. Para que o apredizado seja satisfatório o domíio de tópicos de aritmética

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

Transformação de similaridade

Transformação de similaridade Trasformação de similaridade Relembrado bases e represetações, ós dissemos que dada uma base {q, q,..., q} o espaço real - dimesioal, qualquer vetor deste espaço pode ser escrito como:. Ou a forma matricial

Leia mais

O Teorema Fundamental da Aritm etica

O Teorema Fundamental da Aritm etica 8 O Teorema Fudametal da Aritm etica Vimos, o cap ³tulo 5, o teorema 5.1, que estabelece que os primos positivos s~ao os blocos usados para costruir, atrav es de produtos, todos os iteiros positivos maiores

Leia mais

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença?

Amostras Aleatórias e Distribuições Amostrais. Probabilidade e Estatística: afinal, qual é a diferença? Amostras Aleatórias e Distribuições Amostrais Probabilidade e Estatística: afial, qual é a difereça? Até agora o que fizemos foi desevolver modelos probabilísticos que se adequavam a situações reais. Por

Leia mais

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx

Leia mais

Universidade Federal Fluminense - UFF-RJ

Universidade Federal Fluminense - UFF-RJ Aotações sobre somatórios Rodrigo Carlos Silva de Lima Uiversidade Federal Flumiese - UFF-RJ rodrigouffmath@gmailcom Sumário Somatórios 3 Somatórios e úmeros complexos 3 O truque de Gauss para somatórios

Leia mais

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM

AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM 6 AMOSTRAGEM ALEATÓRIA DISTRIBUIÇÕES POR AMOSTRAGEM Quado se pretede estudar uma determiada população, aalisam-se certas características ou variáveis dessa população. Essas variáveis poderão ser discretas

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

11. Para quais valores a desigualdade x + > x (ITA/2012) Sejam r 1. r D e m o n s t r a r q u e s e A, B, C R * + 02.

11. Para quais valores a desigualdade x + > x (ITA/2012) Sejam r 1. r D e m o n s t r a r q u e s e A, B, C R * + 02. Matemática Revisão de Álgebra Exercícios de Fixação 0. Ecotre os valores das raízes racioais a, b e c de x + ax + bx + c. 0. Se f(x)f(y) f(xy) = x + y, "x,y R, determie f(x). 0. Ecotre x real satisfazedo

Leia mais

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD.

Matemática. B) Determine a equação da reta que contém a diagonal BD. C) Encontre as coordenadas do ponto de interseção das diagonais AC e BD. Matemática 0. Um losago do plao cartesiao oxy tem vértices A(0,0), B(,0), C(,) e D(,). A) Determie a equação da reta que cotém a diagoal AC. B) Determie a equação da reta que cotém a diagoal BD. C) Ecotre

Leia mais

Planificação Anual de Matemática

Planificação Anual de Matemática Direção-Geral dos Estabelecimetos Escolares Direção de Serviços da Região Cetro Plaificação Aual de Matemática Ao Letivo: 2015/2016 Domíio Coteúdos Metas Curriculares Nº de Aulas (45 miutos) TEOREMA DE

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

Soluções dos Exercícios do Capítulo 6

Soluções dos Exercícios do Capítulo 6 Soluções dos Eercícios do Capítulo 6 1. O poliômio procurado P() a + b + c + d deve satisfazer a idetidade P(+1) P() +, ou seja, a(+1) + b(+1) + c(+1) + d a + b + c + d +, o que é equivalete a (a 1) +

Leia mais

Definição 1: Sequência é uma lista infinita de números reais ordenados.

Definição 1: Sequência é uma lista infinita de números reais ordenados. Cálculo I Egeharia Mecâica. Sequêcias Defiição : Sequêcia é uma lista ifiita de úmeros reais ordeados. 2º termo º termo Nome (x ) = (x, x 2, x,..., x,...) º termo º termo N R x Observação: Podemos pesar

Leia mais

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos

Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos. Análise de Algoritmos Aálise de Algoritmos Aálise de Algoritmos Prof Dr José Augusto Baraauskas DFM-FFCLRP-USP A Aálise de Algoritmos é um campo da Ciêcia da Computação que tem como objetivo o etedimeto da complexidade dos

Leia mais

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando

a = b n Vejamos alguns exemplos que nos permitem observar essas relações. = 4 4² = 16 radical radicando Caro aluo, Com o objetivo de esclarecer as dúvidas sobre a raiz quadrada, apresetamos este material a defiição de radiciação, o cálculo da raiz quadrada e algumas propriedades de radiciação. Além disso,

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

DILMAR RICARDO MATEMÁTICA. 1ª Edição DEZ 2012

DILMAR RICARDO MATEMÁTICA. 1ª Edição DEZ 2012 DILMAR RICARDO MATEMÁTICA TEORIA 6 QUESTÕES DE PROVAS DE CONCURSOS GABARITADAS Teoria e Seleção das Questões: Prof. Dilmar Ricardo Orgaização e Diagramação: Mariae dos Reis ª Edição DEZ 0 TODOS OS DIREITOS

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

6. Decidibilidade, indecidibilidade e decidibilidade parcial

6. Decidibilidade, indecidibilidade e decidibilidade parcial 6. Decidibilidade, indecidibilidade e decidibilidade parcial Nos capítulos anteriores, já foram referidos diversos problemas decidíveis. Apenas foi analisado um único problema indecidível ( φ é total )

Leia mais

Introdução a Complexidade de Algoritmos

Introdução a Complexidade de Algoritmos Itrodução a Complexidade de Algoritmos Estruturas de Dados Prof. Vilso Heck Juior Apresetação Revisão - O Algoritmo; A Complexidade; Exercício. Complexidade de Algoritmos REVISÃO - O ALGORITMO O Algoritmo

Leia mais

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça

b) Fabrico de peças cilíndricas Capítulo 5 - Distribuições conjuntas de probabilidades e complementos X - comprimento da peça Y - diâmetro da peça Capítulo 5 - Distribuições cojutas de probabilidades e complemetos 5.1 Duas variáveis aleatórias discretas. Distribuições cojutas, margiais e codicioais. Idepedêcia Em relação a uma mesma eperiêcia podem

Leia mais

Distribuições Amostrais

Distribuições Amostrais 9/3/06 Uiversidade Federal do Pará Istituto de Tecologia Estatística Aplicada I Prof. Dr. Jorge Teófilo de Barros Lopes Campus de Belém Curso de Egeharia Mecâica 3/09/06 3:38 ESTATÍSTICA APLICADA I - Teoria

Leia mais

Neste cap ³tulo, apresentamos o conceito de n umero primo e exploramos as primeiras propriedades dos n umeros primos.

Neste cap ³tulo, apresentamos o conceito de n umero primo e exploramos as primeiras propriedades dos n umeros primos. 5 N umeros primos Neste cap ³tulo, apresetamos o coceito de umero primo e exploramos as primeiras propriedades dos umeros primos. 5.1 Coceitos e propriedades imprescid ³veis O iteiro positivo 1 tem somete

Leia mais

Problemas e Teoremas em Teoria dos Números

Problemas e Teoremas em Teoria dos Números Problemas e Teoremas em Teoria dos Números Alex Abreu e Samuel Feitosa 7 de março de 008 Nosso objetivo será apresetar algumas idéias e teoremas que cosideramos idispesáveis para seu treiameto. Assumiremos

Leia mais

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase

Prova Escrita de MATEMÁTICA A - 12o Ano a Fase Prova Escrita de MATEMÁTICA A - 1o Ao 00 - a Fase Proposta de resolução GRUPO I 1. Como a probabilidade do João acertar em cada tetativa é 0,, a probabilidade do João acertar as tetativas é 0, 0, 0, 0,

Leia mais

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular

DFS Série Discreta de Fourier DFT Transformada Discreta de Fourier Convolução Circular Sistemas de Processameto Digital Egeharia de Sistemas e Iformática Ficha 4 5/6 4º Ao/ º Semestre DFS Série Discreta de Fourier DFT Trasformada Discreta de Fourier Covolução Circular Para calcular a DFT,

Leia mais

ESTATÍSTICA. PROF. RANILDO LOPES U.E PROF EDGAR TITO

ESTATÍSTICA. PROF. RANILDO LOPES  U.E PROF EDGAR TITO ESTATÍSTICA PROF. RANILDO LOPES http://ueedgartito.wordpress.com U.E PROF EDGAR TITO Medidas de tedêcia cetral Medidas cetrais são valores que resumem um cojuto de dados a um úico valor que, de alguma

Leia mais

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA. Andréa Pruner de Oliveira

UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA. Andréa Pruner de Oliveira UNIVERSIDADE FEDERAL DE SANTA CATARINA CENTRO DE CIÊNCIAS FÍSICAS E MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA Adréa Pruer de Oliveira CONJUNTOS INFINITOS Floriaópolis 2005 Adréa Pruer de Oliveira CONJUNTOS

Leia mais

Números Complexos. David zavaleta Villanueva 1

Números Complexos. David zavaleta Villanueva 1 Material do miicurso a ser lecioado o III EREM-Mossoró-UERN UFRN - Uiversidade Federal do Rio Grade do Norte Edição N 0 outubro 011 Números Complexos David zavaleta Villaueva 1 1 CCET-UFRN, Natal, RN,

Leia mais

Cálculo III - SMA 333. Notas de Aula

Cálculo III - SMA 333. Notas de Aula Cálculo III - SMA 333 Notas de Aula Sumário 1 Itrodução 2 2 Seqüêcias Numéricas 6 2.1 Defiição, Exemplos e Operações........................ 6 2.2 Seqüêcias Limitadas e Ilimitadas........................

Leia mais

Cap. 4 - Estimação por Intervalo

Cap. 4 - Estimação por Intervalo Cap. 4 - Estimação por Itervalo Amostragem e iferêcia estatística População: cosiste a totalidade das observações em que estamos iteressados. Nº de observações a população é deomiado tamaho=n. Amostra:

Leia mais

Chama-se sequência ou sucessão numérica, a qualquer conjunto ordenado de números reais.

Chama-se sequência ou sucessão numérica, a qualquer conjunto ordenado de números reais. Progressões Aritméticas Itrodução Chama-se sequêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais. Exemplo: 7; 0; 3;... ; 34 Uma seqüêcia pode ser iita ou iiita. 7; 0; 3; 6;... esta sequêcia

Leia mais

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO

AULA 17 A TRANSFORMADA Z - DEFINIÇÃO Processameto Digital de Siais Aula 7 Professor Marcio Eisecraft abril 0 AULA 7 A TRANSFORMADA Z - DEFINIÇÃO Bibliografia OPPENHEIM, A.V.; WILLSKY, A. S. Siais e Sistemas, a edição, Pearso, 00. ISBN 9788576055044.

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares.

NOTAÇÕES. Observação: Os sistemas de coordenadas considerados são os cartesianos retangulares. R C : cojuto dos úmeros reais : cojuto dos úmeros complexos i : uidade imagiária: i2 = 1 z Re(z) Im(z) det A : módulo do úmero z E C : parte real do úmero z E C : parte imagiária do úmero z E C : determiate

Leia mais

Sucessões Reais. Ana Isabel Matos DMAT

Sucessões Reais. Ana Isabel Matos DMAT Sucessões Reais Aa Isabel Matos DMAT 8 de Outubro de 000 Coteúdo Noção de Sucessão Limite de uma Sucessão 3 Sucessões Limitadas 3 4 Propriedades dos Limites 4 5 Limites I itos 8 5. Propriedades dos Limites

Leia mais

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach

Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach Sobre a ecessidade das hipóteses o Teorema do Poto Fio de Baach Marcelo Lopes Vieira Valdair Bofim Itrodução: O Teorema do Poto Fio de Baach é crucial a demostração de vários resultados importates da Matemática

Leia mais

CPV O cursinho que mais aprova na fgv

CPV O cursinho que mais aprova na fgv CPV O cursiho que mais aprova a fgv FGV ecoomia a Fase 0/dezembro/0 MATEMÁTICA 0. Chamaremos de S() a soma dos algarismos do úmero iteiro positivo, e de P() o produto dos algarismos de. Por exemplo, se

Leia mais

= o logaritmo natural de x.

= o logaritmo natural de x. VI OLIMPÍ IEROMERIN E MTEMÁTI UNIVERSITÁRI 8 E NOVEMRO E 00 PROLEM [5 potos] Seja f ( x) log x 0 = o logaritmo atural de x efia para todo 0 f+ ( x) = f() t dt = lim f() t dt x 0 ε 0 ε Prove que o limite

Leia mais

Trilha da Radiciação

Trilha da Radiciação Trilha da Radiciação Material para costrução: E.V.A Tesoura Régua Cola Caetihas Papel Cartaz Folhas impressas Descrição: O jogo cosiste em um tabuleiro com 0 casas, cotedo as cores bracas, vermelhas, verdes

Leia mais

U.C Matemática Finita. 8 de junho de 2016

U.C Matemática Finita. 8 de junho de 2016 Miistério da Ciêcia, Tecologia e Esio Superior U.C. 21082 Matemática Fiita 8 de juho de 2016 Questões de Escolha Múltipla: Critérios de avaliação Na prova de Exame, cada questão de escolha múltipla tem

Leia mais

arxiv: v1 [math.ho] 3 Sep 2014

arxiv: v1 [math.ho] 3 Sep 2014 Álbum de figurihas da Copa do Mudo: uma abordagem via Cadeias de Markov Leadro Morgado IMECC, Uiversidade Estadual de Campias arxiv:409.260v [math.ho] 3 Sep 204 Cosiderações iiciais 6 de maio de 204 Com

Leia mais

Limite, Continuidade e

Limite, Continuidade e Módulo Limite, Cotiuidade e Derivação Este módulo é dedicado, essecialmete, ao estudo das oções de limite, cotiuidade e derivabilidade para fuções reais de uma variável real e de propriedades básicas a

Leia mais

Em certas situações particulares é possível operar com raízes quadradas, raízes cúbicas,...

Em certas situações particulares é possível operar com raízes quadradas, raízes cúbicas,... Escola Secudária/, da Sé-Lamego Ficha de Trabalho de Matemática A Ao Lectivo 000/0 Cojuto IR - Operações com radicais, racioalização de deomiadores e equadrametos 0º Ao Nome: Nº: Turma: NÚMEROS IRRACIONAIS

Leia mais

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA

CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1 CONCEITOS BÁSICOS E PRINCÍPIOS DE ESTATÍSTICA 1. Coceitos Básicos de Probabilidade Variável aleatória: é um úmero (ou vetor) determiado por uma resposta, isto é, uma fução defiida em potos do espaço

Leia mais

Lista 9 - Introdução à Probabilidade e Estatística

Lista 9 - Introdução à Probabilidade e Estatística Lista 9 - Itrodução à Probabilidade e Estatística Desigualdades e Teoremas Limites 2.=000. 1 Um ariro apota a um alvo de 20 cm de raio. Seus disparos atigem o alvo, em média, a 5 cm do cetro deste. Assuma

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005.

Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos Jorge Figueiredo, DSC/UFCG. Análise e Técnicas de Algoritmos 2005. Ageda Aálise e Técicas de Algoritmos Jorge Figueiredo Relação de de Recorrêcia Derivado recorrêcia Resolvedo recorrêcia Aálise de de algoritmos recursivos Aálise de de Algoritmos Recursivos Itrodução A

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

Definição 1: Sequência é uma lista infinita de números ordenados.

Definição 1: Sequência é uma lista infinita de números ordenados. . Sequêcia Matemática I Tecólogo em Costrução de Edifícios e Tecólogo Defiição : Sequêcia é uma lista ifiita de úmeros ordeados. º, º, º,...,º,... O do ídice, idicado a otação abaixo, é viculado com o

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Prova-Modelo de Matemática

Prova-Modelo de Matemática Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros

Leia mais

Probabilidade II Aula 12

Probabilidade II Aula 12 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

Estudo da Função Exponencial e Função Logarítmica

Estudo da Função Exponencial e Função Logarítmica Istituto Muicipal de Esio Superior de Cataduva SP Curso de Liceciatura em Matemática 3º ao Prática de Esio da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da Fução Expoecial

Leia mais

Induzindo a um bom entendimento do Princípio da Indução Finita

Induzindo a um bom entendimento do Princípio da Indução Finita Iduzido a um bom etedimeto do Pricípio da Idução Fiita Jamil Ferreira (Apresetado a VI Ecotro Capixaba de Educação Matemática e utilizado como otas de aula para disciplias itrodutórias do curso de matemática)

Leia mais

MATEMÁTICA MÓDULO 4 PROGRESSÕES 1. SEQUÊNCIAS 2. PROGRESSÃO ARITMÉTICA (PA) 2.1. DEFINIÇÃO

MATEMÁTICA MÓDULO 4 PROGRESSÕES 1. SEQUÊNCIAS 2. PROGRESSÃO ARITMÉTICA (PA) 2.1. DEFINIÇÃO PROGRESSÕES. SEQUÊNCIAS Ates de começarmos o estudo das progressões, veremos uma defiição um pouco mais geral: estudaremos o que é uma sequêcia. Ituitivamete, uma sequêcia é uma lista de elemetos que estão

Leia mais

Uma relação entre sincronização no mapa do círculo e os números racionais

Uma relação entre sincronização no mapa do círculo e os números racionais Uma relação etre sicroização o mapa do círculo e os úmeros racioais Mariaa P. M. A. Baroi Elbert E. N. Macau Laboratório Associado de Computação e Matemática Aplicada Istituto Nacioal de Pesquisas Espaciais

Leia mais

CORRELAÇÃO Aqui me tens de regresso

CORRELAÇÃO Aqui me tens de regresso CORRELAÇÃO Aqui me tes de regresso O assuto Correlação fez parte, acompahado de Regressão, do programa de Auditor Fiscal, até 998, desaparecedo a partir do cocurso do ao 000 para agora retorar soziho.

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

1. Usando os axiomas mostre que:

1. Usando os axiomas mostre que: exercícios de teoria de úmeros 1 1. Usado os axiomas mostre que: (a) a (b + c) = a b + a c (b) (a + b) = a + a b + b (c) a + (b + c) = (c + a) + b (d) (b a) + (c b) + (a c) = 0. Use os axiomas para mostrar

Leia mais

4 SÉRIES DE POTÊNCIAS

4 SÉRIES DE POTÊNCIAS 4 SÉRIES DE POTÊNCIAS Por via da existêcia de um produto em C; as séries adquirem a mesma relevâcia que em R; talvez mesmo maior. Isso deve-se basicamete ao facto de podermos ovamete formular as chamadas

Leia mais

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Estimação pontual e intervalar

Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos Estimação pontual e intervalar potual por itervalos Métodos Numéricos e Estatísticos Parte II-Métodos Estatísticos potual e itervalar Lic. Eg. Biomédica e Bioegeharia-2009/2010 potual por itervalos A Teoria das Probabilidades cosiste

Leia mais

Análise Complexa Resolução de alguns exercícios do capítulo 4

Análise Complexa Resolução de alguns exercícios do capítulo 4 Aálise Complexa Resolução de algus exercícios do capítulo 4. Caso de C0, 0, : Caso de C0,, + : Exercício º z z i i z + iz iz iz porque iz < i + z i +3 z. z z i i z + iz iz porque iz > iz i z 3 i 3 z..

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Desenvolvimento Multinomial. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Desenvolvimento Multinomial. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Desevolvimeto Multiomial Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto 1 Desevolvimeto

Leia mais

1. Experiência Aleatória. Espaço de resultados. Acontecimentos.

1. Experiência Aleatória. Espaço de resultados. Acontecimentos. Eperiêcia Aleatória Espaço de Resultados Acotecimetos Noção de robabilidade Frequêcia Relativa Arrajos ermutações Combiações Aiomas de robabilidade 5 artição do Espaço Teorema da robabilidade Total robabilidade

Leia mais

Capítulo 8 Teoria Informal dos Conjuntos

Capítulo 8 Teoria Informal dos Conjuntos Capítulo 8 Teoria Iformal dos Cojutos Neste capítulo, são apresetadas algumas idéias da Teoria Iformal dos Cojutos devida a George Cator, seguidas da proposição e demostração de algumas propriedades fudametais.

Leia mais

Notas de aula de Probabilidade Avançada

Notas de aula de Probabilidade Avançada Notas de aula de Probabilidade Avaçada Adilso Simois (professor) Tássio Naia dos Satos (aluo) primeiro semestre de 2012 compilado 2 de abril de 2012 Notas de aula de Tássio Naia dos Satos, aluo do curso

Leia mais

Análise Infinitesimal II LIMITES DE SUCESSÕES

Análise Infinitesimal II LIMITES DE SUCESSÕES -. Calcule os seguites limites Aálise Ifiitesimal II LIMITES DE SUCESSÕES a) lim + ) b) lim 3 + 4 5 + 7 + c) lim + + ) d) lim 3 + 4 5 + 7 + e) lim + ) + 3 f) lim + 3 + ) g) lim + ) h) lim + 3 i) lim +

Leia mais