Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamanho: px
Começar a partir da página:

Download "Sobre a necessidade das hipóteses no Teorema do Ponto Fixo de Banach"

Transcrição

1 Sobre a ecessidade das hipóteses o Teorema do Poto Fio de Baach Marcelo Lopes Vieira Valdair Bofim Itrodução: O Teorema do Poto Fio de Baach é crucial a demostração de vários resultados importates da Matemática Na teoria das equações difereciais ordiárias, por eemplo, ele é utilizado para demostrar que se o campo vetorial f : D R é lipschitziao, etão o problema de valor iicial R ( P ) ' ( t) = f ( ( t)) () = possui uma úica solução : I R R defiida um itervalo maimal I cotedo a origem ( ver pe[] ou [3] ) Na demostração do Teorema de Stampacchia, o qual é útil a teoria das equações difereciais parciais elípticas, o Teorema do Poto Fio de Baach desempeha um papel crucial, coforme se pode ver à págia 8 de [] Além destes dois eemplos, vale citar que a eistêcia de solução f () para a equação itegral b f ( ) = λ K(, y) f ( y) dy + g( ), a ode K (, y) e g (y) são fuções cotíuas dadas, também pode ser estabelecida com o auílio do Teorema do Poto Fio de Baach, desde que λ seja suficietemete pequeo ( ver p e [3], à págia 9 ) Dada a importâcia deste teorema de poto fio é atural pergutar se as hipóteses do mesmo podem ser efraquecidas, o que levaria a evetuais geeralizações dos teoremas que dele depedem O que faremos este trabalho é discutir a ecessidade das hipóteses do referido teorema, mostrado por meio de eemplos que elas são realmete esseciais Acadêmico do Curso de Matemática da Uiversidade Federal de Uberlâdia Projeto de Iiciação Cietífica PROMAT FAMAT - UFU Professor da Faculdade de Matemática Uiversidade Federal de Uberlâdia Orietador de Projeto de Iiciação Cietífica o âmbito do PROMAT

2 Prelimiares: Defiição ( Cotração ): Sejam ( M, d ) e ( N, ρ ) espaços métricos Uma aplicação f : ( M, d ) ( N, ρ ) é dita ser uma cotração quado eiste uma costate c (,) tal que ρ ( f ( ), f ( y)) c, y ),, y M Defiição ( Sequêcia de Cauchy ): Uma seqüêcia ( ) um espaço métrico ( M, d ) é deomiada Sequêcia de Cauchy quado para cada ε > dado, eiste N tal que: m, > d ( m, ) < ε Defiição 3 ( Espaço Métrico Completo ) : Dizemos que o espaço métrico ( M, d ) é completo quado toda seqüêcia de Cauchy ( ) em M coverge para um poto p M a métrica d, isto é,, p) quado Defiição 4 ( Poto Fio ): Dizemos que p M é um poto fio da aplicação T : M M se T ( p) = p 3 O Teorema Pricipal e a ecessidade de suas hipóteses Teorema do Poto Fio de Baach: Seja M um espaço métrico completo e seja T : M M uma cotração Etão T possui um úico poto fio, isto é, eiste um úico p M tal que T ( p) = p Demostração: Seja um poto qualquer de M e cosidere a seqüêcia ( ) costruída da seguite forma: T ), = T ( ),, = T ( = ( + ), Observe que d (, ) = d ( T ( ), T ( )) c d (, ), 3) = T ( ), T ( )) c, ) c, )

3 Em geral temos que, + ) c, ) para todo iteiro positivo Segue, etão, que para todos os úmeros aturais [ c, + p + c ) + + c +, c ) + + p +, ] + ) +, ) = c +,, p temos: + 3 ) + + [ + c + + c p + p ], + p ) c, ) c e como < c <, segue que c quado, de ode cocluímos que ), ) uma seqüêcia de Cauchy em ( M, d) Sedo M completo, ) coverge para um poto p M Assim, como T é cotíua (pois sedo cotração, é lipschitziaa), T trasformará seqüêcia covergete em seqüêcia covergete, ou seja: ( T ( p) T (lim ) = limt ( ) = lim p = + = ( é Fica demostrada, portato, a eistêcia de poto fio de T Provemos agora a uicidade Para isso, supohamos que eistam a, b M tais que a = T (a) e b = T ( Etão, d ( a, = T ( a), T ( ) c a, ( c) a, e como c >, cocluímos que d ( a, =, ou seja, a = b Um fato que chama a ateção este teorema é a preseça de apeas duas hipóteses, suficietes para demostrá-lo Veremos agora algus eemplos que mostrarão ser estas hipóteses também ecessárias Precisamete, veremos que a coclusão do teorema fica prejudicada com a falta de qualquer uma delas Eemplo: Uma das hipóteses do Teorema do Poto Fio de Baach é que o espaço métrico seja completo Para mostrar que esta hipótese é essecial cosideremos o espaço métrico M = (,), o qual ão é completo, e a fução f : (,) (,) defiida por f ( ) = + É fácil ver que f é uma cotração e que f ão possui poto fio p o itervalo (,), pois f ( p) = p p + = p p = Este eemplo mostra que, mesmo tedo uma cotração, é impossível obter as coclusões do Teorema do Poto Fio de Baach caso o espaço métrico em questão ão seja completo A próima figura ilustra o comportameto da seqüêcia ( ) costruída

4 iterativamete a demostração do Teorema do Poto Fio de Baach Observe que apesar de ser de Cauchy, ela ão coverge para um poto do domíio da fução f Observe também que, se estedermos f cotiuamete o completameto do espaço (,), isto é, o domíio,] [, etão a seqüêcia ( ) poto fio de f, a saber, o poto p = covergirá, de fato, para o úico y = f ( ) = + y = 3 Eemplo : Quato à outra hipótese do teorema, basta tomarmos o espaço métrico completo dos úmeros reais com a métrica usual e a fução f : R R defiida primeiramete por f ( ) = + É fácil ver que esta fução ão é uma cotração o domíio R, e que ão possui poto fio pois f ( ) = + =, que ão possui solução real Logo, f ão possui ehum poto fio Por outro lado, se defiirmos f ( ) =, otamos facilmete que esta fução também ão é uma cotração, como o eemplo acima, mas agora perdemos a uicidade pois f possui dois potos fios, a saber: + 5 e 5

5 De fato, ± 5 f ( ) = = = = Eemplo 3: Não-epasões admitem poto fio? Não ecessariamete Neste caso tudo pode ocorrer As ão-epasões são aplicações f : ( M, d) ( M, d) tais que d ( f ( ), f ( y)), y ),, y M, e, a meos que se cosiga obter uma desigualdade aáloga com uma costate c (,), ão dá pra afirmar que f terá poto fio, ou etão que f terá um úico poto fio Os eemplos simples que seguem ilustram essa afirmação Um eemplo é a fução f : R R defiida por f ( ) = +, que é uma ão-epasão Neste caso claramete f ão possui poto fio, caso cotrário, teríamos a igualdade = Outro eemplo é a fução f : R R defiida por f ( ) =, que é uma ão-epasão Observe que, em oposição ao eemplo aterior, este caso todos os potos do domíio são potos fios Bibliografia [] Lima, Elo Lages; Espaços Métricos Rio de Jaeiro, IMPA, CNPq, 977 ( Projeto Euclides ) [] Brezis, H; Aalyse Foctioelle, Theorie et applicatios; Collectio Mathématiques Appliquées pour la maitrise [3] Goffma, C & Pedrick, G; First Course i Fuctioal Aalysis Pretice-Hall Series i Moder Aalysis

6

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009.

Preliminares 1. 1 lim sup, lim inf. Medida e Integração. Departamento de Física e Matemática. USP-RP. Prof. Rafael A. Rosales. 8 de março de 2009. Medida e Itegração. Departameto de Física e Matemática. USP-RP. Prof. Rafael A. Rosales 8 de março de 2009. 1 lim sup, lim if Prelimiares 1 Seja (x ), N, uma seqüêcia de úmeros reais, e l o limite desta

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas

Fundamentos de Análise Matemática Profª Ana Paula. Sequência Infinitas Fudametos de Aálise Matemática Profª Aa Paula Sequêcia Ifiitas Defiição 1: Uma sequêcia umérica a 1, a 2, a 3,,a,é uma fução, defiida o cojuto dos úmeros aturais : f : f a Notação: O úmero é chamado de

Leia mais

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos:

DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL. todas as repetições). Então, para todo o número positivo ξ, teremos: 48 DESIGUALDADES, LEIS LIMITE E TEOREMA DO LIMITE CENTRAL LEI DOS GRANDES NÚMEROS Pretede-se estudar o seguite problema: À medida que o úmero de repetições de uma experiêcia cresce, a frequêcia relativa

Leia mais

Cálculo II Sucessões de números reais revisões

Cálculo II Sucessões de números reais revisões Ídice 1 Defiição e exemplos Cálculo II Sucessões de úmeros reais revisões Mestrado Itegrado em Egeharia Aeroáutica Mestrado Itegrado em Egeharia Civil Atóio Beto beto@ubi.pt Departameto de Matemática Uiversidade

Leia mais

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias

Capítulo VII: Soluções Numéricas de Equações Diferenciais Ordinárias Capítulo VII: Soluções Numéricas de Equações Difereciais Ordiárias 0. Itrodução Muitos feómeos as áreas das ciêcias egearias ecoomia etc. são modelados por equações difereciais. Supoa-se que se quer determiar

Leia mais

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE

CAPÍTULO IV DESENVOLVIMENTOS EM SÉRIE CAPÍTUO IV DESENVOVIMENTOS EM SÉRIE Série de Taylor e de Mac-auri Seja f ) uma fução real de variável real com domíio A e seja a um poto iterior desse domíio Supoha-se que a fução admite derivadas fiitas

Leia mais

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo

Seqüências e Séries. Notas de Aula 4º Bimestre/2010 1º ano - Matemática Cálculo Diferencial e Integral I Profª Drª Gilcilene Sanchez de Paulo Seqüêcias e Séries Notas de Aula 4º Bimestre/200 º ao - Matemática Cálculo Diferecial e Itegral I Profª Drª Gilcilee Sachez de Paulo Seqüêcias e Séries Para x R, podemos em geral, obter sex, e x, lx, arctgx

Leia mais

F- MÉTODO DE NEWTON-RAPHSON

F- MÉTODO DE NEWTON-RAPHSON Colégio de S. Goçalo - Amarate - F- MÉTODO DE NEWTON-RAPHSON Este método, sob determiadas codições, apreseta vatages sobre os método ateriores: é de covergêcia mais rápida e, para ecotrar as raízes, ão

Leia mais

Alguns autores também denotam uma sequência usando parêntesis:

Alguns autores também denotam uma sequência usando parêntesis: Capítulo 3 Sequêcias e Séries Numéricas 3. Sequêcias Numéricas Uma sequêcia umérica é uma fução real com domíio N que, a cada associa um úmero real a. Os úmeros a são chamados termos da sequêcia. É comum

Leia mais

Séquências e Séries Infinitas de Termos Constantes

Séquências e Séries Infinitas de Termos Constantes Capítulo Séquêcias e Séries Ifiitas de Termos Costates.. Itrodução Neste capítulo estamos iteressados em aalisar as séries ifiitas de termos costates. Etretato, para eteder as séries ifiitas devemos ates

Leia mais

Aula 5 de Bases Matemáticas

Aula 5 de Bases Matemáticas Aula 5 de Bases Matemáticas Rodrigo Hause de julho de 04 Pricípio da Idução Fiita. Versão Fraca Deição (P.I.F., versão fraca) Seja p() uma proposição aberta o uiverso dos úmeros aturais. SE valem ambas

Leia mais

Novas Operações com Matrizes: Algumas de Suas Propriedades e Aplicações.

Novas Operações com Matrizes: Algumas de Suas Propriedades e Aplicações. Novas perações com atrizes: lgumas de Suas ropriedades e plicações toiel Nogueira da Silva e Valdair Bofim Itrodução: presete trabalho origiou-se durate o desevolvimeto de um projeto do rograma Istitucioal

Leia mais

Capítulo 3. Sucessões e Séries Geométricas

Capítulo 3. Sucessões e Séries Geométricas Capítulo 3 Sucessões e Séries Geométricas SUMÁRIO Defiição de sucessão Mootoia de sucessões Sucessões itadas (majoradas e mioradas) Limites de sucessões Sucessões covergetes e divergetes Resultados sobre

Leia mais

Capítulo I Séries Numéricas

Capítulo I Séries Numéricas Capítulo I Séries Numéricas Capitulo I Séries. SÉRIES NÚMERICAS DEFINIÇÃO Sedo u, u,..., u,... uma sucessão umérica, chama-se série umérica de termo geral u à epressão que habitualmete se escreve u u...

Leia mais

Secção 1. Introdução às equações diferenciais

Secção 1. Introdução às equações diferenciais Secção. Itrodução às equações difereciais (Farlow: Sec..,.) Cosideremos um exemplo simples de um feómeo que pode ser descrito por uma equação diferecial. A velocidade de um corpo é defiida como o espaço

Leia mais

SEQUÊNCIAS IMPORTANTES PARA O LIMITE

SEQUÊNCIAS IMPORTANTES PARA O LIMITE começado a eteder CÁLCULO Volume Um - SEQUÊNCIAS IMPORTANTES PARA O LIMITE Uma sequêcia ifiita de úmeros () é covergete a um úmero o quado () se tora (ou é sempre) igual a o, ou se tora cada vez mais próima

Leia mais

1. Revisão Matemática

1. Revisão Matemática Sequêcias de Escalares Uma sequêcia { } diz-se uma sequêcia de Cauchy se para qualquer (depedete de ε ) tal que : ε > 0 algum K m < ε para todo K e m K Uma sequêcia { } diz-se ser limitada superiormete

Leia mais

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO

MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE TECNOLÓGICA FEDERAL DO PARANÁ CAMPUS PATO BRANCO LIMITES. Itrodução: Usamos a palavra ite o osso cotidiao para idicar, geericamete, um poto que pode ser evetualmete

Leia mais

Probabilidade II Aula 12

Probabilidade II Aula 12 Coteúdo Probabilidade II Aula Juho de 009 Desigualdade de Marov Desigualdade de Jese Lei Fraca dos Grades Números Môica Barros, D.Sc. Itrodução A variâcia de uma variável aleatória mede a dispersão em

Leia mais

DERIVADAS DE FUNÇÕES11

DERIVADAS DE FUNÇÕES11 DERIVADAS DE FUNÇÕES11 Gil da Costa Marques Fudametos de Matemática I 11.1 O cálculo diferecial 11. Difereças 11.3 Taxa de variação média 11.4 Taxa de variação istatâea e potual 11.5 Primeiros exemplos

Leia mais

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE

lim Px ( ) 35 x 5 ), teremos Px ( ) cada vez mais próximo de 35 (denotaremos isso da forma Px ( ) 35 ). UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE CURSO DISCIPLINA PROFESSOR I) Itrodução ao Limite de uma Fução UNIVERSIDADE FEDERAL DA PARAÍBA CAMPUS IV-CCAE LICENCIATURA EM MATEMÁTICA CÁLCULO DIFERENCIAL E INTEGRAL I Limite de uma Fução José Elias

Leia mais

Séries e aplicações15

Séries e aplicações15 Séries e aplicações5 Gil da Costa Marques Fudametos de Matemática I 5. Sequêcias 5. Séries 5. Séries especiais 5.4 Arquimedes e a quadratura da parábola 5.5 Sobre a Covergêcia de séries 5.6 Séries de Taylor

Leia mais

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é,

SUCESSÕES E SÉRIES. Definição: Chama-se sucessão de números reais a qualquer f. r. v. r., cujo domínio é o conjunto dos números naturais IN, isto é, SUCESSÕES E SÉRIES Defiição: Chama-se sucessão de úmeros reais a qualquer f. r. v. r., cujo domíio é o cojuto dos úmeros aturais IN, isto é, u : IN IR u( ) = u Defiição: i) ( u ) IN é crescete IN, u u

Leia mais

Um estudo das permutações caóticas

Um estudo das permutações caóticas Um estudo das permutações caóticas Trabalho apresetado como atividade do PIPE a disciplia Matemática Fiita do Curso de Matemática o 1º semestre de 2009 Fabrício Alves de Oliveira Gabriel Gomes Cuha Grégory

Leia mais

Induzindo a um bom entendimento do Princípio da Indução Finita

Induzindo a um bom entendimento do Princípio da Indução Finita Iduzido a um bom etedimeto do Pricípio da Idução Fiita Jamil Ferreira (Apresetado a VI Ecotro Capixaba de Educação Matemática e utilizado como otas de aula para disciplias itrodutórias do curso de matemática)

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais Eercícios de eames e provas oficiais. Cosidere as fuções f e g, de domíio,0, defiidas por l e g f f Recorredo a processos eclusivamete aalíticos, mostre que a codição pelo meos, uma solução em e, f e tem,

Leia mais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais

Fundamentos de Análise Matemática Profª Ana Paula. Números reais Fudametos de Aálise Matemática Profª Aa Paula Números reais 1,, 3, cojuto dos úmeros aturais 0,1,,3, cojuto dos úmeros iteiros p q /p e q cojuto dos úmeros racioais a, a 0 a 1 a a, a e a i 0, 1,, 3, 4,

Leia mais

11 Aplicações da Integral

11 Aplicações da Integral Aplicações da Itegral Ao itroduzirmos a Itegral Defiida vimos que ela pode ser usada para calcular áreas sob curvas. Veremos este capítulo que existem outras aplicações. Essas aplicações estedem-se aos

Leia mais

CAP. I ERROS EM CÁLCULO NUMÉRICO

CAP. I ERROS EM CÁLCULO NUMÉRICO CAP I ERROS EM CÁLCULO NUMÉRICO 0 Itrodução Por método umérico etede-se um método para calcular a solução de um problema realizado apeas uma sequêcia fiita de operações aritméticas A obteção de uma solução

Leia mais

Capítulo II - Sucessões e Séries de Números Reais

Capítulo II - Sucessões e Séries de Números Reais Capítulo II - Sucessões e Séries de Números Reais 2 Séries de úmeros reais Sabemos bem o que sigifica u 1 + u 2 + + u p = p =1 e cohecemos as propriedades desta operação - comutatividade, associatividade,

Leia mais

1 Formulário Seqüências e Séries

1 Formulário Seqüências e Séries Formulário Seqüêcias e Séries Difereça etre Seqüêcia e Série Uma seqüêcia é uma lista ordeada de úmeros. Uma série é uma soma iita dos termos de uma seqüêcia. As somas parciais de uma série também formam

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio

Material Teórico - Módulo Binômio de Newton e Triangulo de Pascal. Soma de Elementos em Linhas, Colunas e Diagonais. Segundo Ano do Ensino Médio Material Teórico - Módulo Biômio de Newto e Triagulo de Pascal Soma de Elemetos em Lihas, Coluas e Diagoais Segudo Ao do Esio Médio Autor: Prof Fabrício Siqueira Beevides Revisor: Prof Atoio Camiha M Neto

Leia mais

Virgílio A. F. Almeida DCC-UFMG 1/2005

Virgílio A. F. Almeida DCC-UFMG 1/2005 Virgílio A. F. Almeida DCC-UFMG 1/005 !" # Comparado quatitativamete sistemas eperimetais: Algoritmos, protótipos, modelos, etc Sigificado de uma amostra Itervalos de cofiaça Tomado decisões e comparado

Leia mais

Exercícios de Cálculo III - CM043

Exercícios de Cálculo III - CM043 Eercícios de Cálculo III - CM43 Prof. José Carlos Corrêa Eidam DMAT/UFPR Dispoível o sítio people.ufpr.br/ eidam/ide.htm o. semestre de 22 Lista Sequêcias e séries de úmeros reais. Decida se cada uma das

Leia mais

Exercícios de exames e provas oficiais

Exercícios de exames e provas oficiais limites, cotiuidade, Teorema de Bolzao Eercícios de eames e provas oficiais. Cosidere as sucessões covergetes a e a b de termos gerais e b l e Sejam a e b os úmeros reais tais que a lima e b limb Qual

Leia mais

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré. 1 Sequências de números reais 1

Sequências Reais. Departamento de Matemática - UEL Ulysses Sodré.  1 Sequências de números reais 1 Matemática Essecial Sequêcias Reais Departameto de Matemática - UEL - 200 Ulysses Sodré http://www.mat.uel.br/matessecial/ Coteúdo Sequêcias de úmeros reais 2 Médias usuais 6 3 Médias versus progressões

Leia mais

Conjuntos Infinitos. Teorema (Cantor) Se A é conjunto qualquer, #A #P(A). Mais precisamente, qualquer

Conjuntos Infinitos. Teorema (Cantor) Se A é conjunto qualquer, #A #P(A). Mais precisamente, qualquer Cojutos Ifiitos Teorema (Cator) Se A é cojuto qualquer, #A #P(A). Mais precisamete, qualquer f : A P(A) ão é sobrejetora. Cosequêcia. Existe uma herarquia de cojutos ifiitos. Obs. Existe uma bijeção etre

Leia mais

DERIVADA DE FUNÇÕES REAIS DE UMA VARIÁVEL REAL

DERIVADA DE FUNÇÕES REAIS DE UMA VARIÁVEL REAL DERIVADA DE FUNÇÕES REAIS DE UMA VARIÁVEL REAL Editora da Uiversidade Estadual de Marigá Reitor: Prof Dr Gilberto Cezar Pavaelli Vice-Reitor: Prof Dr Agelo Priori Pró-Reitora de Pesquisa e Pós-Graduação:

Leia mais

4.2 Numeração de funções computáveis

4.2 Numeração de funções computáveis 4. Numeração de fuções computáveis 4.1 Numeração de programas 4.2 Numeração de fuções computáveis 4.3 O método da diagoal 4.4 O Teorema s-m- Teresa Galvão LEIC - Teoria da Computação I 4.1 4.1 Numeração

Leia mais

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica

CÁLCULO DIFERENCIAL. Conceito de derivada. Interpretação geométrica CÁLCULO DIFERENCIAL Coceito de derivada Iterpretação geométrica A oção fudametal do Cálculo Diferecial a derivada parece ter sido pela primeira vez explicitada o século XVII, pelo matemático fracês Pierre

Leia mais

Cálculo IV: Métodos da Física-Matemática

Cálculo IV: Métodos da Física-Matemática Uiversidade Federal do Rio de Jaeiro - UFRJ Istituto de Matemática - IM Departameto de Matemática Cálculo IV: Métodos da Física-Matemática Professor Adá J. Corcho Ferádez Rio de Jaeiro-RJ, 22 de ovembro

Leia mais

Definição 1: Sequência é uma lista infinita de números reais ordenados.

Definição 1: Sequência é uma lista infinita de números reais ordenados. Cálculo I Egeharia Mecâica. Sequêcias Defiição : Sequêcia é uma lista ifiita de úmeros reais ordeados. 2º termo º termo Nome (x ) = (x, x 2, x,..., x,...) º termo º termo N R x Observação: Podemos pesar

Leia mais

= o logaritmo natural de x.

= o logaritmo natural de x. VI OLIMPÍ IEROMERIN E MTEMÁTI UNIVERSITÁRI 8 E NOVEMRO E 00 PROLEM [5 potos] Seja f ( x) log x 0 = o logaritmo atural de x efia para todo 0 f+ ( x) = f() t dt = lim f() t dt x 0 ε 0 ε Prove que o limite

Leia mais

Carlos Fabiano Rosa. Série de Taylor e Aplicações

Carlos Fabiano Rosa. Série de Taylor e Aplicações Carlos Fabiao Rosa Série de Taylor e Aplicações UNIVERSIDADE FEDERAL DE SANTA CATARINA Floriaópolis - SC 2013 Carlos Fabiao Rosa Série de Taylor e Aplicações Curso de Matemática - Habilitação Liceciatura

Leia mais

2- Resolução de Sistemas Não-lineares.

2- Resolução de Sistemas Não-lineares. MÉTODOS NUMÉRICOS PARA EQUAÇÕES DIFERENCIAIS PARCIAIS - Resolução de Sisteas Não-lieares..- Método de Newto..- Método da Iteração. 3.3- Método do Gradiete. - Sisteas Não Lieares de Equações Cosidere u

Leia mais

a 1, se n=1 i=1 a i + a n, se n > 1 a i. i=1 n N

a 1, se n=1 i=1 a i + a n, se n > 1 a i. i=1 n N Capítulo 3 Séries Numéricas 3. Geeralização da operação adição A operação adição ou soma é iicialmete defiida como a aplicação que a cada par de úmeros reais faz correspoder um úmero real, de acordo com

Leia mais

Função Logarítmica 2 = 2

Função Logarítmica 2 = 2 Itrodução Veja a sequêcia de cálculos aaio: Fução Logarítmica = = 4 = 6 3 = 8 Qual deve ser o valor de esse caso? Como a fução epoecial é estritamete crescete, certamete está etre e 3. Mais adiate veremos

Leia mais

Faculdades Adamantinenses Integradas (FAI)

Faculdades Adamantinenses Integradas (FAI) Faculdades Adamatieses Itegradas (FAI) www.fai.com.br BAZÃO, Vaderléa Rodrigues; MEIRA, Suetôio de Almeida; NOGUEIRA, José Roberto. Aálise de Fourier para o estudo aalítico da equação da oda. Omia Exatas,

Leia mais

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X

) E X. ) = 0 2 ( 1 p ) p = p. ) E 2 ( X ) = p p 2 = p ( 1 p ) ( ) = i 1 n. ( ) 2 n E( X) = ( ) = 1 p ( ) = p V ( X ) = E ( X 2 E X 3.5 A distribuição uiforme discreta Defiição: X tem distribuição uiforme discreta se cada um dos valores possíveis,,,, tiver fução de probabilidade P( X = i ) = e represeta-se por, i =,, 0, c.c. X ~ Uif

Leia mais

Neste cap ³tulo, apresentamos o conceito de n umero primo e exploramos as primeiras propriedades dos n umeros primos.

Neste cap ³tulo, apresentamos o conceito de n umero primo e exploramos as primeiras propriedades dos n umeros primos. 5 N umeros primos Neste cap ³tulo, apresetamos o coceito de umero primo e exploramos as primeiras propriedades dos umeros primos. 5.1 Coceitos e propriedades imprescid ³veis O iteiro positivo 1 tem somete

Leia mais

1. Revisão Matemática

1. Revisão Matemática Se x é um elemeto do cojuto Notação S: x S Especificação de um cojuto : S = xx satisfaz propriedadep Uião de dois cojutos S e T : S T Itersecção de dois cojutos S e T : S T existe ; para todo f : A B sigifica

Leia mais

Professor Mauricio Lutz LIMITES

Professor Mauricio Lutz LIMITES LIMITES ) Noção ituitiva de ites Seja a fução f ( ) +. Vamos dar valores de que se aproimem de, pela sua direita (valores maiores que ) e pela esquerda (valores meores que ) e calcular o valor correspodete

Leia mais

Estudo da Função Exponencial e Função Logarítmica

Estudo da Função Exponencial e Função Logarítmica Istituto Muicipal de Esio Superior de Cataduva SP Curso de Liceciatura em Matemática 3º ao Prática de Esio da Matemática III Prof. M.Sc. Fabricio Eduardo Ferreira fabricio@fafica.br Estudo da Fução Expoecial

Leia mais

OPERAÇÃO 1 OPERAÇÃO 2 OPERAÇÃO 3 OPERAÇÃO mês 10% a.m. 100,00 110,00 121,00

OPERAÇÃO 1 OPERAÇÃO 2 OPERAÇÃO 3 OPERAÇÃO mês 10% a.m. 100,00 110,00 121,00 Módulo 7 J uros Compostos Os juros compostos são cohecidos, popularmete, como juros sobre juros. 7.1 Itrodução: Etedemos por juros compostos quado o fial de cada período de capitalização, os redimetos

Leia mais

Desigualdades Aritméticas

Desigualdades Aritméticas Projecto Delfos: Escola de Matemática Para Joves Desigualdades Aritméticas. Mostra que a + b a + b, para todos os úmeros reais a e b (desigualdade triagular). Quado é que se tem a igualdade? Geeraliza

Leia mais

Introdução ao Qui-Quadrado

Introdução ao Qui-Quadrado Técicas Laboratoriais de Física Lic. Física e g. Biomédica 007/08 Capítulo X Teste do Qui-quadrado, Itrodução ao qui-quadrado Defiição geral do qui-quadrado Graus de liberdade e reduzido abilidade do 66

Leia mais

Cap. VI Histogramas e Curvas de Distribuição

Cap. VI Histogramas e Curvas de Distribuição TLF /11 Capítulo VI Histogramas e curvas de distribuição 6.1. Distribuições e histogramas. 6 6.. Distribuição limite 63 6.3. Sigificado da distribuição limite: frequêcia esperada e probabilidade de um

Leia mais

Mas, a situação é diferente quando se considera, por exemplo, a

Mas, a situação é diferente quando se considera, por exemplo, a . NÚMEROS COMPLEXOS Se um corpo umérico uma equação algébrica ão tem raíes, é possível costruir outro corpo umérico, mais eteso, ode a equação se tora resolúvel. Eemplo: ± raíes irracioais Mas, a situação

Leia mais

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso)

) E 2 ( X) = p p 2 = p( 1 p) ) = 0 2 ( 1 p) p = p ( ) = ( ) = ( ) = p. F - cara (sucesso) C - coroa (insucesso) 3.6 A distribuição biomial Defiição: uma eperiêcia ou prova de Beroulli é uma eperiêcia aleatória só com dois resultados possíveis (um deles chamado "sucesso" e o outro "isucesso"). Seja P(sucesso) = p,

Leia mais

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p

ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p ESTIMAÇÃO DA PROPORÇÃO POPULACIONAL p Objetivo Estimar uma proporção p (descohecida) de elemetos em uma população, apresetado certa característica de iteresse, a partir da iformação forecida por uma amostra.

Leia mais

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica

Exercícios de Aprofundamento Matemática Progressão Aritmética e Geométrica Exercícios de Aprofudameto Matemática Progressão Aritmética e b. (Fuvest 05) Dadas as sequêcias a 4 4, b, c a a e d, b defiidas para valores iteiros positivos de, cosidere as seguites afirmações: I. a

Leia mais

RESOLUÇÃO DE SISTEMAS NÃO LINEARES

RESOLUÇÃO DE SISTEMAS NÃO LINEARES 87 RESOLUÇÃO DE SISTEMAS NÃO LINEARES Uma equação que coteha uma epressão do tipo, -,,, se(), e +z, z etc, é chamada ão-liear em,, z,, porque ela ão pode ser escrita o que é uma equação liear em,, z, a

Leia mais

Notas de Aula do Curso ET584: Probabilidade 4

Notas de Aula do Curso ET584: Probabilidade 4 Notas de Aula do Curso ET584: Probabilidade 4 Leadro Chaves Rêgo, Ph.D. 2010.1 Prefácio Estas otas de aula foram feitas para compilar o coteúdo de várias referêcias bibliográcas tedo em vista o coteúdo

Leia mais

Uma relação entre sincronização no mapa do círculo e os números racionais

Uma relação entre sincronização no mapa do círculo e os números racionais Uma relação etre sicroização o mapa do círculo e os úmeros racioais Mariaa P. M. A. Baroi Elbert E. N. Macau Laboratório Associado de Computação e Matemática Aplicada Istituto Nacioal de Pesquisas Espaciais

Leia mais

M23 Ficha de Trabalho SUCESSÕES 2

M23 Ficha de Trabalho SUCESSÕES 2 M Ficha de Trabalho NOME: SUCESSÕES I PARTE Relativamete à sucessão a =, pode-se afirmar que: (A) É um ifiitamete grade positivo (B) É um ifiitésimo (C) É um ifiitamete grade egativo (D) É limitada Cosidere

Leia mais

Proposição 5.4 Sejam X, Y espaços normados. Então, toda aplicação linear T : X Y compacta é contínua e K(X, Y) é um subespaço de L(X, Y).

Proposição 5.4 Sejam X, Y espaços normados. Então, toda aplicação linear T : X Y compacta é contínua e K(X, Y) é um subespaço de L(X, Y). CAPÍTULO 5 Teoria Espectral 5.1 Aplicações Lieares Compactas Defiição 5.1 Sejam X, Y espaços ormados. Uma aplicação liear T : X Y é compacta 1 se, para toda seqüêcia limitada (x ) X, a seqüêcia (Tx ) possuir

Leia mais

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º A1. Grupo I

ESCOLA SECUNDÁRIA COM 3º CICLO D. DINIS COIMBRA 12º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO 12º A1. Grupo I ESCOLA SECUNDÁRIA COM º CICLO D. DINIS COIMBRA º ANO DE ESCOLARIDADE MATEMÁTICA A FICHA DE AVALIAÇÃO º A Grupo I As três questões deste grupo são de escolha múltipla. Para cada uma delas são idicadas quatro

Leia mais

FICHA DE TRABALHO 11º ANO. Sucessões

FICHA DE TRABALHO 11º ANO. Sucessões . Observe a sequêcia das seguites figuras: FICHA DE TRABALHO º ANO Sucessões Vão-se costruido, sucessivamete, triâgulos equiláteros os vértices dos triâgulos equiláteros já existetes, prologado-se os seus

Leia mais

Potencial elétrico para distribuições de cargas puntiformes: sobre a convergência de séries infinitas

Potencial elétrico para distribuições de cargas puntiformes: sobre a convergência de séries infinitas Revista Brasileira de Esio de Física, v. 32,. 3, 3309 200) www.sbfisica.org.br Potecial elétrico para distribuições de cargas putiformes: sobre a covergêcia de séries ifiitas Electric potetial of poit

Leia mais

ATIVIDADES INVESTIGATIVAS PARA O ENSINO E APRENDIZAGEM DOS CONCEITOS E PROPRIEDADES DE SUCESSÕES NUMÉRICAS

ATIVIDADES INVESTIGATIVAS PARA O ENSINO E APRENDIZAGEM DOS CONCEITOS E PROPRIEDADES DE SUCESSÕES NUMÉRICAS Mestrado Profissioalizate em Esio de Física e de Matemática ATIVIDADES INVESTIGATIVAS PARA O ENSINO E APRENDIZAGEM DOS CONCEITOS E PROPRIEDADES DE SUCESSÕES NUMÉRICAS Alua: Lucilee Oeig Saraiva Orietadora:

Leia mais

CAPÍTULO III SUCESSÕES DE TERMOS REAIS

CAPÍTULO III SUCESSÕES DE TERMOS REAIS CAPÍTULO III SUCESSÕES DE TERMOS REAIS. Geeralidades Chama-se sucessão de termos reais a qualquer aplicação de N em R. O real u que correspode ao atural é o primeiro termo da sucessão o real u que correspode

Leia mais

Interpolação-Parte II Estudo do Erro

Interpolação-Parte II Estudo do Erro Iterpolação-Parte II Estudo do Erro. Estudo do Erro a Iterpolação. Iterpolação Iversa 3. Grau do Poliômio Iterpolador 4. Fução Splie em Iterpolação 4. Splie Liear 4. Splie Cúbica .Estudo do Erro a Iterpolação

Leia mais

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real.

Mas o que deixou de ser abordado na grande generalidade desses cursos foi o estudo dos produtos infinitos, mesmo que só no caso numérico real. Resumo. O estudo das séries de termos reais, estudado as disciplias de Aálise Matemática da grade geeralidade dos cursos técicos de liceciatura, é aqui estedido ao corpo complexo, bem como ao caso em que

Leia mais

Estudando complexidade de algoritmos

Estudando complexidade de algoritmos Estudado complexidade de algoritmos Dailo de Oliveira Domigos wwwdadomicombr Notas de aula de Estrutura de Dados e Aálise de Algoritmos (Professor Adré Bala, mestrado UFABC) Durate os estudos de complexidade

Leia mais

Distribuição de Bernoulli

Distribuição de Bernoulli Algumas Distribuições Discretas Cálculo das Probabilidades e Estatística I Prof. Luiz Medeiros Departameto de Estatística UFPB Distribuição de Beroulli Na prática muitos eperimetos admitem apeas dois resultados

Leia mais

A letra x representa números reais, portanto

A letra x representa números reais, portanto Aula 0 FUNÇÕES UFPA, 8 de março de 05 No ial desta aula, você seja capaz de: Saber dizer o domíio e a imagem das uções esseciais particularmete esta aula as uções potêcias; Fazer o esboço de gráico da

Leia mais

Notas de Aula. Equações Diferenciais Numéricas

Notas de Aula. Equações Diferenciais Numéricas Notas de Aula Equações Difereciais Numéricas Rodey Josué Biezuer Departameto de Matemática Istituto de Ciêcias Exatas ICEx) Uiversidade Federal de Mias Gerais UFMG) Notas de aula da disciplia Equações

Leia mais

Probabilidade II Aula 9

Probabilidade II Aula 9 Coteúdo Probabilidade II Aula 9 Maio de 9 Môica Barros, D.Sc. Estatísticas de Ordem Distribuição do Máximo e Míimo de uma amostra Uiforme(,) Distribuição do Máximo e Míimo caso geral Distribuição das Estatísticas

Leia mais

Convergência forte de estimadores, erros com decaimento exponencial no infinito e colapso de erros radiais

Convergência forte de estimadores, erros com decaimento exponencial no infinito e colapso de erros radiais Actas do XIII Cogresso Aual da SPE 1 Covergêcia forte de estimadores, erros com decaimeto expoecial o ifiito e colapso de erros radiais João Lita da Silva Departameto de Matemática FCT/UNL e CMA/UNL João

Leia mais

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x

( ) 4. Novo Espaço Matemática A 12.º ano Proposta de Teste de Avaliação [maio 2015] GRUPO I. f x Novo Espaço Matemática A º ao Proposta de Teste de Avaliação [maio 05] Nome: Ao / Turma: Nº: Data: - - GRUPO I Os sete ites deste grupo são de escolha múltipla Em cada um deles, são idicadas quatro opções,

Leia mais

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia.

26/11/2000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR PROVA 2 MATEMÁTICA. Prova resolvida pela Profª Maria Antônia Conceição Gouveia. 6//000 UNIVERSIDADE FEDERAL DO RIO DE JANEIRO VESTIBULAR 00- PROVA MATEMÁTICA Prova resolvida pela Profª Maria Atôia Coceição Gouveia RESPONDA ÀS QUESTÕES A SEGUIR, JUSTIFICANDO SUAS SOLUÇÕES QUESTÃO A

Leia mais

Elementos de Análise - Verão 2001

Elementos de Análise - Verão 2001 Elemetos de Aálise - Verão 00 Lista Thomas Robert Malthus, 766-834, foi professor de Ecoomia Política em East Idia College e em seu trabalho trouxe à luz os estudos sobre diâmica populacioal. Um de seus

Leia mais

n IN*. Determine o valor de a

n IN*. Determine o valor de a Progressões Aritméticas Itrodução Chama-se seqüêcia ou sucessão umérica, a qualquer cojuto ordeado de úmeros reais ou complexos. Exemplo: A=(3, 5, 7, 9,,..., 35). Uma seqüêcia pode ser fiita ou ifiita.

Leia mais

Disciplina: Séries e Equações Diferenciais Ordinárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL

Disciplina: Séries e Equações Diferenciais Ordinárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL Disciplia: Séries e Equações Difereciais Ordiárias Prof Dr Marivaldo P Matos Curso de Matemática UFPBVIRTUAL matos@mat.ufpb.br Ambiete Virtual de Apredizagem: Moodle (www.ead.ufpb.br) Site do Curso: www.mat.ufpb.br/ead

Leia mais

Duração: 90 minutos 5º Teste, Junho Nome Nº T:

Duração: 90 minutos 5º Teste, Junho Nome Nº T: Escola Secudária Dr. Âgelo Augusto da Silva Teste de MATEMÁTICA A 11º Ao Duração: 90 miutos 5º Teste, Juho 006 Nome Nº T: Classificação O Prof. (Luís Abreu) 1ª PARTE Para cada uma das seguites questões

Leia mais

MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e

MATEMÁTICA CADERNO 1 CURSO E FRENTE 1 ÁLGEBRA. Módulo 1 Equações do 1 ọ Grau e MATEMÁTICA CADERNO CURSO E FRENTE ÁLGEBRA Módulo Equações do ọ Grau e do ọ Grau ) [ ( )] = [ + ] = + = + = + = = Resposta: V = { } 9) Na equação 6 = 0, tem-se a = 6, b = e c =, etão: I) = b ac = + = b

Leia mais

Departamento de Matemática. CÁLCULO ii. Ady Cambraia Junior Braz Moura Freitas. Coordenadoria de Educação Aberta e a Distância

Departamento de Matemática. CÁLCULO ii. Ady Cambraia Junior Braz Moura Freitas. Coordenadoria de Educação Aberta e a Distância Departameto de Matemática CÁLCULO ii Ady Cambraia Juior Braz Moura Freitas 7 Coordeadoria de Educação Aberta e a Distâcia Uiversidade Federal de Viçosa Reitora Nilda de Fátima Ferreira Soares Vice-Reitor

Leia mais

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA

UNIVERSIDADE DO ALGARVE ESCOLA SUPERIOR DE TECNOLOGIA UNIVERSIAE O ALGARVE ESCOLA SUPERIOR E TECNOLOGIA CURSO BIETÁPICO EM ENGENHARIA CIVIL º ciclo Regime iuro/nocturo isciplia de COMPLEMENTOS E MATEMÁTICA Ao lectivo de 7/8 - º Semestre Cosidere a ução :

Leia mais

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,...

Sucessão ou Sequência. Sucessão ou seqüência é todo conjunto que consideramos os elementos dispostos em certa ordem. janeiro,fevereiro,... Curso Metor www.cursometor.wordpress.com Sucessão ou Sequêcia Defiição Sucessão ou seqüêcia é todo cojuto que cosideramos os elemetos dispostos em certa ordem. jaeiro,fevereiro,...,dezembro Exemplo : Exemplo

Leia mais

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP

INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Nível Avaçado. INTEIROS DE GAUSS E INTEIROS DE EISENSTEIN Guilherme Fujiwara, São Paulo SP Vamos abordar esse artigo a aritmética de dois cojutos de iteiros algébricos: os Iteiros de Gauss e os Iteiros

Leia mais

Problemas e Teoremas em Teoria dos Números

Problemas e Teoremas em Teoria dos Números Problemas e Teoremas em Teoria dos Números Alex Abreu e Samuel Feitosa 7 de março de 008 Nosso objetivo será apresetar algumas idéias e teoremas que cosideramos idispesáveis para seu treiameto. Assumiremos

Leia mais

Universidade Federal de Juiz de Fora. PROFMAT - Mestrado Profissional em Matemática em Rede Nacional. Augusto Frederico Burle Neto

Universidade Federal de Juiz de Fora. PROFMAT - Mestrado Profissional em Matemática em Rede Nacional. Augusto Frederico Burle Neto Uiversidade Federal de Juiz de Fora PROFMAT - Mestrado Profissioal em Matemática em Rede Nacioal Augusto Frederico Burle Neto Potêcia de Expoete Irracioal: Uma aula para os aluos da 3 a série do Esio Médio

Leia mais

RESUMO PARA PROVA DA IDENTIDADE DE EULER

RESUMO PARA PROVA DA IDENTIDADE DE EULER RESUMO PARA PROVA DA IDENTIDADE DE EULER Este teto é parte itegrate de um cojuto de tetos que objetivam coduir ao etedimeto das equações aplicadas ao eletromagetismo. É um bom começo para quem quer se

Leia mais

Prova-Modelo de Matemática

Prova-Modelo de Matemática Prova-Modelo de Matemática PROVA Págias Esio Secudário DURAÇÃO DA PROVA: miutos TOLERÂNCIA: miutos Cotações GRUPO I O quarto úmero de uma certa liha do triâgulo de Pascal é. A soma dos quatro primeiros

Leia mais

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A.

Matemática A. Versão 1. Na sua folha de respostas, indique de forma legível a versão do teste. Teste Intermédio de Matemática A. Teste Itermédio de Matemática A Versão Teste Itermédio Matemática A Versão Duração do Teste: 90 miutos 6.05.0.º Ao de Escolaridade Decreto-Lei.º 74/004, de 6 de Março Na sua folha de respostas, idique

Leia mais

AULA Matriz inversa Matriz inversa.

AULA Matriz inversa Matriz inversa. Note bem: a leitura destes apotametos ão dispesa de modo algum a leitura ateta da bibliografia pricipal da cadeira ÓPICOS Matriz iversa. U 6 Chama-se a ateção para a importâcia do trabalho pessoal a realizar

Leia mais

Os testes da Comparação, Raiz e Razão e Convergência absoluta

Os testes da Comparação, Raiz e Razão e Convergência absoluta Os testes da Comparação, Raiz e Razão e Covergêcia absoluta Prof. Flávia Simões AULA 4 Os testes de Comparação Comparar uma série dada com uma que já sabemos se coverge ou diverge. Usamos geralmete as

Leia mais

( ) ( ) ( ) ( ) 4.4- Forma de Newton-Gregory para o polinômio interpolador.

( ) ( ) ( ) ( ) 4.4- Forma de Newton-Gregory para o polinômio interpolador. 44- Forma de Newto-Gregory para o poliômio iterpolador No caso em que os ós da iterpolação x 0, x,, x são igualmete espaçados, podemos usar a orma de Newto-Gregory para obter p (x Estudaremos iicialmete

Leia mais

UM PEQUENO ESTUDO SOBRE OTIMIZAÇÃO LINEAR

UM PEQUENO ESTUDO SOBRE OTIMIZAÇÃO LINEAR UNIVERSIDADE CAÓLICA DE GOIÁS DEPARAMENO DE COMPUAÇÃO BACHARELADO EM CIÊNCIA DA COMPUAÇÃO UM PEQUENO ESUDO SOBRE OIMIZAÇÃO LINEAR MAURÍCIO PEREIRA DE OLIVEIRA JUNHO 2009 UNIVERSIDADE CAÓLICA DE GOIÁS DEPARAMENO

Leia mais